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CMT: Cross Mean Teacher Unsupervised Domain
Adaptation for VHR Image Semantic Segmentation
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Abstract— Semantic segmentation of remote sensing images
has achieved superior results with the supervised deep learning
models. However, their performance to unseen data domains
could be very bad due to the domain shift between different
domains. Recently, a series of unsupervised domain adapta-
tion (UDA) methods has been developed to solve the domain shift
problem in semantic segmentation. Most of them use adversarial
learning to achieve global cross-domain alignment and use a
self-training (ST) strategy to generate pseudo-labels for classwise
alignment. However, these methods ignore the pixels that are not
assigned pseudo-labels. Those pixels are mostly at the boundaries,
which are vital to the final segmentation results. To solve this
problem, this letter proposes a cross mean teacher (CMT) UDA
method. The whole framework consists of two parts. On the
one hand, the global cross-domain distribution alignment is
performed, and then, reliable pseudo-labels are assigned to
the target data. On the other hand, a cross teacher–student
network (CTSN) is developed to effectively use those pixels with
and without pseudo-labels. This network contains two student
networks (S1 and S2) and two teacher networks (T1 and T2)
for cross-consistency constraints that supervises S2 (or S1) by
the prediction results of T1 (or T2). The cross supervision by
CTSN is helpful to prevent performance bottlenecks caused
by the high coupling of teacher–student network in existing
methods. Extensive experiments on three different remote sensing
adaptation scenes verify the effectiveness and superiority of the
proposed method.

Index Terms— Cross mean teacher (CMT), self-training (ST),
semantic segmentation, unsupervised domain adaptation (UDA),
very-high-resolution (VHR) image.

I. INTRODUCTION

SEMANTIC segmentation, which aims at assigning label
to each pixel in an image, has been widely used in
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the remote sensing community. Recently, deep learning-based
methods have made great achievements for this task when
there are a large number of annotated samples [1]–[5]. How-
ever, it is time-consuming and laborious to provide pixelwise
annotations for each image, especially in the remote sensing
community with diverse scenes. The suboptimal solution is
to train a model with an existing labeled data set (source
domain) and deploy it directly to the unlabeled target domain.
Unfortunately, the distribution discrepancy between different
domains degrades the performance of the learned model on
the target domain, especially for very-high-resolution (VHR)
remote sensing images. Such discrepancy is mainly caused by
the diversity of data acquisition conditions, such as color satu-
ration, different spectral bands, regions, and ground sampling
distances (GSDs).

The distribution discrepancy between domains is usually
named domain shift [6], which is expected to be eliminated
by unsupervised domain adaptation (UDA) [7]. For semantic
segmentation, a maximum classifier discrepancy model [8]
is proposed by applying two task-specific classifiers as dis-
criminators to perform distribution alignment. Yan et al. [9]
developed an adversarial domain similarity discriminator to
jointly consider dissimilar and similar information between
domains on feature space for VHR image semantic segmenta-
tion. Tsai et al. [10] first performed distribution alignment
through adversarial learning [11] in the output space of
the segmentation network. Since the target domain has no
annotations, these methods can only align the distribution of
different domains globally and cannot guarantee the classwise
alignment [12].

To perform cross-domain classwise alignment, many self-
training (ST)-based UDA methods [12]–[14] have been devel-
oped. Those approaches generate pseudo-labels for the target
domain to retrain the segmentation network for classwise
alignment. Li et al. [13] proposed a bidirectional learning
domain adaptation model (BDL) that alternatively trains the
image translation model and the self-supervised segmentation
adaptation model. In the process of self-supervised, BDL
assigns pseudo-labels to pixels in the target domain whose
predicted probability is greater than a threshold for retrain-
ing. Yan et al. [12] proposed a class-aware ST (CAST)
method that considers both the outputs of the discrimina-
tor and the segmentation network for pseudo-labels gen-
eration. However, these methods leave many without any
pseudo-labels pixels, which are mostly at the boundaries
and have a crucial influence on the final segmentation
results.
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Fig. 1. Overall architecture of the proposed method. It mainly consists of two parts: the left part is the CDGA and the right part is the CTSN for classwise
alignment. CTSN is applied after the CDGA, and the weights of two student networks (S1 and S2) in CTSN are initialized by the segmentation network
obtained by CDGA at two different epochs. T1 and T2 use the same initialization way as S1 and S2. EMA represents the EMA algorithm used to update the
teacher network. The T1 model is used as the test model.

In the semisupervised learning, the teacher–student structure
is usually adopted to use unlabeled data. The mean teacher
(MT) [15] obtains an ensemble teacher by applying an expo-
nential moving average (EMA) to the student. It obeys the
smoothness assumption that if two samples are generated by
a sample through different perturbations, then the teacher and
student should have consistent prediction for them. However,
under the setting of UDA, the student has strong convergence,
leading to the EMA teacher that is coupled with the student.
This phenomenon leads to the teacher, which cannot provide
sufficient meaningful knowledge for the student [16].

To solve the above issues, this letter proposes a cross
mean teacher (CMT) ST UDA method for VHR image
semantic segmentation. First, CMT performs global distrib-
ution alignment by global alignment domain adaptation (DA)
method, e.g., AdasegNet [12] and TriADA [10], and gen-
erates pseudo-labels of the target domain. Second, a cross
teacher–student network (CTSN) is proposed to perform
classwise alignment. CTSN contains two student networks
(S1 and S2) and two teacher networks (T1 and T2). The pixels
with pseudo-labels are trained directly through the standard
cross-entropy loss. A cross-consistency constraint is developed
to utilize pixels without pseudo-labels. As shown in the right
part of Fig. 1, CTSN uses the predicted results of T1 (or T2) as
the supervisory information of S2 (or S1) for cross-consistency
constraints. In addition, we initialize S1 and S2 with different
weights and optimize them independently. In this way, CTSN
not only inherits the stability of the MT but also avoids the
excessive coupling of the teacher–student network. The main
contributions of this letter are summarized as follows.

1) A CMT ST UDA method is proposed for cross-domain
semantic segmentation in VHR remote sensing images,
which can perform both global and classwise distribution
alignment.

2) A CTSN is developed in CMT to effectively utilize the
pixels that are not assigned pseudo-labels during the
classwise alignment.

3) Experiments on three different remote sensing adapta-
tion situations demonstrate that the proposed method
outperforms the state-of-the-art methods.

II. PROPOSED METHOD

In the setting of UDA, the labeled source domain is denoted
as DS = {(xs, ys)|xs ∈ R

H×W×3, ys ∈ R
H×W×C}, and

the unlabeled target domain is denoted as DT = {xt |xt ∈
R

H×W×3}, where W and H are the width and height of the
image, respectively, and C is the number of classes. The
proposed network consists of two parts, the cross-domain
global alignment (CDGA) module and the CTSN, as shown
in Fig. 1.

A. Cross-Domain Global Alignment (CDGA)

Note that the proposed CTSN model requires pseudo-labels
of the target domain and different weights to initialize the
two teacher–student networks. Therefore, CDGA is used to
generate pseudo-labels and provide different initializations
and will not be updated when training CTSN. It can be
any global alignment DA methods, e.g., AdasegNet [10] and
TriADA [12]. In this letter, we adopt AdasegNet as CDGA for
its popularity. The results of using TriADA will be discussed
in Section III. Here, we briefly introduce the principle of
AdasegNet (please refer to [10] for details).

To achieve global alignment, AdasegNet plays a min-max
game between the segmentation network F and the discrimi-
nator D. In this process, D is treated as a binary classifier to
distinguish whether the input features are generated from the
source domain or the target domain. F is updated to trick
D into distinguishing features that are originally generated
from the target domain as if they are generated from the
source domain. Thus, F can generate domain-invariant features
and achieve global alignment. This process is formulated as
follows:

Ladv,D(xs, xt ; θD) = − E
xs∼DS

[log(D(F(xs)))]
− E

xt ∼DT

[log(1 − D(F(xt)))] (1)

Ladv,F (xt; θF) = − E
xt ∼DT

[log(D(F(xt)))] (2)

where θ D and θ F denote the weights of D and F, respectively,
and Ladv,D and Ladv,F are alternately optimized to update D
and F, respectively.

Meanwhile, to ensure the performance of F on source
domain, AdasegNet optimizes the standard supervised seg-
mentation loss on the source domain. The learning objective
is as follows:

Lseg,S(xs, ys; θF) = − 1

HW

HW∑
n=1

C∑
c=1

yn,c
s log(pn(c|θF, xs)) (3)
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in which pn(c|θF, xs) denotes the probability that the nth
position in source sample xs is predicted as class c. Here,
yn

s is the ground truth that is expressed as a one-hot vector.

B. Cross Teacher–Student Network (CTSN)

CTSN can effectively utilize all pixels in the target domain,
including those pixels without pseudo-labels. Specifically, after
global alignment, we first use F to predict the target data and
assign pseudo-labels to pixels whose predicted probabilities
are higher than a threshold ι. The pseudo-labels generation
process is as follows:

c∗ = arg max
c

pn(c|θF, xt ) (4)

ŷn,c∗
t =

{
1, if pn(c∗|θF, xt) > ι

0, otherwise
(5)

where c∗ is the predicted class at the nth position for xt . If ŷn
t

taht equals zero, vector indicates that the nth position does
not assign a pseudo-label, and vice versa. M p

t and Mup
t denote

masks with and without pseudo-labels in xt , respectively

Mup,n
t =

{
1, ŷn

t == �0
0, ŷn

t �= �0,
M p,n

t =
{

1, ŷn
t �= �0

0, ŷn
t == �0.

(6)

Second, to utilize the pixels that without pseudo-labels in
the target domain, CTSN is designed, as shown in the right of
Fig. 1. CTSN consists of two student networks (S1 and S2) and
two teacher networks (T1 and T2). The weights of T1 and T2

are updated by EMA of S1 and S2, as shown in the following:
θ t

T = αθ t−1
T + (1 − α)θ t

S (7)

in which θ t
T and θ t

S represent the weights of the teacher
network and the student network in the training step of t ,
respectively, and α ∈ [0, 1] is a smoothing coefficient.

Different from MT [15] that directly uses the output of
the teacher network as the supervision information of the
student network for consistency constraint, this may lead to
a performance bottleneck [16]. CTSN utilizes the predicted
probability of T1 (or T2) as the supervision information of S2

(or S1) to perform cross-consistency constraint, which can be
formulated as follows:
L3c(xt) = ∥∥Mup

t � T2(x̂t) − Mup
t � S1(xt)

∥∥2

+ ∥∥Mup
t � T1(x̂t) − Mup

t � S2(xt)
∥∥2

(8)

where x̂t is an augmented image of sample xt after adding
Gaussian noise and random color jitter, as MT did [15].
Here, � is an elementwise dot product. Since S1 and S2 are
initialized by the segmentation model F obtained at different
iterations in CDGA and independently optimized, T2 and T1

are decoupled from S1 and S2, respectively.
For target data with pseudo-labels, the cross-entropy loss is

applied to S1 and S2. The object function is as follows:
Lseg,T (xt , ŷt)

= − 1

HW

HW∑
n=1

C∑
c=1

M p,n
t · ŷn,c

t log(pn(c|θS1, xt))

− 1

HW

HW∑
n=1

C∑
c=1

M p,n
t · ŷn,c

t log(pn(c|θS2, xt )). (9)

Algorithm 1 Overall Steps of the Proposed Method
Input: Source domain DS , target domain DT , segmentation
network F, discriminator D. The training iterations of CDGA
N , the training epochs of CTSN K . The hyperparameters of
adversarial loss ιadv and target segmentation loss β.
Output: The segmentation network F.
1: for i = 1 to N do
2: Updating F by minimizing Lseg,S(θF) + ιadv Ladv,F (θF);
3: Updating D by minimizing Ladv,D(θD);
4: end for
5: Generating target pseudo-labels (ŶT ) and masks (M p

T and
Mup

T ) through Eq ((4), (5), (6));
6: Initializing CTSN (S1, S2 and T1, T2) by the model of F

obtained at different iterations;
7: for k = 1 to K do
8: Updating CTSN by minimizing L3c + βLseg,T .
9: end for

C. Overall Steps

The main optimization process consists of two parts. First,
CDGA is optimized to perform global distribution alignment
and obtain reliable target pseudo-labels. Then, we use the
weights of the fifth epoch from the end and the tenth epoch
from the end of the segmentation network in CDGA to
initialize to the weights of S1 and S2, respectively. T1 and T2

use the same initialization way as S1 and S2. Finally, CTSN
is optimized by utilizing the target data with and without
pseudo-labels. The whole training steps are shown in
Algorithm 1.

III. EXPERIMENTS AND ANALYSIS

A. Data Sets Description

The International Society for Photogrammetry and Remote
Sensing (ISPRS) Vaihingen data set (VAI) [19] is a 2-D
semantic labeling benchmark data set. It consists of 16 anno-
tated three-band infrared, red, green (IRRG) VHR images
with five categories taken by the airborne sensor from the
city of Vaihingen, Germany. The size of each image is about
2500 × 2000, with a GSD of 9 cm. We randomly sample
ten images as the training set and the rest as the testing set.
We cropped the training set to a number of 512 ×512 patches
with an overlap of 200 pixels (no overlap in the testing set).

ISPRS Postdam data set [19] has two different color bands,
i.e., three-band Postdam IRRG (POTIRRG) and three-band
Postdam RGB (POTRGB). It has 24 annotated VHR images
with the same five categories as VAI. It is obtained by airborne
sensor from the city of Postdam, Germany. The resolution is
about 6000 × 6000 with a GSD of 5 cm. There are 15 images
sampled as the training set and the rest as the testing set.
We process these data in the same way as VAI.

BeiJing City data set (BEJ) [12] is collected on the Baidu
map with 30-cm GSD. There are 202 three-band RGB anno-
tated images with the size of about 1800×800. All images are
cropped to 512 × 512 patches without overlap and flip them
horizontally and vertically. Finally, we sample 800 images as
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TABLE I

PERFORMANCE (%) OF DIFFERENT ADAPTATION SCENES

Fig. 2. Images and the corresponding ground truths sampled from different
remote sensing data sets.

the testing set and the rest of 3916 images are regarded as the
training set.

To demonstrate the effectiveness and generalization of CMT,
we construct three cross-domain scenarios based on those data
sets. Fig. 2 shows the images and the corresponding ground
truths in different data sets.

B. Implementation Details

In this letter, all methods are implemented by the Pytorch
framework on a Titan XP GPU with 12-GB RAM. For a
fair comparison, we use DeeplabV3 [20] as the segmentation
network in all experiments. The segmentation network is
optimized by the stochastic gradient descent optimizer whose
momentum is set as 0.9 and the weight decay is 5 × 10−4.
The learning rate is 2.5 × 10−4 with the polynomial decrease
strategy according to [20]. The structure of discriminator and
the optimizer is the same as AdasegNet [10]. The learning rate
of discriminator is 1 × 10−4. The hyperparameters of ιadv, ι,
α, and β are set as 0.01, 0.9, 0.999, and 1.0 in all experiments.
The intersection over union (IoU) is taken as the evaluation cri-
terion: IoU(Ppre, Pgt ) = (|Ppre ∩ Pgt |/|Ppre ∪ Pgt |), in which
Ppre and Pgt are the set of predicted pixels and ground truth,
respectively.

C. Comparison With the State of the Arts

Table I presents the performance comparison of CMT and
other competitive methods under three different adaptation
scenarios. Note that “Source-only” is a model that only uses
the source domain for training and is directly tested on
the target domain. The results show that in the adaptation
scene between images taken from different areas by different
sensors with different spectral bands (BEJ to VAI), CMT is
superior to other adversarial and ST-based UDA methods, e.g.,
AdasegNet [10] and TriADA-CAST [12]. Meanwhile, CMT
achieves the best performance in both the POTIRRG to VAI
(the adaptation scene that images are acquired by the same
sensor at different areas) and POTIRRG to POTRGB (the

Fig. 3. Ablation studies on POTIRRG to VAI adaptation scenario. (a) Abla-
tion experiments with different ST methods and different CDGA models.
(b) mIoU curves of three different structures.

adaptation scene between images of different spectral bands
taken from the same region by the same sensor). Overall, CMT
is superior to other methods in most categories in all three
scenarios, which proves its effectiveness and generalization.

D. Ablation Analysis

To investigate the effectiveness of CTSN, ablation studies on
the adaptation of POTIRRG to VAI are conducted, as shown
in Fig. 3. “−” denotes the result of only using the CDGA
module (AdasegNet [10] or TriADA [12]). “+ST” represents
directly using the generated pseudo-labels to fine-tune the
segmentation network after CDGA. “+MT” denotes that
using MT to process all target data, some of which are
even without pseudo-labels. “+Dual” denotes that using the
outputs of two individual network (e.g., S1 and S2) to perform
consistency constraints. “+CTSN” is the proposed CTSN.
Note that when the initial weights of S1 and S2 in CTSN are
the same, CTSN degenerates into two identical MT structures,
and the decoupling of CTSN is lost. This is why S1 and S2

have to be initialized with different weights in our work.
Fig. 3(a) reports the mIoUs of applying different ST meth-

ods with different CDGA models. The comparison between
“+ST” and “+MT” proves that the performance can be further
improved after using the target data without pseudo-labels.
Meanwhile, “+CTSN” achieves the best performance, indicat-
ing that the proposed CTSN is more suitable for processing
the target data without pseudo-labels. In addition, better per-
formance can be obtained by applying better global alignment
methods, as shown by the results of TriADA.

Fig. 3(b) reports the mIoU curves of three different struc-
tures (MT, Dual, and CTSN). It shows that although MT can
produce stable results, the improvement is limited. Although
the Dual structure can improve the performance as well,
the training is unstable. CTSN not only improves the perfor-
mance of MT, but also the training process is more stable than
the Dual structure.

Fig. 4 shows the segmentation results of different methods.
The segmentation result suffers from domain shift seriously
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Fig. 4. Visualization results of POTIRRG to VAI adaptation scene on target images. The first and third rows represent the segmentation results. The second
and fourth rows represent the discrepancy between the segmentation result and the ground truth. Best viewed in zoom-up.

before DA. After DA, the segmentation results of all meth-
ods are improved. Since the performance improvement of
AdasegNet+{ST, MT, Dual, CTSN} is mainly reflected at the
edges, no significant improvement can be observed from the
segmentation results alone. To better observe the improvement,
we visualize the discrepancy between the segmentation results
and the ground truth in Fig. 4 as well. As shown by the red
rectangle, compared to not using data without pseudo-labels
(AdasegNet+ST), the models using data without pseudo-labels
(AdasegNet + {MT, Dual, CTSN}) have better performance
at edges. This shows the effectiveness of using data without
pseudo-labels. Meanwhile, AdasegNet + CTSN can obtain
more refined results at edges than AdasegNet + {ST, MT,
Dual}.

IV. CONCLUSION

In this letter, a CMT UDA method is proposed for VHR
images semantic segmentation. CMT mainly consists of two
parts, CDGA and CTSN. CDGA is able to achieve global
cross-domain alignment and generate reliable pseudo-labels
for target domain. CTSN can effectively use both pixels
in the target domain with and without pseudo-labels by
cross-consistency constraint. Comprehensive experiments on
three different adaptation scenes demonstrate the effectiveness
and generalization of the proposed method.
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