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ABSTRACT
Automatic perception and understanding of human emotion or
sentiment has a wide range of applications and has attracted in-
creasing attention nowadays. The Multimodal Sentiment Analysis
in Real-life Media (MuSe) 2020 provides a testing bed for recogniz-
ing human emotion or sentiment from multiple modalities (audio,
video, and text) in the wild scenario. In this paper, we present our
solutions to the MuSe-Wild sub-challenge of MuSe 2020. The goal
of this sub-challenge is to perform continuous emotion (arousal
and valence) predictions on a car review database, Muse-CaR. To
this end, we first extract both handcrafted features and deep rep-
resentations from multiple modalities. Then, we utilize the Long
Short-Term Memory (LSTM) recurrent neural network as well as
the self-attention mechanism to model the complex temporal depen-
dencies in the sequence. The Concordance Correlation Coefficient
(CCC) loss is employed to guide the model to learn local variations
and the global trend of emotion simultaneously. Finally, two fusion
strategies, early fusion and late fusion, are adopted to further boost
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the model’s performance by exploiting complementary information
from different modalities. Our proposed method achieves CCC of
0.4726 and 0.5996 for arousal and valence respectively on the test
set, which outperforms the baseline system with corresponding
CCC of 0.2834 and 0.2431.

KEYWORDS
Dimensional Emotion Recognition; Long Short-Term Memory; Self
Attention; Multi-modal Fusion

ACM Reference Format:
Licai Sun, Zheng Lian, Jianhua Tao, Bin Liu, and Mingyue Niu. 2020. Multi-
modal Continuous Dimensional Emotion Recognition Using Recurrent Neu-
ral Network and Self-Attention Mechanism. In 1st International Multimodal
Sentiment Analysis in Real-life Media Challenge and Workshop (MuSe’20),
October 16, 2020, Seattle, WA, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3423327.3423672

1 INTRODUCTION
Affective computing, as an emerging interdisciplinary field, aims to
endow machines with the ability to recognize and understand the
emotion or sentiment of human automatically [36]. With the advent
of the era of big data, a huge amount of multimedia data is uploaded
to online websites every day by people around the world. Auto-
matic emotion recognition and analysis is of significant importance
to manage and retrieve the large-scale data. Moreover, affective
computing is a key step towards harmonious human-machine inter-
action, which has a wide range of applications, such as healthcare
[33] and education [45].
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There are two mainstream emotion representation models in af-
fective computing, which are the categorical model and dimensional
model [49], respectively. As for the categorical model, a person’s
emotional state is described by a few affective attributes, such as
happiness and sadness. In contrast, in the dimensional model, the
emotional state is mapped to a point in a Euclidean space. Thus,
compared to the categorical model, the dimensional model can
express subtler and more complicated emotional states. The Mul-
timodal Sentiment Analysis in Real-life Media (MuSe) 2020 [40]
adopts the dimensional model for emotion representation. In the
MuSe-Wild sub-challenge ofMuSe 2020, the task is to predict contin-
uous dimensional values of arousal and valence from three common
modalities (i.e., audio, video, and text). Before MuSe, the most influ-
ential challenge for continuous dimensional emotion recognition is
the Audio-Visual Emotion Challenge (AVEC), which has been held
successfully from 2011 to 2019. As the name suggested, AVEC pays
more attention to audio and visual modalities, while MuSe aims to
extensively explore the fusion of the three modalities.

Constructing a good multi-modal emotion recognition system
lies in three aspects: discriminative feature extraction, powerful re-
gression model, and effective multimodal fusion. Extracting discrim-
inative features is an important step for robust emotion recognition.
Traditionally, researchers rely on handcrafted features [7, 8, 37].
However, these features require careful engineering and consider-
able domain-specific expertise [28]. Recently, deep learning-based
methods (i.e., convolutional neural network and recurrent neural
network) have revolutionized the representation learning. Luo et
al. [31] demonstrate that handcrafted features and deep represen-
tations describe the emotion information from different aspects.
Therefore, in addition to handcrafted features, we also explore sev-
eral efficient deep representations in this paper. Specifically, we
extract deep acoustic representation from the VGGish model [20],
which is trained on a large-scale audio dataset. For the visual modal-
ity, a ResNet-50 model [1] trained on a facial expression dataset
is employed to obtain deep visual representation. For the textual
modality, apart fromword vectors likeWord2Vec [32] or GloVe [35],
we also extract contextual word embeddings using a pre-trained
BERT model [13]. To the best of our knowledge, as a new and pow-
erful language representation model, BERT has not been used in
corresponding sub-challenges of previous AVECs.

After feature extraction, we need to choose a proper regression
model for emotion prediction. Support Vector Regression (SVR), as
a non-contextual model, is one of the most popular regression
models. However, researchers suggest that contextual informa-
tion is essential to emotion recognition and they propose various
context-sensitive models to emphasize the temporal dynamic in-
formation. One of the state-of-the-art context-sensitive models
is Long Short-Term Memory (LSTM) recurrent neural network
[21], which has been successfully applied in previous AVECs [8–
10, 12, 22, 23, 47, 48]. Unfortunately, LSTM suffers from the problem
of gradient vanishing and its performance usually degrades when
encountering very long sequence. Recently, Vaswani et al. [43]
propose a new sequence transduction model with no recurrence,
called Transformer, which has achieved impressive results in nat-
ural language processing. The key module of the Transformer is
the self-attention mechanism, which allows for modeling tempo-
ral dependencies of different positions in the sequence without

regard to their distance. Therefore, in this paper, we propose to
augment LSTM with the self-attention mechanism to capture the
complex temporal dynamics of emotions. We hypothesize that the
integration of LSTM and self-attention mechanism can enhance
the ability of long-term contextual modeling and is more suitable
for continuous dimensional emotion recognition.

Multi-modal fusion aims to make more accurate predictions than
its unimodal part by integrating shared and complementary infor-
mation from different modalities. Typically, the fusion strategies
can be split into three classes: early fusion (i.e., feature-level fusion),
late fusion (i.e., decision-level fusion), and hybrid fusion [3]. Early
fusion integrates features immediately after they are extracted from
multiple modalities. The simplest way of early fusion is to concate-
nate multiple features and then feed them into the classification
or regression model. One advantage of early fusion is that it can
capture the interaction between different modalities. However, it
needs to align multiple features due to the different sampling rates
and may suffer from the problems caused by high dimensionality
[12]. For late fusion, it allows for adopting a specific model for each
modality and fuses the unimodal predictions by voting, weight-
ing, or additional learned model. Thus, late fusion provides more
flexibility for each unimodal model. However, it ignores the low-
level interaction between different modalities. Hybrid fusion is the
trade-off of early fusion and late fusion, which aims to exploit the
advantages of both methods in a unified framework. In this paper,
we adopt both early fusion and late fusion to integrate multi-modal
features. We also compare the performance of these two fusion
strategies.

In summary, our contributions are:
• We evaluate the effectiveness of various features including
both handcrafted features and deep representations. Par-
ticularly, we extract contextual word representations from
textual modality, which has not been utilized in correspond-
ing sub-challenges of previous AVECs.

• We propose to augment LSTM with the self-attention mech-
anism for continuous dimensional emotion recognition. We
show that the combination of these two modules can model
long-term temporal dependencies in the sequence. Moreover,
we fuse multi-modal features using both early fusion and
late fusion and achieve promising results 1.

The remainder of this paper is organized as follows. We present
the related works in Section 2. The multi-modal features and the
recognition model are introduced in Section 3 and Section 4, re-
spectively. The experimental results and analysis are described in
Section 5. Finally, we conclude the paper in Section 6.

2 RELATEDWORKS
Multi-modal Features: As the predecessor of MuSe, various multi-
modal features have been utilized in the past series of AVECs. In
the early stage, participants usually use handcrafted features for
different modalities. For instance, Sánchez-Lozano et al. [37], the
winner of AVEC 2013, extract Local Binary Patterns (LBP) and
Gabor feature from the visual modality and low-level descriptors
such as Mel-frequency Cepstral Coefficients (MFCCs) from the
audio modality. As deep learning shows its superior power over
1Code is available at https://github.com/youcaiSUN/MuSe-Wild_2020.
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carefully-engineered features, participants tend to prefer the deep
representations learned by various deep neural networks. In AVEC
2017, the experimental results of Chen et al. [12] and Huang et
al. [23] demonstrate that deep visual representations extracted by
deep convolutional neural networks achieve comparable or even
better performance than handcrafted features (such as local Ga-
bor binary patterns from three orthogonal planes and histogram
of oriented gradients). Further, Zhao et al. [47] demonstrate that
deep audio representation extracted from the VGGish model out-
performs expert-knowledge based acoustic features in AVEC 2018.
In the recent AVEC 2019, Chen et al. [9] verify the unparalleled
performance of deep audio-visual representations once again by
means of an efficient 2D+1D convolutional architecture. In addition
to audio-visual modalities, textual modality also plays an important
role in multimodal emotion recognition and sentiment analysis [36].
Text modality is first introduced in AVEC 2017. At first, competitors
use the classic bag-of-words features [12, 23]. Afterward, word vec-
tors like Word2Vec [32] and GloVe [35] trained on large-scale text
corpora are widely adopted for their efficiency and effectiveness.

Model Architecture: SVR is often chosen as the baseline in pre-
vious AVECs. However, as a non-temporal model, SVR cannot utilize
contextual information to facilitate emotion prediction. With the
advent of deep learning, the Recurrent Neural Network (RNN) has
shown its extraordinary superiority in sequence modeling. Unex-
ceptionally, the winners of recent AVECs all adopt LSTM, a variant
of RNN, for continuous dimensional emotion recognition. Wöllmer
et al. [44] and Chen et al. [12] both utilize SVR and LSTM to perform
regression analysis. Their studies reveal that LSTM, which captures
the temporal information, outperform SVR significantly. In compar-
ison with RNN based contextual regressors, Du et al. [14] propose
a fully convolutional network, referred to as Temporal Hourglass
Convolutional Neural Network (TH-CNN). TH-CNN can perform
emotion prediction in a coarse-to-fine manner by integrating multi-
scale features at different levels. Huang et al. [24] utilize three kinds
of temporal models, including LSTM, Time-Delay Neural Network
(TDNN) and multi-head attention model, to learn long-term context
dependencies in the sequence. They show that the combination of
these models obtains the best result.

Multi-modal Fusion: Multi-modal fusion is indispensable to
achieve better performance for emotion recognition systems. In
AVEC 2017, Huang et al. [23] adopt late fusion to combine the pre-
dictions of different features, while Chen et al. [12] utilize early
fusion to better model the cross-modal dynamics. Further compar-
ison of these two methods is made by Huang et al. [22] in AVEC
2018. The results show that late fusion is good at predicting arousal
and valence, while early fusion is more suitable for liking prediction.
In the recent AVEC 2019, Chen et al. [9] propose to combine early
fusion and late fusion. The authors first train Deep Bidirectional
Long Short-Term Memory Recurrent Neural Networks (DBLSTM)
for each unimodal feature. Then, several bi-modal features are early
fused using other DBLSTMs. Finally, a second level DBLSTM is
adopted to late fuse the predictions of unimodal models and early
fusion models. Recently, Huang et al. [25] propose to fuse audio-
visual modalities via inter-modal and intra-modal attention. The
results show that the proposedmethod achieved better performance
than early fusion and late fusion.

3 MULTIMODAL FEATURES
3.1 Acoustic Features
eGeMAPS Feature: The extended Geneva Minimalistic Acoustic
Parameter Set (eGeMAPS) contains 23 acoustic low-level descrip-
tors (LLDs), covering spectral, cepstral, and prosodic features [15].
Several statistical functions can be applied over these LLDs to ex-
tract segment-level feature, which results in an 88-dimensional
vector. We use the eGeMAPS feature provided by the organizers
of MuSe 2020, which utilize the freely available openSMILE toolkit
[16] to extract it. It’s noted that the window size is set to 5 s and a
hop size of 0.25 s is applied in order to match with the ground-truth
emotion labels.

PyAudio Feature: In addition to the segment-level feature, we
also extract short-time frame-level acoustic features. PyAudio fea-
ture is a 34-dimensional vector, which includesMFCCs, zero-crossing
rate, spectral spread, and chroma vector etc. We use an open-source
python library [18] to extract PyAudio feature. The window size
and hop size are set to be 0.025 s and 0.01 s, respectively. To align
with the ground-truth emotion labels, the frame-level features near
each label timestamp are averaged.

IS13 Feature: To reflect a border coverage of paralinguistic in-
formation, we extract another frame-level acoustic feature with IS13
configuration using the openSMILE toolkit [16]. The IS13 feature
set is a comprehensive acoustic feature set, which is first intro-
duced in the INTERSPEECH 2013 Computational Paralinguistics
Challenge [38]. Since then, it has been widely used by the emotion
recognition community. It consists of 65 LLDs and the correspond-
ing 1st derivatives. To align with the ground-truth emotion labels,
the frame-level features near each label timestamp are averaged.

VGGish Feature: VGGish [20] is a variant of VGGNet [39],
which is designed for audio classification. It is trained on a large-
scale audio dataset, AudioSet [17], which contains over 2 million
human-labeled video soundtracks with more than 600 audio event
classes. Zhao et al. [47] show that the feature extracted from VG-
Gish outperforms handcrafted acoustic features. Therefore, in this
paper, we utilize a pre-trained VGGish model to extract deep acous-
tic representation. To match with the ground-truth emotion labels,
the recordings are first divided into multiple 0.975 s frames with
a hop size of 0.25 s. Then, log spectrograms are extracted from
these frames and are fed into the VGGish model. Finally, we extract
the high-level 128-dimensional embeddings from the output of f c2
layer as the VGGish feature.

3.2 Visual Features
FAUs Feature: OpenFace toolkit [4] provides a wide range of facial
features, such as facial landmarks (2D or 3D), head pose features,
eye gaze positions and the intensity and presence of 17 Facial Ac-
tion Units (FAUs). We only use the FAUs feature provided by the
organizers.

OpenPose Feature: To exploit the pose information of speaker
in the video, the pose feature is extracted using a pre-trained Open-
Pose model [6]. OpenPose feature includes 2D coordinates and
confidence score of a keypoint being present for each of 18 2D pose
keypoints. We use the OpenPose feature provided by the organizers.

ResNetFace Feature:We employ a pre-trained ResNet-50model
[1] to extract deep visual representation. Specifically, the model is
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first pre-trained on a large-scale face recognition dataset. Then, it’s
fine-tuned on a facial expression dataset, FER+ [5]. The accuracy
of the fine-tuned model on the test set of FER+ is 87.4%. We apply
spatial average pooling to the bottleneck layer of conv5_3, resulting
in a 512-dimensional feature vector.

3.3 Textual Features
Global Word Vector: Word vector-based model represents each
word with a real-value vector in the semantic vector space [35].
Compared to other representations, such as the one-hot vector, the
word vector is more compact and can capture linguistic regularities
in language [32]. Therefore, word vectors are widely used inmodern
natural language processing systems. We adopt two kinds of pre-
trained word vector models, which are Word2Vec 2 and GloVe 3, to
get the representation of each word in the transcription.

ContextualWord Embedding: However, the abovementioned
word vectors are global (or static), i.e. they are fixed after train-
ing. In contrast, contextual word embeddings assign each word
a dynamic representation based on its context [30], thus provid-
ing more flexibility. Recently, contextual word embeddings from
Transformer-based architectures, such as BERT [13], have shown
state-of-the-art performance on many downstream tasks in natural
language processing. Thus, we employ a pre-trained BERT model
to derive contextual word embedding. Specifically, an uncased base
BERT model 4 is adopted. Then, the output of the last layer, the
sum of outputs of the last two layers and the last four layers are
extracted as contextual features, which are referred to as “BERT”,
“BERT-2” and “BERT-4”, respectively.

4 EMOTION RECOGNITION MODELS
In this section, we introduce the emotion recognitionmodel in detail.
Our model consists of three modules: LSTM, self-attention mech-
anism and the regression layer. As the state-of-the-art temporal
model, LSTM is employed as the main module for long-term con-
textual modeling. However, its ability is limited when encountering
very long sequences, which is common in continuous dimensional
emotion recognition. The self-attention mechanism can relate dif-
ferent positions in the sequence without regard to their distance
by means of position-pair computation [24, 43]. Therefore, we pro-
pose to augment LSTM with self-attention mechanism. On the one
hand, we expect that the self-attention mechanism could endow
LSTM with the ability to capture longer temporal dependencies.
On the other hand, since self-attention could not make use of the
order information in the sequence [43], we believe that LSTM can
implicitly guide it to learn that information.

Overall, as shown in Fig.1, the input features are first encoded by
the self-attention mechanism (denoted by the dotted lines). Then,
LSTM transforms the encoded sequence into context-dependent
hidden states. Finally, a regression layer maps them to emotion
predictions. In the following parts, we elaborate on the main mod-
ules in our model and introduce the loss function as well as fusion
strategies in the end.

2https://code.google.com/archive/p/word2vec
3https://nlp.stanford.edu/projects/glove
4https://huggingface.co/transformers/pre-trained_models.html

Figure 1: Overview of the proposed model. x refers to uni-
modal or multi-modal features. s refers to the outputs of
the self-attention layer. h refers to context-dependent hid-
den states output by the LSTM layer and ŷ refers to final
emotion predictions. Dotted lines denote the self-attention
mechanism.

4.1 Self-attention mechanism
The self-attentionmechanism utilizesmulti-head scaled dot-product
attention to transform the low-level input sequence into high-level
and more abstract representations. In Fig.1, the dotted lines indicate
the self-attention mechanism. Assume the input to self-attention
layer is the feature sequence X = {x1,x2, ...,xT } ∈ RT×d , where
xi ∈ R

d is the frame-level feature at time step t and T is the max
time step. To perform multi-head scaled dot-product attention on
the input sequence X , we need to generate corresponding queries
Q , keys K and valuesV . To this end, we project X for h times using
different linear projection layers, which are computed as follows:

Qi = XW
Q
i (1)

Ki = XW K
i (2)

Vi = XWV
i (3)

where Qi ∈ R
d×(d/h), Ki ∈ Rd×(d/h), Vi ∈ Rd×(d/h) , i = 1, 2, ...,h

and h is the number of heads.
For each head’s query Qi , key Ki and value Vi , we perform the

scaled dot-product attention with the following equation:

Headi = So f tmax(QiK
T
i /

√
dk )Vi (4)

where headi ∈ RT×(d/h), dk = d/h is the scale factor. Then, results
of each head are concatenated together and linearly projected to
obtain

R = Concat(Head1, ...,Headh )WO (5)

whereWO ∈ Rd×d is the projection matrix. Following [43], we add
a residual connection [19] and layer normalization [2] to get the
final encoded sequence S .

S = LayerNorm(X + R) (6)
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4.2 LSTM
LSTM is one of the most famous variants of RNN. Compared with
vanilla RNN, LSTM employs a memory cell to store information
and additional gates (including an input gate, an output gate and a
forget gate) to control the information flow, which alleviates the
notorious problem of gradient vanishing in model training.

To obtain context-dependent representationsH = {h1,h2, ...,hT },
we employ LSTM to compute the hidden vector sequence H from S
with the following equations:

ft = σд(Wf st +Uf ct−1 + bf ) (7)
it = σд(Wist +Uict−1 + bi ) (8)
ot = σд(Wost +Uoct−1 + bo ) (9)

ct = ft ◦ ct−1 + it ◦ σh (Wcst + bc ) (10)
ht = σh (ot ◦ ct ) (11)

where σд is the sigmoid function and σh is the hyperbolic tangent
function. ◦ is element-wise multiplication. f , i and o are the forget
gate vectors, input gate vectors and output gate vectors, respectively.
W ,U and b are weight matrices and bias vectors for each gate.

Then, a fully connected layer following the LSTM layer makes
the final emotion prediction Ŷ = {ŷ1, ŷ2, ..., ŷT }.

4.3 CCC Loss
In comparison to previous works which use either mean squared
error [9, 48] or ϵ-insensitive mean absolute error [22] as the loss
function, we utilize the Concordance Correlation Coefficient (CCC)
[27] loss, which is introduced in [41], to train our model. As CCC
is chosen as the evaluation metric in MuSe-Wild sub-challenge, we
believe that optimizing CCC loss directly can improve the model’s
performance. The CCC loss is calculated as follows:

L = 1 −CCC (12)

CCC =
2ρσŶσY

σ 2
Ŷ
+ σ 2

Y + (µŶ − µY )2
(13)

where µŶ and µY are the mean of the prediction Ŷ and the label Y ,
respectively. σŶ and σY are the corresponding standard deviations.
ρ is the Pearson Correlation Coefficient (PCC) between Ŷ and Y .

4.4 Fusion Strategies
We adopt both early fusion and late fusion for multi-modal emotion
recognition in this paper. For early fusion, we simply concatenate
multi-modal features and feed them into the model. For late fusion,
we employ a second-level LSTM model to fuse the predictions from
several unimodal features.

5 EXPERIMENTS
5.1 Dataset
The dataset used in MuSe 2020 is MuSe-CaR, which is a large multi-
modal (audio, video, and text) dataset [40]. It consists of 36h:52m:08s
of video data from 291 videos and 70 host speakers collected from
YouTube. The topic of these videos is limited to reviews of cars
with premium brands (such as BMW, Audi, and Mercedes-Benz).
In contrast to the datasets used in the previous AVECs, there are

several “in-the-wild” characteristics in MuSe-CaR. For example, 1)
different shot size, dynamic face angles, and highly varying back-
grounds in the video; 2) ambient noises in the audio; 3) usage of
colloquialisms and domain-specific terms in the text.

For the MuSe-Wild sub-challenge, a total 35h:08m:01s of video
data is annotated per 0.25 s on two emotion dimensions (i.e. arousal
and valence). The numbers of videos in the training, validation, and
test sets are 165, 62, and 64, respectively. The evaluation metric for
this sub-challenge is CCC, which is defined in equation (13).

5.2 Experimental Setup
Data Preprocessing: We notice that there are too many frames
in a video and the longest video has more than 6000 frames. As
suggested in Huang et al. [22], cutting the video into multiple seg-
ments not only enriches the training samples but also contributes to
model convergence during training. Thus, we segment each video
in the training set with a window size of 200 frames (50s) and a
hop size of 100 frames (25s). Besides, we apply standardization to
handcrafted acoustic features (i.e., eGeMAPS, PyAudio and IS13
feature) and OpenPose feature before feeding them into the model.
We empirically find that the meta feature segment_id in the feature
files provided by the organizers can improve the performance on
the validation set. Therefore, we also add it to the input features.

Model Training: We implement our models within the PyTorch
framework [34]. Specifically, for unimodal and early fusion model,
the model consists of a self-attention layer, a bidirectional LSTM
layer and a fully connected layer. The number of hidden neurons
in the model is 64, 128, or 256, which depends on the size of input
features. The number of heads in the self-attention layer is 4 or
8. To train the model, we use Adam optimizer [26] with varied
learning rate (0.002, 0.003, or 0.005) and batch size (256, 512, or
1024), which is also dependent on the size of the input features.
Once the training loss does not decrease in 5 consecutive epochs, we
halve the learning rate. The maximum number of epochs for model
training is 100. Other hyper-parameters, such as dropout rate, are
chosen based on the model’s performance on the validation set. For
the late fusion model, we employ a bidirectional LSTM layer with
32 cells to fuse the predictions from several unimodal features. We
train the late fusion model at most 20 epochs using Adam optimizer
with a learning rate of 0.001 and a batch size of 64.

5.3 Ablation Studies
We first conduct several experiments to verify the effectiveness
of our model and loss function. The results of different models on
the validation set are shown in Table 1. For a fair comparison, we
use two bidirectional LSTM layers for the “LSTM” model and two
self-attention layers for the “Self-Attn” model. We observe that: 1)
the performance of the “Self-Attn” model usually is worst due to
the loss of position information; 2) generally, the “LSTM” model
performs better than the “Self-Attn” model; 3) the proposed model
(“LSTM+Self-Attn”) achieves the best performance in most cases
except when predicting valence using the “BERT” feature. These
results verify that the combination of LSTM and self-attention
mechanism can capture longer temporal dependencies in the se-
quence and is more suitable for continuous dimensional emotion
recognition. Therefore, the “LSTM+Self-Attn” model is utilized in
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Table 1: CCC performance of different models on the valida-
tion set.

Feature Model Arousal Valence
VGGish Self-Attn 0.3357 0.1371
VGGish LSTM 0.4590 0.1228
VGGish LSTM+Self-Attn 0.4996 0.1423

ResNetFace Self-Attn 0.3341 0.0775
ResNetFace LSTM 0.3832 0.0896
ResNetFace LSTM+Self-Attn 0.4157 0.0999

BERT Self-Attn 0.2796 0.1225
BERT LSTM 0.3570 0.4385
BERT LSTM+Self-Attn 0.3984 0.4375

Table 2: CCC performance of different loss functions on the
validation set.

Feature Loss Arousal Valence
VGGish MSE 0.2485 0.0953
VGGish L1 0.2965 0.0998
VGGish CCC 0.4996 0.1423

ResNetFace MSE 0.2847 0.0702
ResNetFace L1 0.2251 0.0572
ResNetFace CCC 0.4157 0.0999

BERT MSE 0.2160 0.3107
BERT L1 0.2147 0.3593
BERT CCC 0.3984 0.4375

the following experiments. The results of different loss functions
on the validation set are shown in Table 2. We can notice that “CCC”
loss outperforms “MSE” and “L1” loss. We suggest that the reason
is that either “MSE” or “L1” loss is sensitive to local error and can’t
see the big picture when performing long-term emotion predic-
tions. However, “CCC” loss is dependent on both local error and
the correlation between prediction and label, which can force the
model to learn the global trend and local variations simultaneously.

5.4 Unimodal Results
In this part, we evaluate the performance of handcrafted features
and deep representations extracted from each modality. The results
are shown in Table 3. When comparing the results within each
modality, we observe that deep representations achieve better per-
formance than handcrafted features in general. Besides, as expected,
contextual word representations (i.e., “BERT” and its variants) per-
form better than the two global word vectors (i.e., “Word2Vec” and
“GloVe”). When comparing the results from different modalities, we
can find that: 1) on the arousal dimension, features extracted from
the audio modality usually are more effective than those extracted
from visual and textual modalities. 2) on the valence dimension, tex-
tual modality performs much better than the other two modalities.
These findings are consistent with the results in the baseline paper
[40]. We suggest that the reason behind it is that the perception of
arousal is mainly dependent on how people speak while valence
is mostly reflected by the speech content. However, it’s noted that
the performance of visual modality is the worst in general, which

Table 3: CCC performance of unimodal features on the vali-
dation set. “A”, “V”, and “T” denote audio, visual, and textual
modality, respectively.

Feature Modality Dimension Arousal Valence
eGeMAPS A 88 0.3903 0.1179
PyAudio A 34 0.4150 0.1721
IS13 A 130 0.4248 0.1169

VGGish A 128 0.4996 0.1423
FAUs V 35 0.3718 0.1264

OpenPose V 54 0.4101 0.0825
ResNetFace V 512 0.4157 0.0999

GloVe T 300 0.3676 0.3685
Word2Vec T 300 0.3756 0.3486
BERT T 768 0.3984 0.4375
BERT-2 T 768 0.3610 0.4443
BERT-4 T 768 0.3438 0.4469

disaccords with the findings in previous AVECs [9, 47]. We believe
that the different datasets used in two challenges might lead to this
phenomenon. As stated above, the MuSe-CaR dataset in this chal-
lenge has several “in the wild” characteristics, especially for visual
modality. For example, the videos have highly varying backgrounds
and the faces of car reviewers in the videos are often not frontal.
What’s more, in several videos, there are even no faces. Therefore,
we think that these factors make predicting emotions from the
visual modality more challenging. Finally, the best unimodal results
for arousal and valence are 0.4996 and 0.4469 respectively, which
outperform both unimodal (0.3078 and 0.1273) and multi-modal
(0.2587 and 0.1506) baseline results [40].

5.5 Multi-modal Results
Two strategies (early fusion and late fusion) for multi-modal fu-
sion are explored in this subsection. Unlike the previous study [23]
which uses the greedy method to perform feature selection, we
simply select several top-performing features from each modality
to investigate the effectiveness of multi-modal fusion. The results
of these two strategies on the arousal dimension on the validation
set are shown in Table 4. We can observe that: 1) multi-modal fu-
sion can boost the model’s performance significantly; 2) tri-modal
fusion performs better than bi-modal fusion; 3) too many unimodal
features involved in the fusion process may hurt the performance;
4) generally, early fusion and late fusion achieve comparable re-
sults. For valence, the results of two fusion strategies are shown in
Table 5. Observations 2) and 3) of arousal also hold. Different from
arousal, the improvement of performance on the valence dimension
is limited. We believe that contextual word representations play
a major role in valence prediction and no more complementary
information from other modalities can be exploited. Besides, late
fusion achieves consistently better performance than early fusion.
Finally, the best multi-modal results for arousal and valence are
0.5616 and 0.4704, respectively, which outperform both the best
unimodal results (0.4996 and 0.4469) and the corresponding baseline
results (0.3078 and 0.1506) [40].
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Table 4: CCC performance of multi-modal features on the arousal dimension on the validation set. “A”, “V”, and “T” denote
audio, visual, and textual modality, respectively.

Features Modalities Early Fusion Late Fusion
IS13+ResNetFace A+V 0.4844 0.4898
ResNetFace+BERT V+T 0.4716 0.4605

IS13+BERT A+T 0.4554 0.4931
IS13+ResNetFace+BERT A+V+T 0.5224 0.5113

IS13+VGGish+ResNetFace+BERT A+V+T 0.5480 0.5616
IS13+VGGish+OpenPose+ResNetFace+GloVe+BERT A+V+T 0.5336 0.5372

Table 5: CCC performance of multi-modal features on the valence dimension on the validation set. “A”, “V”, and “T” denote
audio, visual, and textual modality, respectively.

Features Modalities Early Fusion Late Fusion
PyAudio+FAUs A+V 0.1494 0.1930
FAUs+BERT-4 V+T 0.4408 0.4567

PyAudio+BERT-4 A+T 0.4515 0.4633
PyAudio+FAUs+BERT-4 A+V+T 0.4590 0.4605

PyAudio+FAUs+GloVe+BERT-4 A+V+T 0.4635 0.4704
PyAudio+VGGish+FAUs+ResNetFace+GloVe+BERT-4 A+V+T 0.4609 0.4676

Table 6: The best submission results of the proposedmethod
on validation set and test set.

Emotion Partition Baseline Proposed
Arousal Val 0.3078 0.5616
Valence Val 0.1506 0.4876
Arousal Test 0.2834 0.4726
Valence Test 0.2431 0.5996

5.6 Submission Results
The best submission results are shown in Table 6. Our proposed
method outperforms the baseline system with the arousal of 0.4726
versus 0.2834 and valence of 0.5996 versus 0.2431. It’s noted that
considering the performance gap between the validation set and test
set on the arousal dimension, our proposed method might overfit
the validation set. The interesting thing is that, on the valence
dimension, the best result of our proposed method on the validation
set is 0.4876, while it achieves 0.5996 on the test set. We conjecture
that the distribution of two sets might be different.

6 CONCLUSIONS
In this paper, we present our contributions to the MuSe-Wild sub-
challenge of MuSe 2020. Various handcrafted features and deep
representations from three common modalities (i.e., audio, video,
and text) are explored. To capture temporal dependencies, LSTM is
adopted as the main module of our emotion recognition model. To
further enhance LSTM’s ability of long-term contextual modeling,
we propose to augment LSTM with the self-attention mechanism.
The CCC loss is utilized to guide the model to capture both local
variations and the global trend of emotion. Moreover, both early
fusion and late fusion are adopted to boost the model’s performance.
Experimental results show that our proposed model outperforms
the baseline system by a large margin.

There are several limitations in this work. First, we find that
the label timestamps are not evenly spaced due to the exclusion of
irrelevant video segments [40]. However, we don’t consider this
during model training and inference. Second, we simply concate-
nate several unimodal features and predictions to perform early
fusion and late fusion, respectively. More advanced fusion methods
such as attention-based fusion [11, 29] or tensor fusion [46] can
be explored. Besides, Transformer-like [42] architectures can be
employed to model the complex temporal dynamics of emotion in
the future.
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