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Abstract—In this paper, we propose Collaborative Adversar-
ial Networks (CAN) to enable simultaneous forward synthesis
and backward segmentation of X-ray breast mass image. The
proposed CAN consists of a generator (G), an inverter (I)
and a discriminator (D). G aims to reconstruct mass images
from corresponding annotated masks, while I is trained for
mapping images back to accurate segmentation masks. All the
obtained mask-image pairs are fed to D trained in an adversarial
learning scheme. Through the collaborative adversarial training
using a joint loss function, G synthesizes realistic mass images
consistent with provided masks and I effectively segments the
tumor regions from the images. Qualitative and quantitative
evaluations on publicly available INbreast database demonstrate
the effectiveness of our model. Furthermore, different from
conventional GANs-based methods that can only perform either
image synthesis or segmentation, the proposed model can be
generalized to other bidirectional image-to-image translation of
multimodal medical data.

Index Terms—generative adversarial network, medical image
synthesis, mass segmentation, X-ray breast mass

I. INTRODUCTION

Breast cancer is one of the most common cancers among

women worldwide. Digital X-ray mammography is the most
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effective tool for early diagnosis of breast cancer, which is

essential for the survival of patients. Currently, deep learning

(DL) models have led to a significant breakthrough in au-

tomatic detection and segmentation of mammograms, which

provides desirable assistance in the accurate diagnosis and

clinical treatment. However, for DL models, obtaining pre-

cisely annotated training dataset remains a challenging work

in medical domain. This is mainly because of the protection

of patient privacy, the scarcity of corresponding disease and

the expense of expert annotation. Therefore, an effective

synthesis of realistic X-ray breast mass appearances and a

precise segmentation of tumor regions in mammograms have

immediate practical significance.

Nevertheless, synthesizing realistic X-ray breast mass im-

ages is still challenging due to the variety of mass in terms

of texture and shape as well as the presence of intricate

and diverse breast tissue surrounding the masses. Recent

development of mass image synthesis can be divided into

transformation-based and generative model-based approaches.

Transformation-based approaches generate new samples by

applying operations such as mathematical affine transforma-

tion [1] or feature transformation [2] to the existing sam-

ples. However, these small mathematical modifications can

only provide a little information alteration and the obtained

texture distribution can be inconsistent with real mass. On
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the other hand, generative model-based approaches leverage

on massive training data to acquire the potential distribution

of realistic samples and produce new samples from the same

distribution [3]. The advantage is that the synthetic samples

are similar in appearance to the real ones but possess a variety

of properties different from the existing ones. At present,

generative adversarial networks (GANs) [4] along with various

stabilization methods produce state-of-the-art results in natural

and biomedical image synthesis tasks [5].

The main difficulties in X-ray breast mass segmentation are

caused by the intense noise and low contrast of mammogram,

as well as strong irregularities and ambiguous boundaries of

tumor regions. Traditional methods such as region growing,

active contour and Markov random field (MRF) for auto-

matic mass segmentation have been gradually replaced by DL

models like convolutional neural networks (CNNs) [1], which

overcome the shortcomings of artificial designed features.

Some mostly used CNN models, such as fully convolutional

network (FCN) [6], SegNet [7] and U-Net [8], have produced

state-of-the-art performance in biomedical segmentation tasks.

There is little work on a unified model for joint mask-

to-image synthesis and image-to-mask segmentation despite

their close correlation. To achieve this goal, we present a

novel Collaborative Adversarial Networks (CAN) inspired by

two recent researches Pix2Pix network [9] and bidirectional-

GAN [10]. The motivation is two-fold. Firstly, we aim to

synthesize X-ray breast mass images with pixel-wise masks,

different from conventional class-specific synthesis that the

generated samples are confined to a specified category. To ad-

dress this issue, we consider the mask-to-image reconstruction

inherited from Pix2Pix network [9]. It is worth noticing that

mask-to-image is more versatile compared with label-to-image

synthesis in medical domain, since it preserves the semantic

information and allows the generalization of the framework to

different category fields. Secondly, we aim to achieve accurate

segmentation of lesion region at the same time. Therefore, we

consider the bidirectional idea from BiGAN [10] to generate

the masks from images. Our work is different from [9] and [10]

because we not only alter the whole network architecture, but

also propose an algorithm of parameter learning. In addition,

different from BiGAN [10] that decodes the images into

latent representation z through feature learning, our model is

designed to acquire the masks from images.

To summarize, our main contributions include: (1) Propose

a novel Collaborative Adversarial Network (CAN) for joint

forward synthesis and backward segmentation of X-ray breast

mass image, which is capable of being applied beyond mass

images, to any bidirectional image-to-image related fields. (2)

Enable synthesizing large amount of mask-annotated X-ray

breast mass images with variations in appearance. (3) Enable

effective segmentation of the tumor regions from the mass

images and achieve better performance compared with existing

deep segmentation models. (4) Introduce a joint loss function

for the collaborative adversarial training of proposed model.

II. COLLABORATIVE ADVERSARIAL NETWORKS

As shown in Fig.1, the CAN is composed of a generator

(G), an inverter (I) and a discriminator (D), and achieves

joint synthesis and segmentation tasks through a collaborative

adversarial training. In this section, we first briefly review the

Pix2Pix and BiGAN model, then introduce the architecture

and learning algorithm of proposed CAN in details.

A. Preliminaries

Pix2Pix Pix2Pix network [9] generalizes the cGANs [11]

for various image-to-image translation tasks by altering the

condition c to a modality of image x and adding a traditional

L1 loss for ensuring the consistency between expected output

y and input x. As a result, the generator plays a role in fooling

the discriminator, as well as producing output images close to

the corresponding ground truth in terms of L1 loss metric. The

objective of Pix2Pix can be expressed:

min
G

max
D

V (D;G) = λLL1(G) + Ex,y∼pdata(x,y)[logD(x, y)]+

Ex∼pdata(x),z∼pdata(z)[log(1−D(x,G(x, z)))]
(1)

where z represents a random input noise vector.

BiGAN Bidirectional generative adversarial networks [10]

provide a bidirectional mapping between the random noise

vector z and generated image y by adding an encoder (E)

into the original G − D architecture. The G is defined the

same as the original GAN, while E models a mapping

E(z; y) : ΩY → ΩZ and induces a distribution z ∼ pE(z|y).
The D is modified to take two kind of data pairs, (z;G(z))
obtained from G and (E(y); y) from E, as input to make the

predictions D(z;G(z)) or D(E(y); y) of real or fake. G and

E are inverse of each other and are trained in an adversarial

scheme trying to fool the discriminator. The training objective

of BiGAN is defined as a new min-max objective:

min
G;E

max
D

V (D;G;E) = Ey∼py

[
EE(y)∼pE(z|y)[logD(E(y); y)]

]
+ Ez∼pz

[
EG(z)∼pG(y|z)[log(1−D(z;G(z)))]

]
(2)

B. CAN Architecture and Learning

In our research, the problems we expect to address are two-

fold: (1) How to ensure the authenticity of mass images as

well as consistency between masks and images; (2) How to

obtain the segmentation mask from mass images simultane-

ously while achieving better performance compared with a

conventional encode-decode segmentation model.

We present the architecture as shown in Fig.1 and a

collaborative adversarial learning for solving the above-

mentioned problems. Firstly, in order to solve problem

(1), we set the segmentation masks as input conditional

information, the black pixels of which correspond to the

normal breast tissue and white pixels to the lesion region.

Thus, the resulted generation is a function over the input

mask pixels, which is learned by G. And we design the
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Fig. 1. Proposed CAN architecture.

Algorithm 1: The learning of CAN

Input: (Mr; Imr), batchsize, epoch, learning rate α,

weight factors λ1, λ2

1 Initialization: {wG}; {wI}; {wD};

2 while not converge do
3 - mass image synthesis: Imf = G (Mr;wG);
4 - mass segmentation: Mf = I (Imr;wI);
5 - discriminative probability for mask-image pairs:

Pr = D (Mr; Imr;wD); P 1
f = D (Mr; Imf ;wD);

P 2
f = D (Mf ; Imr;wD);;

6 - G learning:

LG = log
(
1− P 1

f

)
+ λ1E [‖Imr −G (Mr)‖1];

wG = wG − α ∂LG

∂wG
;

7 - I learning:

LI = log
(
1− P 2

f

)
+ λ2E [‖Mr − I (Imr)‖2];

wI = wI − α ∂LI

∂wI
;

8 - D learning:

LD = log (Pr) + log
(
1− P 1

f

)
+ log

(
1− P 2

f

)
;

wD = wD − α ∂LD

∂wD

discriminator D to guarantee not only the authenticity of mass

images but also the consistency of the output image with the

associated mask. Secondly for problem (2), we incorporate an

inverter I , which learns the inverse mapping from mass image

samples to condition factors, in the CAN framework. I is

trained jointly with G and D using a collaborative adversarial

loss function to enable effective learning, as well as improve

the generation and segmentation performance through better

mode coverage and robustness against mode collapse.

Network Description For G and I network of the CAN, we

choose a U-Net-based [8] architecture, whose capability has

been proved on biomedical segmentation tasks. As shown in

Fig.1, the architecture is composed of encoding and decoding

network with skip connections between mirrored layers. The

skip connections enable the encoder and the decoder to share

information. For the problem we consider, a mass image

and its corresponding mask differ in surface appearance and

texture, but share the same underlying structure and shape.

In the conventional encoder-decoder net, all the information

passing through the layers directly results in the loss of low-

level features.

D is designed as a Patch-based network inspired from [9]

with 16×16 patch. It only needs to determine if each 16×16
patch in an input mask-image pair is real or fake. D is run

across the whole mask-image pair by computing a convolution

integral. Then all the responses are averaged to produce the

ultimate prediction. This operation assumes each patch to

be independent in discrimination process and emphasizes the

perception on the authenticity of local texture/style instead of

the content of whole image.

Parameter Learning As shown in Fig.1, G takes a mask

as input condition Mr (r represents real) and outputs a

generated mass image Imf (f represents fake): G(Mr; Imf ) :
ΩM → ΩIm. On the contrary, I outputs a segmentation mask

from an input mass image: I(Imr;Mf ) : ΩIm → ΩM and

induces a new distribution Imr ∼ pI (Imr |Mf ). Therefore,

we construct the mask-image pairs including three forms,

which are: (Mr; Imf ) obtained from G, (Mf ; Imr) from I ,

and (Mr; Imr) from the matched real mask and image. The

obtained mask-image pairs are fed to the D and a probability

P of real or fake is predicted.

For D, only the third form (Mr; Imr) is real while the other

two forms are fake. D is trained by maximizing the ability of

distinguishing real and fake pairs (LD). For G, the first form

(Mr; Imf ) is desired to be realistic and the generated image

is expected as close as possible to the corresponding ground

truth. Thus, G is learned through maximizing the authenticity,

expressed as the adversarial loss term (L1
G), and minimizing

the distance between Imf and corresponding Imr, expressed

as L1 loss term (L2
G). For I , similar to G, the second form

(Mf ; Imr) is desired to be realistic (L1
I) and the distance

between Mf and corresponding Mr is expected to be close

defined by L2 loss term (L2
I).

The final joint loss function for the collaborative adversarial
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Fig. 2. Visual comparison for real and synthesized images of Pix2Pix
and proposed CAN on the INbreast dataset: improvement of the normal
synthesized mass images.

training is defined as:

LCAN (G; I;D) = EM,Im∼pdata(M,Im)[logD(M, Im)]

+ EM∼pdata(M)[log(1−D(M;G(M)))] + λ1LL1(G)

+ EIm∼pdata(Im)[log(1−D(I(Im); Im))] + λ2LL2(I)
(3)

Overall, the parameter learning of CAN is summarized in

Alg.1. When the final convergence is reached, G can map a

given mask to the corresponding mass image with the realistic

distribution: Im = G(M;wG). And I can acquire the segmen-

tation mask from an input mass image: M = I(Im;wI).

III. EXPERIMENTS

The INbreast dataset [12] is a public mammogram dataset

created by the Breast Research Group, INESC Porto, Portugal.

107 X-ray breast images with their masks are cropped into

256 × 256 pixels size containing the mass ROIs. Original

dataset is augmented by rotating and fiipping to meet the

requirement of a large amount of data. A total of 850 samples

is obtained. Thereinto, 700 samples are used for training the

model and 150 samples are used for testing. The CAN model

is implemented using the Keras framework. The parameter

settings are as follows: the batchsize is 1, the training epoch

is 300, an Adam optimizer is adopted with a learning rate

of 0.0002. The weight λ1 in objective is 10 and λ2 is

100 through experiment and observation. Since there is little

work focusing on simultaneous mass image synthesis and

segmentation, separate comparisons with existing methods are

conducted in this work.

A. Mask-to-Image Synthesis

For mask-to-image synthesis, we employ qualitative evalua-

tions and compare the results with Pix2Pix [9] under the same

experimental settings. It can be observed that the generated im-

ages have shape features resembling to the input masks while

their texture features are similar to the ground truth images.

We achieve comparable results as Pix2Pix as shown in Fig.2.

The reason is that both methods adopt similar architecture and

training objective for the generator. However, it is observed

that CAN presents some slight improvements at the edge

of the synthesized tumor region because of the collaborative

optimization of D. In addition, our model reduces the tissue

Fig. 3. Visual comparison of Pix2Pix and proposed CAN: improvement of
the synthesized mass images with tissue defects.

Fig. 4. Qualitative comparison of image-to-mask segmentation.

defects of synthesized images observably as shown in Fig.3,

although there are still slight deficiencies in a few ones.

B. Image-to-Mask Segmentation

The segmentation performance is evaluated quantitatively

as shown in Table I and qualitatively as shown in Fig.4.

Our method outperforms other segmentation networks and

is capable of obtaining better segmentation boundaries and

masks due to the adversarial training for I .

More specifically, the CAN gives comparable performance

with other models in benign mass segmentation, but gives

more desirable performance in malignant tumors, especially

for the malignant samples with lobulated or spiculated bor-

ders. It is more significant for the accurate segmentation of

malignant tumor regions in the clinical applications, because

the treatment for malignant breast tumor usually requires an

operation to remove the lesions.

TABLE I
QUANTITATIVE EVALUATION FOR IMAGE-TO-MASK SEGMENTATION.

Models
Measurement metrics (%)

Acc. Dice Jac. MCC

FCN-8s [6] 93.4 91.0 83.8 85.8

SegNet [7] 93.2 90.4 82.9 85.1

U-Net [8] 93.1 90.5 83.0 85.2

Proposed CAN 94.1 91.7 85.1 87.2
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IV. CONCLUSION

To summarize, we propose a Collaborative Adversarial

Network with joint training for simultaneous end-to-end syn-

thesis and segmentation of X-ray breast mass image. For

mask-to-image synthesis, we achieve desirable results with

fewer defects in synthesized images using a more generalized

framework, as compared to Pix2Pix network. For image-to-

mask segmentation, our model outperforms other segmentation

models due to the addition of adversarial loss. Furthermore,

the proposed model can be generalized beyond mass images

to other bidirectional image-to-image translation fields.
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[10] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learn-
ing,” arXiv preprint arXiv:1605.09782, 2016.

[11] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[12] I. C. Moreira, I. Amaral, I. Domingues, A. Cardoso, M. J. Cardoso,
and J. S. Cardoso, “Inbreast: toward a full-field digital mammographic
database,” Academic radiology, vol. 19, no. 2, pp. 236–248, 2012.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on April 13,2021 at 04:48:10 UTC from IEEE Xplore.  Restrictions apply. 


