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Abstract—In the research field of person re-identification, deep
metric learning that guides the efficient and effective embedding
learning serves as one of the most fundamental tasks. Recent
efforts of the loss function based deep metric learning methods
mainly focus on the top rank accuracy optimization by minimiz-
ing the distance difference between the correctly matching sample
pair and wrongly matched sample pair. However, it is more
straightforward to count the occurrences of correct top-rank
candidates and maximize the counting results for better top rank
accuracy. In this paper, we propose a generalized logistic function
based metric with effective practicalness in deep learning, namely
the“deep top-rank counter metric”, to approximately optimize
the counted occurrences of the correct top-rank matches. The
properties that qualify the proposed metric as a well-suited deep
re-identification metric have been discussed and a progressive
hard sample mining strategy is also introduced for effective
training and performance boosting. The extensive experiments
show that the proposed top-rank counter metric outperforms
other loss function based deep metrics and achieves the state-of-
the-art accuracies.

Index Terms—person re-identification, metric learning, top-
rank counter, deep learning

I. INTRODUCTION

Person re-identification (ReID), which aims at matching
pedestrians across non-overlapping camera views, has drawn
quite much attention in computer vision community in recent
years . Due to the variations in viewpoint, pose, illumination,
background and occlusion, the appearances of the same person
observed in different camera views are often ambiguous to be
re-identified while some other persons might be even more
similar to the query. Representative feature extraction and
discriminative metric learning algorithms have been proposed
to tackle this challenge, especially the rising deep learning
based approaches have contributed significantly.

Deep metric learning, as a fundamental problem for deep
learning based tasks including person ReID, has successfully
progressed, and a number of solid milestones appeared naturally
following the incremental guiding force towards learning more
discriminative metric. Classification loss was first introduced
into person ReID to minimize the “intra-person” variance while
maximize the “inter-person” variance . Since classification
models discriminate limitedly within the “seen” categories
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while ReID requires to recognize the “unseen” persons in test
phase, contrastive loss [1], triplet loss [2], quadruplet loss
[3] and their variants were then proposed in accordance with
the requirement by focusing on the relative order correction
among local samples instead. They attempt to shorten the
distance of images with the same identities (positive pairs)
while enlarge the distance of images with different identities
(negative pairs). For the purpose of learning the reasonable
global order efficiently, triplet loss with batch hard mining
(namely hard triplet loss) [4] and their variants [5]–[10] make
further improvements with hard sample mining or proper
weighting strategy.

Most of loss function based deep metric learning methods
have been designed to optimize the distance difference between
the positive and negative sample pairs with or without a margin
setting, as an indirect path for the purpose of pushing the
positive sample towards the nearest place to the anchor, i.e., the
top-rank candidate in the end. Since top-rank accuracy serves as
one out of two main evaluation criteria of person ReID methods
together with mAP accuracy, and proper optimization of top-
rank accuracy usually keep consistency with the mAP accuracy
improvement, more correctly matched top-rank candidates
mainly reflects the ultimate goal of ReID task. Therefore, a
loss that directly optimize the top-rank accuracy deals straight
with the essential of the ReID problem and reflects the trend.

Inspired by the traditional ranking theories and applications
in image retrieval and other related tasks [11], we believe
that a good choice of deep metric for person ReID, which
originates directly and translates faithfully from the top-
rank goal, should maximize the appearances of true top-rank
matches, i.e. minimize the counting result of non top-rank
appearances as penalties. In order to conform with the rising
effective tool of deep learning and fit the strong need of
practicalness of deep metric, we propose a straightforward and
effective deep ReID metric, namely “deep top-rank counter
metric”. The proposed method first addresses the top-rank
constraint and then introduces the top-rank counter. An ideal
top-rank counter which translates the exact goal for top-rank
accuracy is depicted and then a smooth version for better
applicability in deep neural network is proposed. The ideal
top-rank counter employs the Heaviside step function to count
the non top-rank appearances as loss, representing that loss
counts 1 when the truly matched sample is ranked other than



the first place while no loss otherwise, instead of calculating
the sum of the distance differences between the positive sample
pair and negative counterpart like the conventional losses do.
In the practical point of view, a generalized logistic function is
adopted as the approximated top-rank counter and alleviate the
non-differentiable dilemma in deep learning in the meanwhile.
Different from previous deep metrics, the proposed deep top-
rank counter metric can directly optimize the re-identification
accuracy, effectively approaching the optimal top-rank goal
by pushing the correct candidates towards the query person
till ranked as the first place, and push even further far from
the negative samples for better generalization due to its decent
property. In addition, the proposed deep top-rank counter metric
enables a progressive hard sample mining strategy for training
the deep network more effectively and further boosting the
ReID performance.

The main contributions of this paper are: 1) we propose
a generalized logistic function based deep ReID metric to
maximizes the top-rank accuracy with the smoothed and
relaxed counter mechanism for better applicability in the
deep metric learning context; 2) we address the top-rank
constraint, discuss the decent properties of the proposed deep
top-rank counter metric, and analyze how these properties
qualify the proposed metric as an effective deep metric well
suited for person ReID task; 3) a progressive hard sample
mining strategy introduced by the deep top-rank counter metric
property is introduced and implemented for effective training
and performance improvement.

II. RELATED WORK

Person ReID algorithms in general consist of the discrimina-
tive feature extraction and the effective metric learning as two
main steps, with a post-processing step of re-ranking. With the
rise of deep learning, the two main steps fuse with and impact
on each other much stronger than before. Based on analysis
of person images, researchers attempt to extract more specific
person features with human-body priors instead of general
image features, for instance utilizing useful information from
human body structure and alignment between them [12], [13]
human pose [14] and context information [15], [16]. Metric
learning aims to learn a proper similarity measurement between
sample features.

Traditional metric learning approaches for person re-
identification usually follow the similar procedure: extracting
manually engineered feature embeddings and then learning a
mapping with which the training sampl,es have large inter-class
(person identity) variations and small intra-class differences.
The Pairwise Constrained Component Analysis (PCCA) pro-
posed in [17], a robust Mahalanobis distance metric for Large
Margin Nearest Neighbor classification with Rejection (LMNN-
R) [18], and the Relative Distance Comparison (RDC) approach
[19] are excellent metric learning methods in traditional metric
learning field and push the insight exploration for current deep
metric learning society.

The widely used and effective ranking optimization methods
inspire us to develop deep metric learning methods for top

rank optimization. Prosser et al. developed an ensemble
RankSVM to learn a subspace so that the correctly matched
features ensures the high ranking accuracy [20]. The top
rank linear function learning [11], which computes only the
ranking function score and can hardly be applied on multiple
dimensional cases, shows very costly computation complexity
on large-scale dataset as in deep learning scenario. Top-push
for video based ReID task [21] adopts the top rank idea and
learns a latent subspace with a second-order distance metric,
which also has difficulty in application in deep learning context.

Deep metric learning methods can be roughly categorized
into pairwise loss [1], triplet loss [2], [7], [10] and quadruplet
loss [3], [22]. Contrastive loss [1] deals with two samples
at a time, and it is designed to pull the positive pairs closer
and push the negative pairs further apart, with a threshold
filtering the easy negative samples. Triplet loss [2] studies the
relation among an anchor, one positive sample and one negative
sample, and sets a margin between the distance of positive pairs
and that of negative pairs, in order to enlarge the difference
between them for the purpose of better generalization capability.
Chen et al. [10] propose to check the local orders between
positive pair and negative pair and penalize the wrong ordering.
Quadruplet loss [3] further introduces another negative sample,
and utilizes the distance between two negative samples as an
absolute bound for distance between positive pairs. Although
these losses optimize in the correct direction, there still exists
a gap between their training objectives and the ultimate test
goal. In addition, they focus limitedly on local relationship
correction and ignore the global ranking need of person ReID,
while the proposed loss pushes the positive pair towards the
first place in the whole ranking list and directly optimizes the
appearances of top-rank matches.

Hard sample mining strategies have been well studied and
widely used in order to facilitate the loss function proposals
better applied to deep metric learning. The batch-formatted
hard sample mining [4], triplet loss with soft margin [4],
margin sample mining [22] and deep mining with incremental
triplet margin [8] have been designed for the purpose of more
reasonable relative order between samples. The works in [5],
[6] generate the point-to-point triplet loss into a point-to-set
metric as a generalized sampling scheme for strengthened
robustness. Inspired by these sample mining schemes, we
introduce a progressively hard sample mining strategy based
on the proposed loss function, which can make effective
improvement in training deep network and further increase the
re-identification accuracy.

III. DEEP TOP-RANK COUNTER METRIC FOR PERSON
RE-IDENTIFICATION

Let X and Y be the set of person images and corresponding
label set of person identities, respectively. Given a person
image sample a ∈ X as an anchor, there exists one of its
positive sample p ∈ Pa = {p ∈ X |y(p) = y(a), y ∈ Y} that
shares the same person identity with the anchor a, and one
negative sample n ∈ Na = {n ∈ X |y(n) 6= y(a), y ∈ Y} that
has a different person identify from the anchor a. The goal of



Fig. 1. Illustration of (a) the ideal top-rank counter H(∆a
p) and the smooth top-rank counter representation (b) S(∆a

p; k = 10) and (c) S(∆a
p; k = 1) as

approximations. Top row shows the sample location and the loss value distribution, where a denotes anchor sample, p denotes the positive sample, and n
denotes the negative sample.

metric learning is to explicitly or implicitly learn a mapping
f(x; θ) : X 7→ X̃ , where θ denotes mapping parameters, so
that the features in X̃ discriminate better from each other than
those in X . Let d(·, ·) : X̃ × X̃ 7→ R be the distance metric
between two features in X̃ , and the distance between anchor
and positive sample d

(
f(a; θ), f(p; θ)

)
is written as dap for

convenience, similarly for dan.

A. Top-rank constraint

The ultimate goal of a person ReID model is to match each
of the positive sample p as top-rank candidate, i.e. the first
place in ranking list. Given a person image as anchor a ∈ X
and its positive image p ∈ Pa, the negative image n ∈ Na, j
represents random sample image in ranking list other than the
anchor. When the top-rank constraint satisfies, the following
equation holds:

dap = min
j∈X ,j 6=a

daj . (1)

where dap represents the smallest distance among all possible
anchor-related distances.

A lot of effort aiming at top-tank accuracy has been
made to learn an effective metric, and most designed loss
functions resemble the variations of the above equation. A
mild constraint that dap − dan < 0, which focuses only on
the correction of local ranking order. The widely used hard
triplet loss [4] minimizes maxp∈Pa

dap +m−minn∈Na
dan,

which introduces hard sample mining and margin to improve
the optimization, however, the strong identity-level constraint
might cause model collapse. Quadruplet loss [3] further replaces
the smallest anchor-negative distance minn∈Na dan with the
hardest negative pair distance minn1,n2∈Na dn1n2 with the
disadvantage of difficult convergence.

We introduce the direct translation of the exact top-rank
constraint as

dap < min
n∈Na

dan, (2)

to set the image level top-rank optimization. The proposed
top-rank constraint pushes each of the positive sample towards
the top-rank position instead of manipulating only the hardest

samples, to properly avoid model collapse due to the possible
outliers.

B. From top-rank constraint to top-rank counter

When top-rank constraint satisfies, dap < minn∈Na dan
and there exists no distance difference; otherwise the distance
difference dap − minn∈Na

dan > 0 is obtained. There are
two main approaches to measure the corresponding loss. First,
directly sum up the distance differences and optimize the
averaged loss terms, which has been taken by most metric such
as triplet loss. However, the difference-based loss measurement
may harm the optimization by the enormously large difference
introduced by the extreme hard mining.

Instead, we introduce the case counting system to record
the occurrences of unsatisfactory cases, i.e. loss plus one when
unsatisfactory case appear once. A natural and ideal counter
mechanism in mathematical language leads to the Heaviside
step function H(·). Combining with the proposed top-rank
constraint, we have the ideal top-rank counter

H(a, p,Na) =

{
1, dap −minn∈Na

dan > 0,

0, otherwise,
(3)

where H(a, p,Na) counts loss of 1 when p is a non top-rank
candidate for anchor a in ranking list, and counts no loss when
p is the top-rank match.

The Heaviside step function perfectly realizes the non-
top-Rank counting functionality, however, it is pitifully not
applicable on deep neural network considering the lack of
differentiability. For better practicalness in deep learning
implementation, an smooth top-rank counter that keeps the
counter functionality while improves the differentiability is
introduced. We propose to use the generalized logistic function
with a parameter k,

S(a, p,Na; k) =
1

1 + e−k(dap−minn∈Na dan)
, (4)

as the smooth top-rank counter, where k is a designed parameter
to control the approximation towards Heaviside step function
and compensate for differentiability.



Fig. 2. Illustration of the generalized logistic function based deep top-rank counter metric.

The illustration of both the ideal top-rank counter and its
smooth counterpart is shown in Fig.1, where ∆a

p is used to
represent dap −minn∈Na

dan for convenience. The ideal top-
rank counter shown in Fig.1(a) directly steps from 0 to 1 at
origin in function plot at the bottom row, and leaves two ideally
distinguished areas (blue denotes function value 1 and white
denotes 0) in illustration of function value distribution with
respect to sample relation at the top row; while the logistic
function based smooth top-rank counter (shown as (b) and (c)
in figure) relaxes the sharp step from 0 to 1 around the origin in
function plot and gradually varies the loss value around positive-
negative sample boundary. As observed in Fig.1, the ideal
and the smooth top-rank counter curves are visually similar,
especially when the parameter k gets larger. However, if k is
set too large, the stepping region gets too sharp and the gradient
quickly gets very small towards two outreaching directions, thus
the metric learning system consequently gets more difficult
to convergence efficiently. Therefore a proper parameter k
could help balance between the consistency with the top-rank
constraint and the feasibility of practical implementation.

C. Deep top-rank counter metric
Most deep person ReID metrics regard the distance difference

between certain positive sample pair and negative sample pair
as a loss term and optimize the sum or average of the distance
differences to improve top rank accuracy, however, it is more
straightforward and more effective to count the occurrences
of the non top-rank matches, regard the counting result as
ReID loss and minimize it. Therefore, we further formalize the
smooth top-rank counter to develop the deep top-rank counter
metric for better deep metric learning for person ReID.

With the generalized logistic function adopted as the smooth
top-rank counter to facilitate the practicalness in deep learning,
the resulting loss over the whole training set

L(θ,X ) =
∑
a∈X

∑
p∈Pa

S(a, p,Na; k), (5)

=
∑
a∈X

∑
p∈Pa

1

1 + e−k(dap−minn∈Na dan)
, (6)

where θ denotes the deep network parameter set, is defined as
the “deep top-rank counter metric”.

D. Discussion on deep top-rank counter metric
The proposed deep top-rank counter metric not only performs

as an adequate loss function that further develops the difference-
based loss and approximates of the ideal top-rank counter

mechanism, but also qualifies itself for an effective ReID metric
due to the following properties and functionalities shown as
follows and illustrated in Fig.2:
(a) Straightforward top-rank goal: all the non top-rank
candidates (when ∆a

p > 0) tend to gain a counter loss
approaching 1; while all the top-rank candidates (∆a

p < 0)
tend to have almost no loss. The proposed deep top-counter
metric directly aims at the top-rank accuracy optimization,
which keeps high consistency with the ultimate goal of person
ReID task;
(b) Implicit Margin Effect: when ∆a

p < 0, the function curve
of top-rank counter S(∆a

p; k) relaxes the ideal counter and
approaches zero loss gradually and smoothly. The minimization
of the non-zero loss pushes the positive sample that is already
top-rank candidate even farther away from the negative samples,
which implicitly realizes the similar functionality as the margin
setting in hard triplet loss and other margin based loss functions.
When the sample distribution varies, the relatively small loss for
∆a

p < 0 changes its value accordingly and generates the pushing
strength with different level. For instance, with the optimization
proceeds further from S(∆a

p(n̂2); k) to S(∆a
p(n̂1); k), we have

∆a
p(n̂1) pushed further from origin than ∆a

p(n̂2), and the
relative relation of a, p, n is better obtained according to the
top-rank constraint, which shows more flexible margin effect.
(c) Consistency with mAP accuracy: Rank-1 and mAP
accuracies are the evaluation criteria in person re-identification.
Proper optimization of Rank-1 accuracy can be beneficial to
mAP improvement. The proposed metric adopts the image-level
top-rank representation , and the counter loss for each positive
sample p ∈ Pa given anchor a ∈ X is optimized. Therefore,
the learned metric will push all positive samples closer towards
the query sample independently, which is consistent with the
mAP goal.
(d) Robustness and generalization: when ∆a

p increases
towards positive infinity as shown as ∆a

p(n̂4), the corresponding
loss infinitely approaches 1 instead of an enormous penalty,
which helps to avoid the harmful effect caused by outliers and
ensures the robustness; when ∆a

p decreases toward negative
infinity shown as ∆a

p(n̂1), the resulting loss decreases towards
a small positive value approaching 0. The relatively small loss
pushes the positive pair further discriminative from negative
pairs and strengthens the generalization in test phase.

The proposed top-rank counter metric can also serve as
a basic loss function combining with other metric learning
methods or state-of-the-art methods, which may joint utilize



TABLE I
EFFECT OF PARAMETER k WITH VARIOUS SETTINGS ON MARKET-1501

DATASET.

k 1 10 50 100
Rank-1 88.69 91.48 87.95 86.49
mAP 76.12 78.43 74.91 72.66

TABLE II
EFFECT OF THE PROGRESSIVE HARD SAMPLE MINING STRATEGY ON

MARKET-1501 DATASET.

Training phase Rank-1 Rank-5 Rank-10 mAP
Vanilla training 91.48 96.88 98.16 78.43
Full training 92.34 97.27 98.22 79.37

the advantages of the proposed metric and other effective
approaches to improve the person ReID accuracy together.

IV. PROGRESSIVE HARD SAMPLE MINING

Based on the properties of the proposed deep top-rank
counter metric, we introduce a progressive hard sample mining
strategy to improve the model training and its performance.

The person image set X consists of two sample sets X+ ,{
a ∈ X |∆a

p > 0
}

and X− ,
{
a ∈ X |∆a

p < 0
}

, and the
optimization of the deep top-rank counter metric on the sample
set X+ and the whole sample set X lead to two different
training schemes with increasing difficulty level:
• Vanilla training: optimize the deep top-rank counter

metric on X+ by penalizing samples with ∆a
p > 0 that

contribute the non top-rank losses (with S(∆a
p; k) ∈

[0.5, 1), as shown in Fig.2), in order to push the true
matched positive samples towards the top-rank position;

• Full training: optimize the deep top-rank counter metric
on the whole set X by penalizing all samples including
samples in X+ with non top-rank losses (S(∆a

p; k) ∈
[0.5, 1)) and also hard samples in X− with relatively
small losses (S(∆a

p; k) ∈ (0, 0.5)) to push the top-rank
matches even farther apart from the negative samples.

In order to alleviate the training difficulty step by step, we
propose to use the “progressive hard sample mining” strategy.
In Phase 1, we optimize the deep top-rank counter metric
L(θ,X ) on the sample set X+ for vanilla training; in Phase
2, based on the effective training in Phase 1, we continue to
optimize L(θ,X ) on the whole set X for full training. The
progressive hard sample mining strategy performs successive
training phases to first optimize for more top-rank appearances
and then to further enlarge the distance between positive-
negative pairs for better generalization ability in test phase.

V. EXPERIMENTS AND RESULTS

We conduct extensive experiments from three aspects: 1)
performance analysis of the proposed method with different
parameter and training strategy settings; 2) comparison between
the proposed method and other loss function based methods;
3) comparison with state-of-the-art methods.

A. Dataset and evaluation protocols

We evaluate the proposed method on three large-scale person
ReID datasets, Market-1501 [23], DukeMTMC-reID [24] and
CUHK03 [25].
• Market-1501 contains a total of 32,688 images of 1,501

labeled pedestrians captured under 6 camera viewpoints.
The pedestrian bounding boxes are detected by De-
formable Part Model . The dataset is split into two non-
overlapping partitions: 12,936 images (751 identities) for
training and 19,732 images (750 identities) for test. In
test phase, 3,368 images are chosen as query images. We
adopt single-query evaluation mode in our experiments.

• DukeMTMC-reID is a subset of Duke-MTMC for ReID
task. A total of 36,411 images of 1,812 pedestrians from
8 high-resolution cameras were captured. The dataset is
split into the training set of 16,522 images from 702
identities and the test set of 2,228 queries from 702
identities together with 17,661 gallery images. We also
employ the single-query setting.

• CUHK03 contains 14,096 pedestrian images of 1,467
identities, captured by 5 different camera pairs on campus.
The dataset provides both DPM-detected and hand-marked
pedestrian bounding boxes and we report our results on
both sets. Different from the original evaluation protocol,
we utilize the more challenging train/test split protocol,
i.e. 767 identities for training and the rest 700 for testing,
which was proposed in [26].

Following the previous ReID works, we evaluate the cumula-
tive matching characteristics (CMC) at Rank-1 (at least), Rank-
5, Rank-10, and mean average precision (mAP) in experiments.

B. Implementation details

For fair comparison, the backbone model, the network design,
the data augmentation and the optimization settings adopted in
implementation of the proposed top-rank counter metric and
other loss functions based metrics are all the same. Only the
learning rate schemes utilize the best settings corresponding
to each loss design.
Network settings: The backbone model is ResNet-50 pre-
trained on ImageNet. The network design follows the com-
monly used ReID baseline with stride = 2 in last conv block.
Data augmentation: The training images are resized to the
size of 288× 144. Standard random crop, horizontal flipping
and random erasing (with ratio of 0.5) are applied. In test
phase, only horizontal flipping is used. The distance function
d(·, ·) used for the ranking and mAP computation adopts the
Euclidean metric.
Optimization: Our implementation is based on PyTorch
platform with NVIDIA Titan X GPU. 32 persons with 4
images per person are chosen to form each of the mini-batch
with the fixed size of 128. We use the Adam optimizer with
ε = 10−8, β1 = 0.9 and β2 = 0.99.
Learning rate: The learning rate for the proposed method is
fixed to 1.5×10−4 first, then exponentially decays to 1.5×10−5

and 1.5× 10−6, each step lasts 500 epochs, then the learning



Fig. 3. Illustration of the loss value distribution changing during progressive hard sample mining.

TABLE III
COMPARISON WITH OTHER LOSS FUNCTION BASED METHODS WITH THE SAME BASELINE MODEL.

Loss
Market-1501 DukeMTMC-reID

CUHK03
Labeled Detected

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP
Softmax 89.31 73.51 75.54 60.09 58.93 51.95 51.86 46.01
Triplet [2] 74.05 53.70 68.76 51.41 56.43 49.92 52.07 45.80
Quadruplet [3] 87.95 73.57 76.26 61.80 67.36 60.69 63.50 56.95
Hard triplet [4] 90.05 77.56 80.02 66.62 71.07 65.11 68.00 62.21
Deep Top-rank Counter Metric (TRC) 92.33 79.37 81.42 67.72 71.64 64.38 67.93 60.27

rate is fixed to 1.5× 10−6 till convergence in both of Phase 1
and Phase 2.

C. Deep top-rank counter metric analysis

Parameter analysis: The parameter k in the proposed deep
top-rank counter metric controls the trade-off between the
approximation to the ideal counter unit and the usability in
deep learning process. We set k with different values and
compare the resulting models on Market-1501 dataset using
vanilla training as shown in Table.I. As we can see, the proposed
deep top-rank counter metric performs well across a large range
of k, and produces the best result when k = 10. The results
keep consistancy with the discussion on k that too samll k
deviates the top-rank constraint while too large k leads to
sharpe stepping region and difficulty in convergence.
Training strategy evaluation: A progressive hard sample
mining strategy is proposed for wisely training and performance
boosting. We plot the loss value distributions at four different
stages during Phase 1 (vanilla training) and Phase 2 (full
training) on Market-1501 dataset in Fig.3 to illustrate the
changing trend. It can be observed that 1) during the vanilla
training phase, most non top-rank samples have been pushed
to top-rank with their loss values changing from [0.5, 1) to
[0.1, 0.5); 2) during the full training phase, in addition to
optimizing the non top-rank samples, the truly matched top-rank
samples with loss in [0.1, 0.5) have been pushed farther away
from the negative samples, with their loss values decreasing
towards 0 into (0, 0.1). The ReID accuracies at the end of
two training phases in Table.II show that the progressive hard
sample mining strategy indeed improves the model performance
at all ranks, especially from 91.48 to 92.34 at Rank-1 accuracy,
by effectively further training on hard samples.

We fix the parameter k = 10 and the progressive hard sample
mining in the following experiments.

D. Comparison with other loss function based methods

We compare the proposed deep top-rank counter metric with
the milestones deep ReID metrics including softmax loss, triplet
loss [2], hard triplet loss [4] and quadruplet loss [3] as shown
in Table.III. For fair comparison, we use the same pre-trained
ResNet-50 backbone model and the same data augmentation,
conduct experiments in the same mini-batch configuration and
same evaluate performance on three datasets.

Based on the well designed baseline network, softmax loss,
as classical identification losses, achieves promising ReID
accuracies, while hard triplet loss, among other metric learning
methods, produces better performances. The proposed deep top-
rank counter metric outperforms all other losses with gains in
Rank-1 accuracy up to +2.28%, except for CUHK03 (detected)
dataset with only -0.07%gap as the second best. The proposed
metric also yields the best Rank-1 accuracy on both Market-
1501 and DukemTMC-reID datasets.

E. Comparison with state-of-the-art methods

We compare the proposed metric with state-of-the-art meth-
ods on the three datasets in Table.IV. Furthermore, in order to
show the effectiveness of deep top-rank counter metric as a
basic loss function, we also combine the proposed metric with
MGN method [37] by replacing each of the three hard triplet
losses in MGN with the proposed deep top-rank counter loss,
and the corresponding results are denoted as “deep top-rank
counter metric (MGN)” also shown in Table.IV.
Comparison on Market-1501: the proposed deep top-rank
counter metric (TRC for short) achieves the performance with
92.33% in Rank-1 accuracy and 79.37% in mAP accuracy.



TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS. BEST RESULTS ARE MARKED IN BOLD

Method
Market-1501 DukeMTMC-reID

CUHK03
Labeled Detected

Rank1 mAP Rank1 mAP Rank1 mAP Rank1 mAP
MGCAM (CVPR18) [27] 83.80 74.30 - - 50.10 50.20 46.70 46.90
HAP2S (ECCV18) [5] 84.20 69.76 76.08 59.58 - - - -
PSE (CVPR18) [28] 87.70 69.00 79.80 62.00 - - 30.20 27.30
Pose-Transfer (CVPR18) [14] 87.70 68.90 78.50 56.90 45.10 42.00 41.60 38.70
MLFN (CVPR18) [29] 90.00 74.30 81.00 62.80 54.70 49.20 52.80 47.80
HA-CNN (CVPR18) [30] 91.20 75.70 80.50 63.80 44.40 41.00 41.70 38.60
DuATM (CVPR18) [31] 91.40 76.60 81.80 64.60 - - - -
PCB (ECCV18) [12] 92.30 77.40 81.90 65.30 - - 61.30 54.20
IA-Net (CVPR-2019) [32] 94.40 83.10 87.10 73.40 - - - -
DG-Net (CVPR-2019) [33] 94.80 86.00 86.60 74.80 - - - -
CAMA (CVPR-2019) [34] 94.70 84.50 85.80 72.90 70.10 66.50 66.60 64.20
SFT (ICCV-2019) [35] 93.40 82.70 86.90 73.20 68.20 62.40 - -
MHN-6(PCB) (ICCV-2019) [36] 95.10 85.00 89.10 77.20 77.20 72.40 71.70 65.40
MGN (ACM-MM18) [37] 95.70 86.90 88.70 78.40 68.00 67.40 66.80 66.00
Deep top-rank Counter Metric (TRC) 92.33 79.37 81.42 67.72 71.64 64.38 67.93 60.27
Deep top-rank Counter Metric (TRC-MGN) 94.63 87.03 89.36 78.69 77.43 74.68 74.14 71.65

Compared with the recently proposed metric learning method
HAP2S by [5] that develops the point-to-set deep metric
with hard sample aware strategy, our method brings +8.13%
and +9.41% improvements in Rank-1 and mAP accuracy
respectively. The proposed deep top-rank counter metric with
MGN (TRC-MGN for short) produces 87.03% in mAP accuracy
and outperforms all the other methods with a great improvement
(+8.88% gain on average) and achieves the second best Rank-1
accuracy of 94.63% on Market-1501. TRC-MGN shows lower
Rank-1 accuracy compared with MGN since our reproduction
of MGN remains 94.03% in Rank-1 accuracy, which indicates
that TRC-MGN already achieves 0.60% improvement.
Comparison on DukeMTMC-reID: the proposed TRC metric
yields promising Rank-1 accuracy of 81.42% and mAP accuracy
of 67.72% as a basic metric. Compared with the deep metric
HAP2S, TRC metric leads +5.34% gain in Rank-1 and +8.14%
in mAP accuracy. The proposed TRC-MGN method achieves
the best Rank-1 accuracy and best mAP accuracy among
all state-of-the-art methods with large improvement (+5.99%
on average in Rank-1 and +10.62% in mAP accuracy). The
combined TRC-MGN outperforms the original MGN method
with +0.66% gain in Rank-1 and +0.29% gain in mAP accuracy,
which shows effective improvement introduced by the proposed
deep top-rank counter metric.
Comparison on CUHK03: the challenging training/testing
protocol has been implemented, and the proposed TRC metric
achieves the second best among state-of-the-art methods,
including those ones with sophisticated model designs. TRC-
MGN method yields the best performance both in Rank-
1 and mAP accuracies under both the labeled setting and
detected setting, with +17.70% gain in Rank-1 accuracy and
+18.29% gain in mAP on average under the labeled setting,

while +20.87% improvement in Rank-1 accuracy and +21.75%
improvement in mAP on average under the detected setting.
Compared with original MGN showing +9.43% gain in Rank-
1 and +7.28% gain in mAP under labeled setting while
+7.34% gain in Rank-1 and +5.65% gain in mAP accuracy
under detected setting. The large amount of gains indicate the
outstanding improvement produced by replacing the hard triplet
loss with the proposed deep top-rank counter loss.

Based on the comparison results on three datasets, we
can conclude that the deep top-rank counter metric not only
improves the top rank accuracy as the model target suggests,
but also make the mAP accuracy improved as the property of
the deep top-rank counter metric explains. The effectiveness
of the proposed metric as its own and also as a basic metric
which can be combined with other methods is also properly
illustrated and experimentally proved.

VI. CONCLUSION

In this paper, we present a deep top-rank counter metric for
person ReID in order to better optimize the top-rank accuracy in
the context of deep learning. We discuss the top-rank constraint
and employ the generalized logistic function to formalize the
proposed deep top-rank counter metric, which relaxes the ideal
top-rank counter as well as conquers the non-differentiability
dilemma in deep learning. We also analyze the decent properties
of the proposed metric with better usability and practicalness
for both deep learning and person ReID. A progressive hard
sample mining strategy deduced from the metric property has
been introduced. The extensive experiments show the superior
performance and effectiveness of the proposed deep top-rank
counter metric as its own and further as a basic metric that
can be combined with other method.
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