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ABSTRACT

Nowadays, visual relationship detection has shown an im-
portant utility in scene understanding. Predicate detection,
which aims to detect the predicate between entities in an im-
age, is an important part of visual relationship detection. In
this paper, we propose Multimodal Latent Factor Model with
Language Constraint (MMLFM-LC) for predicate detection
with the novelty of integrating knowledge learned from mul-
tiple modalities, valid relationships and semantical similar-
ities. Representations of visual and textual modalities are
firstly input into the constructed model. Secondly, a bilinear
structure is introduced to model the relationships using valid
relationships, while a language constraint is also built utiliz-
ing semantical similarities. Lastly, visual and textual repre-
sentations are fused in an embedded subspace for predicate
detection. Experiments on both Visual Relationship and Visu-
al Genome datasets show that our method outperforms other
methods on predicate detection.

Index Terms— Predicate representation, Multimodal fu-
sion, Valid relationships, Semantical similarities

1. INTRODUCTION

Visual relationship detection is a fundamental problem in
computer vision and plays an important role in many visu-
al tasks, such as action recognition [1] [2], visual phrase
recognition [3] and visual question answering [4]. A visual
relationship refers to a triplet of (subject,predicate,object),
where predicate describes the interaction between subject
and object, such as “ride” in (person,ride,bike). Relationship
detection process can be decomposed into two parts: object
detection and predicate detection [5]. Object detection aims
to find a minimum bounding box for each entity and classify
it. With the appearance of various deep neural networks, such
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as Faster-RCNN [6] and R-FCN [7], the precision of object
detection has reached a relatively high level. The task of
predicate detection is to represent and predict the predicates
when bounding boxes and classes of related entities are given.
Since predicates normally do not have stable visual appear-
ance, the task of predicate detection remains challenging.

There are three aspects can be considered to improve the
performance of predicate detection.

(1) Knowledge learned from multiple modalities. Re-
call that the given information includes the whole image and
bounding boxes of entities in visual modality, as well as the
classes of those entities in textual modality. And predicate al-
so has terms of visual and textual modalities. Obviously, fully
utilizing the multiple modalities of given information to seek
a cross-modal representation of predicate is more discrimina-
tive than that on single modality.

(2) Knowledge learned from valid relationships. In-
spired by one relevant study in natural language processing
- Statistical Relational Learning (SRL) [8], whose basic as-
sumption is that a valid predicate has higher probability of ap-
pearance in-between two given entities in real-world textual
knowledge bases, we extract discriminative cross-modal rep-
resentations of entities and predicate by assigning high prob-
abilities to valid relationships and low probabilities to other-
s. For example, the relationship (cow, ride, person) will be
assigned low probability as rarely there is an image or text
describing this relationship.

(3) Knowledge learned from semantical similarities.
Besides valid relationships from real-world, semantical sim-
ilarity is also beneficial for predicate detection. Intuitively,
given a valid relationship, another relationship which is se-
mantically similar to it is likely to be valid as well. For
example, (person, ride, horse) and (person, ride, cow) are
semantically similar because both horse and cow are animals.
If we have the knowledge that (person, ride, horse) is a valid
relationship, we might infer that (person, ride, cow) is also of
high probability to be valid.

Some works have studied on above mentioned ideas but
none is considering all these in a holistic way. [9] [10] on-



ly use visual modality to represent relationship, which lose
on more semantic information provided by textual modali-
ty. [11] [12] compute a conditional probability distribution of
a predicate given a (subject, object) pair based on valid rela-
tionships, but neglect the correlations between relationship-
s. [5] uses word vectors to measure semantical similarities
between relationships, however, the interaction within single
relationship is lost.

In this paper, we propose Multimodal Latent Factor Mod-
el with Language Constraint for predicate detection with nov-
elty of integrating all three above mentioned aspects, knowl-
edge learned from multiple modalities, valid relationships and
semantical similarities. The framework is shown in Fig. 1.
Firstly, visual and textual representations of each entity are
extracted for cross-modal fusion into the model. Secondly, a
bilinear structure is constructed to assign the probability to re-
lationships using knowledge learned from valid relationships.
Meanwhile, the semantical similarity between relationships is
modeled as language constraint to enhance the probability as-
signment based on given valid ones. Lastly, we formulate an
overall objective function to repeat the previous step iterative-
ly to achieve a unified cross modal embedded subspace where
the valid relationships and their similar ones are assigned with
higher probabilities.

2. RELATED WORK

This section introduces related work on textual relationship
analysis, and visual relationship analysis.

Textual Relationship Analysis. Exploring the particular
representation for each predicate is the main focus in textu-
al relationship analysis. [13] proposes to map both entity and
predicate into vectors to compute the“matching energy” of a
relationship. [14] uses a single layer model(SLM) to evaluate
a given triplet, where each relation is represented with two
weight matrixes. To explain the role of predicate more intu-
itively, [15] proposes a translation model TransE, where the
relation vector is regarded as a translation from head vector
to tail vector. [16] proposes to use the predicate-based bilin-
ear transformation to characterize the second-order correla-
tion between entities and predicates. These methods provide
a specific representation for predicates and can easily build
the interaction between predicates and entities.

Visual Relationship Analysis. There are two kinds of
models to analyze the visual relationship currently: joint
model and separate model. Joint model [17] [18] trains a
classifier for each relationship. However, the number of com-
binations is too large and the long-tailed distribution makes
it hard to generalize. In contrast, separate model trains a
classifier for each predicate without consideration of its sub-
ject and object [19] [5]. However, all these works do not
learn a particular representation for the predicate. Zhang et
al. [9] model the predicate as the translation vector between
the subject and object only on visual modality by following
TransE. Latter, Nian et al. [20] firstly study on cross-modal

Fig. 1: Framework of our model. Multiple modalities mean the entities are represented
in both visual and textual modalities. Valid relationships are modelled with a bilinear
structure. Semantical similarities refer to the correlations between two relationships.

relationship representation, and get better performance than
that on single visual modality. In order to make better use
of semantic information of relationship, many recent work-
s introduce language priors to guide relationship detection
process. Yu et al. [11] compute a conditional probability
distribution of a predicate given a (subject, object) pair, but
neglect the semantic similarities between relationships. Lu et
al. [5] calculate relationship similarities and project relation-
ships into an embedding space where similar relationships are
optimized to be close together. However, the similarities are
measured only on the entirety of relationships. In this paper,
we also take advantage of language information to guide the
predicate detection process. By forcing similar relationship-
s to have similar representations, we can infer the possible
relationships based on the valid relationships.

3. MULTIMODAL LATENT FACTOR MODEL WITH
LANGUAGE CONSTRAINT

This section details the proposed MMLFM-LC. We respec-
tively introduce the method on how to learn knowledge from
multiple modalities, valid relationships and semantical simi-
larities. And at last, we formulate the overall objective func-
tion for predicate detection.

3.1. Knowledge Learned from Multiple Modalities

We utilize visual and textual features to represent entities,
which not only describe the basic visual content, but also pro-
vide semantic correlations among different entities.

Visual Feature. Visual feature consists of appearance
feature and spatial feature. We get appearance features in
4096-d from the full2 layer in VGG-16. As for spatial fea-
ture, we calculate a 4-d vector (tx, ty, tw, tz) to represent s-
patial information, with (x, y, w, h) and (x′, y′, w′, h′) being
the coordinates of subject and object.

tx =
x− x′

w′
, ty =

y − y′

h′
, tw = log

w

w′
, th = log

h

h′
(1)

(tx, ty) denotes a scale-invariant translation and (tw, ty) spec-
ifies a height/width shift with respect to the pairwise subject
and object.



Textual Feature. To obtain semantically similar expres-
sion, we use word embedding [21] to encode subject and ob-
ject classes into N-d vectors in a semantic space, where simi-
lar words have a closer distance.

For a given image, we firstly get the entity segmenta-
tions according to the bounding boxes and resize them in-
to 224 × 224. Then the entities are input into VGG-16 to
get appearance feature. Spatial feature is calculated using the
bounding box coordinates and textual feature is the word vec-
tor corresponding to the entity class. Finally, all these features
are concatenated into a vector to represent entities.

3.2. Knowledge Learned from Valid Relationships

Inspired by Latent Factor Model [16], which is proposed to
use a bilinear structure to model the complicated interactions
among entities and predicates on textual modality, we further
enhance the model by adding visual modality into it.

Entities s and o are firstly embedded into an cross-modal
space using matrix W ∈ RK×K :

ve(s) = W · v(s), ve(o) = W · v(o) (2)

where v(s) and v(o) are entity vectors concatenated using
both visual and texture features, ve(s) and ve(s) are embed-
ded entity representations in K dimension. Let Pk ∈ RK×K

be the representation of the k-th predicate, which is unknown,
K is the dimension of entity representation. Predicate set can
be represented as P = [P1, · · · ,PN ], whereN is the number
of predicates. For a relationship (si, pk, oj), the possibility of
the subject si and object oj being connected by predicate pk
is calculated as follows:

p(si, pk, oj) = ve(si) ·Pk · ve(oj) (3)

where Pk is the matrix corresponding to the k-th predicate.
However, leaning P directly from training data can easily

cause overfitting due to the large amount of parameters. To
avoid it, we build on the idea of LFM to reduce the parameter
amount by decomposing the representation of each predicate
into a set of rank-one matrixes Θ, also known as latent fac-
tors:

Pk =

d∑
r=1

αk
rΘr, α

k ∈ Rd (4)

where d is the number of latent factors and α is a sparse vec-
tor to weight the contribution of each latent factor. With the
assumption in SRL that valid predicate should have a high
probability, we learn Θr and α by minimizing the following
loss function:

C(Θ, A) = −
∑

(i,k,j)∈P

p(si, pk, oj)+
∑

(i′,k′,j′)∈N

p(si′ , pk′ , oj′)

(5)
where P is the set of valid relationships and N is the set of in-
valid relationships. The significance is that if the relationship
is valid, its possibility should be as large as possible, other-
wise it should be close to zero.

3.3. Knowledge Learned from Semantical Similarities

As discussed above, knowledge learned from valid relation-
ships can well capture the interaction between entities and
predicates. Different from Lu’s work [5], which calculates
similarities based on the representations of entirety of rela-
tionships, we mine the similarities with higher-level seman-
tics. More specifically, we separate the relationships into a
triplet (s,p,o), and compute the similarities by integrating the
similarities between subjects, predicates, and objects respec-
tively. Similarities between entities and those between predi-
cates are both measured by cosine distance:

sims =cosine(ve(si), ve(si′)), simp = cosine(pk, pk′),

simo =cosine(ve(oj), ve(oj′)),

where cosine() calculates the cosine distance between the t-
wo items. We then set a threshold t to evaluate these similar-
ities. If the similarity value is larger than t, we consider the
two items to be similar.

f(sim) =

{
1, sim ≥ t
0, sim<t.

(6)

For a pair of relationships, we calculate similarities between
subjects, predicates, and objects respectively. Then the se-
mantic loss of relationships can be written as:

L =f(sims)f(simp)(1− simo) + f(simp)f(simo)

(1− sims) + f(simo)f(sims)(1− simp)
(7)

The significance is that, if two pairs of items are similar, the
two relationships are considered to be similar, and so are the
remain items, which means the sim value of the remain items
should be as close as possible to 1. By minimizing the above
loss function, the semantic similarities of relationships can be
captured thus benefits the entity and predicate representations.

3.4. Objective Function

Finally, we combine the above three kinds of knowledge to
learn the cross-modal representations of entities and predi-
cates with the following objective function:

min
Θ,A,W

C + λL (8)

whereC is the loss according to the valid relationships knowl-
edge and L is the loss related to the semantical similarities
knowledge. When testing, for a pair of entities, we calcu-
late relationship probabilities for its combinations with every
predicates. The predicted predicate is the one with highest
probability.

4. EXPERIMENTS

We conduct experiments on the Visual Relationship (VR) and
Visual Genome (v-1.2) (VG) datasets. VR consists of 5000



images, including 100 entity classes and 70 predicates. We
adapt the same split of training and test sets in [5], where
4000 images are used for training and 1000 images for test.
VG contains 99658 images with 200 entity classes and 100
predicates. We randomly split it into 73801 for training and
25857 for test following [9]. Both datasets have the bounding
boxes of all entities.

For baselines, we choose seven recently proposed meth-
ods: 1) LP. Visual Relationship Detection with Language
Prior (LP) proposed in [5] considers knowledge from valid
relationships only on visual modality. And the semantical
similarities are measured on the entirety of relationship-
s. 2) LK. Visual Relationship Detection with Internal and
External Linguistic Knowledge Distillation (LK) proposed
in [11] uses multiple modalities to represent entities and con-
siders knowledge from valid relationships, but neglects the
semantical similarities between relationships. 3) VTransE.
VTransE [9] considers the predicate as a translation from
subject to object, while it does not fully utilize the knowledge
from valid relationships. 4) Zoom-Net. Zoom-Net [22] in-
troduces an end-to-end visual relationship recognition model
to mine feature-level interactions. However, the feature used
is only from visual modality. 5) CAI+SCA-M. “CAI+SCA-
M” [22] integrates both context-aware and spatiality-aware
features to build interaction within a relationship, but does
not consider semantic correlation between relationships. 6)
DR-Net.“DR-Net” [23] exploits both spatial configurations in
visual modality and statistical dependencies among relation-
ship predicates in textual modality. However, each modality
is used singly without embedded into a unified space. 7) Vip-
CNN. “Vip-CNN” [24] proposes a message passing structure
to model the visual interdependency among relationship com-
ponents, which does not consider semantic information from
textual modality.

For better illustration, we also experiment on our method
with different settings. The bilinear structure is to learn
knowledge from valid relationships, which is referred as “B”.
To validate the effect of multiple modalities, we use differ-
ent combinations of features in both with/without semantical
similarities knowledge situation. “A” refers to appearance
feature, “S” refers to spatial feature and “T” refers to textual
feature. With appearance feature as the basis, “A”, “A+S”,
“A+T”, and “A+S+T” are four feature settings. Besides, we
also explore the effect of language constraint(‘LC”).

Following [5], we use recall @k as our evaluation metric-
s. Recall @k compute the fraction of times a true relation is
predicted in the top K confident relation predictions in an im-
age. Note that Recall@100 and Recall@50 are equivalent on
Visual Relationship dataset because there are not enough ob-
jects in ground truth to produce over 50 pairs. The parameters
are learned by 5-folds cross validation. The number of latent
factors d is set to 200 and the dimension of entity vectorsK is
set to 600. Invalid relationships are generated by replacing the
predicate in valid relationships with other invalid predicates.

Method VR VG

Recall@50 Recall@100 Recall@50 Recall@100

LP [5] 47.87 47.87 - -
VTransE [9] 44.76 44.76 62.63 62.87

LK [11] 55.16 55.16 - -
Zoom-Net [22] 50.69 50.69 67.25 77.511

CAI+SCA-M [22] 55.98 55.98 - -
DR-Net [23] - - 62.05 71.96

Vip-CNN [24] - - 63.44 74.15
Baseline: B+A 52.41 52.41 64.72 72.04

B+A+S 53.01 53.01 65.31 72.54
B+A+T 54.20 54.20 67.50 75.21

B+A+S+T 54.50 54.50 68.00 75.63
B+A+LC 52.98 52.98 66.74 74.35

B+A+S+LC 53.52 53.52 67.01 75.01
B+A+T+LC 56.30 56.30 69.89 77.90

B+A+S+T+LC 56.65 56.65 70.30 78.25

Table 1: Predicate detection result.’B’ is the bilinear structure, ’A’ is appearance feature,
’S’ is spatial feature, ’T’ is textual feature, ’LC’ is the language constraint. ’A’+’S’ is
equivalent to visual feature.

Table 1 shows the compared results of our method with
the baselines. Our model with multiple modalities and lan-
guage constraint, that is “B+A+S+T+LC”, outperforms on
both VR and VG datasets. On VR, ours achieves 56.65 on
recall@50. This is 0.67 higher than “CAI+SCA-M”, which
performs the best among the baselines. On VG, ours achieves
70.30 on recall@50 and 78.25 on recall@100.

Based on those results, we can make the following conclu-
sions: (1) The usage of multiple modalities is more effective
than that of single one. “B+A+S+T”, with the combination of
visual modality and textual modality, gets the result of 54.40
on VR while “B+A+S” that just uses visual modality only
achieves 53.01. (2) The knowledge from valid relationships
can improve the predicate detection. It can be demonstrated
by the comparison of our baseline “B+A” and VransE, with
52.41 contrast to 47.87 on VR. (3) It is necessary to introduce
semantical similarities on relationships to guide the predicate
detection, and similarities measured on higher-level semantic-
s are more efficient than that on low-level features. Shown in
Table 4, “B+A+LC” is 2.02 and 2.31 higher than “B+A+S+T”
on VG according to Recall@50 and Recall@100 respectively.
Our “B+A+S+T+LC” with 56.65 is also better than LP with
47.87 on VR.

5. CONCLUSION

This paper proposes MMLFM-LC, which takes advantage of
knowledge learned from multiple modalities, valid relation-
ships and semantical similarities, to learn the cross-modality
representation of entities and predicates. Experiments on Vi-
sual Relationship and Visual Genome prove that our model
gets the best performance. Moving towards, we are going
to tackle the zero-shot/one-shot relation learning problems,
which are the most challenging tasks in predicate detection.

1 [22] randomly split the VG dataset into training and test set with a ratio
of 8 : 2, while our training/test sets are 73801 and 25857. So the training set
size of [22] is bigger than ours.
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