
  

 

Abstract— Attention-deficit/hyperactivity disorder (ADHD) 

is a childhood-onset neurodevelopmental disorder that often 

persists into adulthood, resulting in adverse effects on work 

performance and social function. The current diagnosis of 

ADHD primarily depends on the judgment of clinical 

symptoms, which highlights the need for objective imaging 

biomarkers. In this study, we aim to classify ADHD (both 

children and adults [34/112]) from age-matched healthy 

controls (HCs [28/77]) with functional connectivity (FCs) 

pattern derived from resting-state functional magnetic 

resonance imaging (rs-fMRI) data. However, the neuroimaging 

classification of brain disorders often meets a situation of high 

dimensional features were presented with limited sample size. 

Thus an efficient method that is able to reduce original feature 

dimension into a much more refined subspace is highly desired. 

Here we proposed a novel Feature Selection method based on 

Relative Importance and Ensemble Learning (FS_RIEL). 

Compared with traditional feature selection methods, FS_RIEL 

algorithm improved the ADHD classification by about 15% in 

both child and adult ADHD classification, achieving 80-86% 

accuracy. Moreover, we found the most frequently selected FCs 

were mainly involved in frontoparietal network, default 

network, salience network, basal ganglia network and 

cerebellum network in both child and adult ADHD cohorts, 

which indicates that ADHD is characterized by a 

widely-impaired brain connectivity profile that may serve as 

potential biomarkers for its early diagnosis. 

I. INTRODUCTION 

Attention-deficit/hyperactivity disorder (ADHD), the most 
common childhood-onset neurodevelopmental disorder, 
defined by a persistent pattern of inattention, hyperactivity, 
and impulsivity [1]. ADHD affects 5% children and 
adolescents and 2%-4% adults in the word [2, 3]. Throughout 
an individual's lifetime, ADHD patients are likely to increase 
the risk of other psychiatric disorders such as oppositional 
defiant disorder, conduct disorder or substance misuse which 
increase mortality. However, as for most mental disorders, the 
etiological bases and neural substrates of ADHD are far from 
being fully understood. Furthermore, current diagnosis of 
ADHD primarily depends on the judgment of clinical 
symptoms, and the misdiagnosis rate could be high [4]. 
Therefore, a more accurate discriminative method of ADHD 
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based on objective imaging biomarkers is crucial for its early 
diagnosis and may facilitate better intervention and more 
effective treatment.  

In literature, functional magnetic resonance imaging 
(fMRI) techniques have been extensively used in the 
quantitative analysis of the brain in healthy individuals and 
patients with psychiatric disorders in an attempt to increase 
our understanding of human brain functional networks [5, 6]. 
Following these studies, numbers of classification methods 
have been proposed for the diagnosis of ADHD with fMRI 
data [6-9]. Functional neuroimaging studies using 
resting-state fMRI have implicated alterations in functional 
connectivities (FCs) between multiple brain regions in ADHD 
[10-12]. However, FCs with the high dimensional small 
sample issue that treats original features as input space directly 
would degrade the sorting performance on distinguishing 
ADHD from healthy controls (HCs).  

To overcome this drawback, in this study, we proposed a 
new feature selection method based on relative importance, to 
reduce high dimensional feature space into a much more 
refined subspace. The relative importance of features is 
calculated from decision trees. The value reveals the degree 
that every feature (i.e., node) contributes to the target label 
[13]. Features at the top of the tree get higher values since they 
make greater effects on the final prediction. Thus the relative 
importance of features thus can be used as an estimate of the 
relationship to the target label after average values on different 
trees Different ensemble methods calculate not the same 
relative importance of features. After combing these features, 
a forward-backward selection algorithm is employed to 
increase the diversity of new feature space while it still can 
maintain the low dimensionality of FCs feature space. 
Therefore, the final refined feature space will be constructed 
with selected features. A 10 fold cross validation strategy is 
used to estimate the performance of discriminating ADHD 
from HCs with the selected FCs resulted from the proposed 
method. 

The remaining of this paper is organized as follows: 
section II mainly presents adults ADHD dataset and our 
proposed feature selection algorithm. In section III, both 
adults ADHD dataset and children ADHD dataset with 
age-matched HCs are used to test the proposed feature 
selection algorithm while compared with Lasso and ElasticNet 
methods. In section IV, we present our conclusion and discuss 
possible future research directions. 

II. MATERIALS AND METHODS 

A. Participants 

The first dataset includes 112 ADHD patients and 77 

age-matched HCs who were recruited from clinics of Peking 

University Sixth Hospital (PKU6) or Beijing Normal 
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University (BNU). In the second dataset, 34 drug-naïve 

(stimulants and other psychotropic drugs) right-handed boys 

with ADHD and full-scale IQ score>80 were recruited from 

the child and adolescent psychiatric clinics of Peking 

University Sixth Hospital. 28 age- and sex-matched HCs 

were recruited from local primary schools. Demographic data 

were provided in Table 1. 
TABLE I．Demographic Characteristics 

 First Dataset  

(Adults) 

Second Dataset 

(Children) 

 HC ADHD HC ADHD 

Site PKU6 43 73 28 34  

Site BNU 34 39 NA 

Demographic   

Number 77 112 28 34 

Gender (F/M) 34F/43M 37F/75M All Boys 

Age (Mean±sd) 26.04±3.94 25.93±4.86 10.29±1.67 9.79±1.86 

 

B. MRI Data Acquisition 

Data were acquired on a Siemens Trio 3 T scanner 
(Siemens, Erlangen, Germany) at BNU while a GE Signa 3T 
Horizon HDx system (General Electric, Milwaukee, WI) at 
PKU6. Hospital. Functional (rs-fMRI) images were acquired 
using an echo-planar imaging sequence with the following 
parameters on the Siemens scanner: repetition time 
(TR) = 2,000 ms, echo time (TE) = 30 ms, flip angle= 90°, 
thickness/skip =3.5/0.7mm, matrix = 64 × 64, field of view 
(FOV) = 200 mm × 200 mm, 33 axial slices, and 240 
volumes. And the parameters on the GE scanner were: TR = 
2,000 ms, TE = 30 ms, flip angle = 90°, matrix = 64 × 64, FOV 
= 200 mm × 200 mm, 43 axial slices, slice thickness = 3.2 mm, 
slice gap = 0 mm in rs-fMRI. 

C. Resting-State Functional Connectivity Analysis 

Two datasets were both preprocessed using the Data 

Processing Assistant for Resting-State fMRI (DPARSFA, 

http://rfmri.org/DPARSF [14]). The first ten volumes were 

discarded to allow for magnetization equilibrium. Subsequent 

data preprocessing included slice timing correction, head 

motion correction, spatial normalization to the MNI template, 

resampling to 3 × 3 × 3 mm
3
 , smoothing using a 4 mm 

Gaussian kernel, temporal band-pass filtering (0.01 Hz to 0.1 

Hz), and regressing out nuisance signals of head motion 

parameters, white matter, CSF, and global signals. The 

registered functional MRI volumes with the MNI template 

were divided into 246 regions according to the Brainnetome 

Atlas [15] incorporating 210 cortical, 36 subcortical and 27 

cerebellar regions. 

Regional mean time series were obtained for each by 

averaging the functional MRI time series over all voxels in 

each of the 273 regions. Pearson correlation coefficients 

between pairs of node time courses were calculated and 

normalized to z score using Fisher transformation, resulting in 

a 273 × 273 symmetric connectivity matrix for each subject. 

Removing 273 diagonal elements, we extracted the upper 

triangle elements of the functional connectivity matrix as 

prediction features, i.e., the feature space for prediction was 

spanned by the (273 × 272)/2 = 37128 dimensional feature 

vectors. 

D. Ensemble Feature Selection Algorithm 

The success of machine learning algorithms in many 

areas, such as computer vision, speech recognition and so on, 

brings more probabilities and development space in 

computer-aided diagnosis system. With these algorithms, 

some patterns hidden in different subjects who suffer from the 

same disease can be found out easier. FC matrixes are of huge 

dimensionality, and the direct use of these features for 

classification often leads to low performance due to the 

“curse of dimensionality” [16]. To address this critical issue, 

ensemble learning methods are employed to establish a 

better-refined feature space. A benefit of using such methods 

like random forest or gradient boosting is that, after 

constructed those decision trees, it is relatively 

straight-forward to retrieve importance scores for each 

feature. In general, importance with a score [13] is calculated 

using formula (1) that indicates how informative or valuable 

each feature was averaged across all of the decision trees in 

the constructions of the classifier.  
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tm represents all J-1 internal nodes of m tree in all M trees. The function I 
returns one if condition true otherwise returns zero.  

The high interpretability and generalization of feature 
space lead to build more refined subspace. Based on them, we 
proposed a novel feature selection algorithm named FS_RIEL. 
The flowchart of FS_RIEL algorithm is shown in Figure 1. As 
we mentioned in introduction, different ensemble methods do 
not generate the same relative importance of features. Hence, 
an ensemble learning thought was employed to maintain the 
low dimensionality of FCs feature space while it still via 
increasing the diversity of new feature space to ensure a better 
generalization.  

 

Figure 1 Flowchart of our proposed FS_RIEL algorithm 

Extreme gradient boosting (XGBoost) [17] generates the 
features pool A with sorted features importance based on 
training data. To be clarified, Features pool A was composed 
of five different feature space that represents different 
numbers of features we employed (from 0.05% to 0.2% with 
the size of original features). In order to generate the features 
pool B, Four different algorithm including AdaBoost [18], 
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randomized decision trees (a.k.a. Extra-Trees) [19], Gradient 
Boosting [20] and Random Forest [21] were employed. Top 
10 percent from different models’ importance features were 
assembled without repetition. After combing these features, a 
forward-backward selection algorithm shown in Figure 2 will 
be used. 

 
Figure 2 Details on forward-backward feature selection algorithm 

XGBoost is used to measure the performance of the related 
feature subspace with validation set as the wrapper in our 
proposed forward-backward feature selection method. Other 
wrappers are employed to guarantee more informative 
features would take into consideration. The final results come 
from a voting strategy that each wrapper keeps the same 
weights. Then the final refined feature subspace will be 
constructed with selected features. 

 

III. RESULTS AND ANALYSIS 

In this study, a ten-fold cross-validation strategy was used 
to estimate the performance of discriminating both adults and 
children ADHD from age-matched HCs with the selected FCs 
selected from the proposed method. As shown in Figure 1, for 
each loop, 10% subjects were left untouched for testing, the 
remaining data were further split into a training set (2/3, 60%) 
and a validation set (1/3, 30%). Each loop generates a new 
robust feature subspace for classification to predict labels of 
the test data. Then the loops go on ten times until all subjects 
were tested. FS_RIEL algorithm is also compared with 
traditional Lasso [22] and ElasticNet [23] methods by using 
metrics of accuracy (ACC), sensitivity (SEN) and specificity 
(SPE). Denote TP, TN, FP and FN as true positive, true 
negative, false positive and false negative, respectively. These 
evaluation metrics are defined as: ACC = (TP+TN)/ 
(TP+TN+FP+FN), SEN= TP/ (TP+FN), SPE=TN/ (TN+FP) 

 Lasso and ElasticNet are tuned their parameter with grid 
search method. Lasso uses parameter alpha to control sparsity, 
and the values of alpha are chosen from {0.005, 0.006, … , 
0.1}. ElasticNet has parameters l1_ratio and alpha to control 
penalty terms. The values of alpha are varied from 0.1 to 2 
with step 0.1while l1_ratio changing from 0.02 to 0.7 also with 
step 0.01.  

A.  adults ADHD vs. age-matched HCs 

After optimizing the parameters of Lasso and ElasticNet 

model, the parameter alpha in Lasso is 0.03. The l1_ratio and 

alpha in ElasticNet equal 0.1, 0.35 respectively. Lasso and 

ElasticNet Method hold stable performance while our 

proposed algorithm cannot guarantee this. Figure 3 with 

FS_RIEL algorithm illustrates the average of accuracy, 

sensitivity, and specificity in 10 times for each fold while 

others present the best results. The results indicate mean 

accuracy is 80.0% with our algorithm better than Lasso 

(67.80%) and ElasticNet (66.67%). The mean sensitivity is 

90.83% vs. 76.74%, and 77.58% while mean specificity is 

64.89% vs. 54.82% and 50.71%. Meanwhile, less half FCs 

(43.02 vs. 104.9/120.5) were employed in FS_RIEL 

algorithm.  

 
Figure 3 Four metrics for performance evaluation on different feature 
selection methods with adults ADHD. 

The most frequently selected FCs via feature selection 

method with relative importance show in figure 4(a). Lines 

with more width denotes more frequency were used in new 

space, and two pink lines are the top two FCs. Figure 4(c) 

demonstrates the new feature subspace with FCs in 4(a) 

reduced related dimensions into two by T-SNE[24].  

The most frequently selected FCs were mainly involved in 

frontoparietal network, default network, salience network, 

basal ganglia network and cerebellum network, consistent 

with previous findings that large-scale brain networks were 

impaired in ADHD [25]. 

 
Figure 4 Related FCs in adults, children ADHD and 2D visualization after 
t-sne algorithm on adult ADHD. 

B. Children ADHD vs. age-matched HCs 

The same methods are also used in children ADHD dataset. 
We still had optimized related feature selection models. The 
parameter alpha in Lasso is 0.0018. The l1_ratio and alpha in 
ElasticNet is equal to 0.12, and 1.6, respectively. 5-fold 
cross-validation is used to validate methods’ performance as 
the children dataset is not big enough. The final results are 
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showed in Figure 5. The most frequently selected FCs via 
FS_RIEL are showed in figure 4(b). 

 

Figure 5 Four metrics for performance evaluation on different feature 
selection methods with children ADHD. 

C. Future directions 

Overall, our studies offer a new feature selection strategy 
to tackle high dimensional with small samples on neuroimage 
classification issues. Because FCs features would not the only 
way describing fMRI data, other heterogeneous fMRI features 
like ReHo, fALFF should be considered into our proposed 
method. Furthermore,  structure MRI and Diffusion Tensor 
Imaging (DTI) features depicted from different views when 
compares with fMRI. Fusion multi-modality image features 
might improve performance on classification. Therefore, we 
plan to pursue these possibilities in our future work. 

IV. CONCLUSION 

In summary，we proposed a novel feature selection method 

named FS_RIEL that is able to reduce original feature space 

into a much more refined subspace when facing high 

dimensional features with limited sample size. Compared 

with traditional feature selection methods, FS_RIEL 

performed much higher accuracy on ADHD classification 

issue. To the best of our knowledge, this is the first attempt 

using feature selection method on both child, and adult ADHD 

fMRI datasets achieved high accuracy. Furthermore, the most 

frequently selected FCs consistent with previous findings that 

large-scale brain networks were impaired in ADHD.   
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