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ABSTRACT   

Cherenkov luminescence tomography (CLT) has become a novel three-dimensional (3D) non-invasive technology for 

biomedical applications such as tumor detection, pharmacodynamics evaluation, etc. However, the reconstruction of CLT 

still remains a challenging task because of the strong absorbing effect and scattering effect of Cherenkov photon transport 

process. In this study, we proposed a novel robust sparse reconstruction method named look ahead orthogonal matching 

pursuit (LAOMP) algorithm to improve the robustness and accuracy of reconstruction for CLT instead of traditional OMP 

algorithm based on a look ahead strategy. To validate the reconstruction performance of LAOMP method, a series of 

numerical simulations were conducted. The results showed that LAOMP method obtained the higher robustness and 

accuracy in locating the optical sources compared with the OMP and StOMP algorithms.  

Keywords: Cherenkov luminescence tomography (CLT), orthogonal matching pursuit (OMP), look ahead orthogonal 

matching pursuit (LAOMP), sparse reconstruction, tumor detection 

 

1. INTRODUCTION  

Cherenkov radiation is produced when high-energy charged particles pass through a medium at a speed faster than the 

speed of light in the medium. [1] This effect is used as optical molecular imaging first in 2009, as a new imaging modality 

called Cherenkov luminescence imaging (CLI). [2] CLI has many advantages, including high spatial resolution, low costs 

and available clinical radiopharmaceuticals used for positron emission tomography (PET) or single-photon emission 

computed tomography (SPECT) such as 18F, 11C, 64Cu, 131I. [3-4] However, 3D distribution of radioactive probes remains 

unknown because CLI is a planar imaging technology which can only provide the surface light flux information of targeted 

tissue. [5]   

Combined with structural imaging modality, CLI technology is extended to 3D tomography by many research groups, 

named as Cherenkov luminescence tomography (CLT), which can provide more accurate spatial distribution information 

of radionuclides in biological tissues for preclinical and clinical researches. [6-8] Since CLT combines the advantages of 

optical imaging and radionuclide imaging, it can be used as a low-cost substitute of PET scan. However, like other optical 

molecular imaging modality such as bioluminescence tomography (BLT) and fluorescence molecular tomography (FMT), 

the inverse problem of CLT is greatly ill-conditioned and ill-posed because of the strong absorbing effect and scattering 

effect of photon in the biological tissues. On the other hand, strong noise interference exists in the reconstruction process 

of CLT, which requires highly robust reconstruction algorithm. To acquire more accurate and robust reconstruction of 

CLT, it is important to employ the prior information such as weighted multi-spectrum strategy [9], sparse regularization 

[10] and so on. However, Tikhonov regularization, the most wildly used method in the inverse problem, will bring in many 

pseudo sources, known as over-smoothed problem.  

Matching pursuit algorithm is a kind of fast sparse reconstruction algorithm, which is wildly used in optical molecular 

tomography. For reconstruction of CLT, Liu et al. propose preconditioning orthogonal matching pursuit (POMP) modified 

from traditional matching pursuit algorithm and acquire better reconstruction performance. [11] However, these algorithm 

still have insufficient accuracy and robustness. In this study, a novel robust reconstruction algorithm called look ahead 

orthogonal matching pursuit (LAOMP) was proposed for CLT reconstruction. Look ahead strategy was used to improve 
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the robustness and accuracy of orthogonal matching pursuit for reconstruction of CLT. Numerical simulation experiments 

were conducted to validate the reconstruction performance of LAOMP algorithm. The results demonstrated that LAOMP 

algorithm had better location accuracy and robustness for reconstruction of CLT compared to other matching pursuit 

algorithms such as orthogonal matching pursuit (OMP) and stage-wise orthogonal matching pursuit (StOMP). 

2. METHODS 

2.1 Photon transmission model and inverse problem  

Generally, without considering the influence of time, the steady-state radiation transfer equation (RTE) is used to mimic 

the transmission process of photons in biological tissues. However, it is too difficult to solve the steady-state RTE directly 

because of the coupling of direction and position of the solid angle. Based on spherical harmonic function theory, the 

steady-state RTE can be approximately simplified to diffusion equation by the first order spherical harmonic function.  

Joint the boundary condition, the diffusion equation can be formulated as [12] 

 {
−∇[𝐷(𝑟) ∙ ∇Φ(r)] + 𝜇𝑎(𝑟) ∙ Φ(r) =  𝑆(𝑟)

Φ(r) + 2𝐴(𝑛)(𝑣(𝑟) ∙ 𝐷(𝑟)) = 0,   𝑟 ∈ 𝜕Ω
 ( 2-1) 

Where ∇ ,  𝑟 Ω , 𝜕Ω  denote the vector differential operator, position coordinate, biological tissues and the surface of 

biological tissues respectively. Φ(r)  is the light flux at position 𝑟 ∈ Ω . 𝑆(𝑟)  is the isotropic source radionuclide 

distribution, and 𝐷(𝑟) is the optical diffusion coefficient defined as 

 D(r) =
1

3(𝜇𝑎(𝑟) + (1 − 𝑔) ∙ 𝜇𝑠(𝑟))
 ( 2-2) 

Where 𝜇𝑎(𝑟) represents light absorbing coefficient, 𝑔 is the medium anisotropy factor, 𝜇𝑠(𝑟) is light scattering coefficient. 

𝜇𝑠
′ (𝑟) = (1 − 𝑔) ∙ 𝜇𝑠(𝑟) is also known as the reduced scattering coefficient. The continuous DE model must be discretized 

for numerical implementation on the computer. In practical terms, the finite element method (FEM) framework is often 

applied for the discretization of DE model in CLT such that DE model can be depicted as a system of linear equations as 

follows 

 Ax = b ( 2-3) 

Where A is the photon transmission systematic matrix, x is the optical density distribution of radionuclide, and b is the 

light flux at the boundary. In numerical simulation experiments or in vivo experiments, the light flux at the boundary b can 

be measured by optical signal acquisition device and the systematic matrix is calculated according to the heterogeneous 

structural mesh and optical coefficients such as absorbing coefficient, scattering coefficient and anisotropy factor. The 

inverse problem is to solve optical density distribution x after knowing the systematic matrix and the light flux at the 

boundary. Because the number of rows in matrix A is less than the number of columns, Eq. (3) is underdetermined. 

Therefore, sparse prior is usually adapted for solving the inverse problem, formulated as follows 

 {
𝑚𝑖𝑛‖𝑥‖0

‖𝐴𝑥 − 𝑏‖2 < 𝜀
 ( 2-4) 

Where ‖𝑥‖𝑝 denotes p-norm of   𝑥, 𝜀 is a relatively small quantity.  

2.2 Look ahead orthogonal matching pursuit 

To apply orthogonal matching pursuit algorithm for solving the inverse problem of CLT, Eq. (3) is normalized by bringing 

in the diagonal matrix Λ, where the i-th element of Λ is set as 

 Λ𝑖 =
1

‖𝐴𝑖‖2
2 ( 2-5) 

Then we can transform Eq. (3) as follows 

 

𝑁𝑦 = 𝑏
𝑁 = 𝐴Λ

𝑦 = Λ−1𝑥
 ( 2-6) 

Hence, the inverse problem of CLT can be redefined as 

 {
𝑚𝑖𝑛‖𝑦‖0

‖𝑁𝑦 − 𝑏‖2 < 𝜀
 ( 2-7) 
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𝑥 = Λ𝑦   
Since the problem is NP-hard problem, it is too difficult to find the exact solution with traditional optimization methods. 

Herein, OMP algorithm can be used as a kind of greedy algorithm to find the approximate solution. Firstly, we define 

the residual vector as 

 𝑟𝑘 = 𝑏 − 𝑁𝐼𝑘
𝑦𝐼𝑘

 ( 2-8) 

Where 𝐼𝑘 is the support set which contains the index of the selected column. The residual vector and the support set are 

initialed as 

 
𝑟0 = 𝑏 
𝐼𝑘 =  ∅

 ( 2-9) 

In each iteration, the OMP algorithm finds the column of N that is maximally correlated to the regularized residual vector, 

formulated as 

 
𝑖𝑘 = 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑗∈(𝑈− 𝐼𝑘−1) )𝑑𝑜𝑡(𝑁𝑗 , 𝑟𝑘−1) 

𝐼𝑘 =  𝐼𝑘−1  ∪  𝑖𝑘 
( 2-10) 

Where U denotes the index of all column, dot(a, b) represents the inner product of a and b. The iteration stops when the 

number of elements in the support set reaches the sparsity level. In fact, The OMP suffers from the obvious drawback that 

one a particular column has been selected from the highest amplitude value of the matched filter, there is no way it can be 

removed. Therefore, the wrong columns are probable to be selected in the support set, which results in the reconstruction 

error correspondingly. The LAOMP algorithm is similar to the OMP algorithm in the fact that they both establish the 

support set by every iteration. However, the LAOMP algorithm takes into account the effect of adding that the selected 

column to the current support set on the final reconstruction accuracy by using the look ahead residue function. The lower 

residue means a better reconstruction performance in the view of the LAOMP method. [13] In each iteration, L highest 

amplitude components of the inner product of N and the residue vector r are put into the temp set 

 𝑇𝑘 = max (𝑑𝑜𝑡(𝑁𝑈− 𝐼𝑘−1
, 𝑟𝑘−1), 𝐿) ( 2-11) 

Where 𝑇𝑘 is the temp set in the k-th iteration, and max (N, L) means seeking the L largest elements in the vector N. All the 

elements in the support set are put into the look ahead residue function to calculate the final residues after K (sparsity level) 

iterations for selecting the best element, represented as 

 
𝑖𝑘 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑗∈𝑇𝑘−1

(𝐿𝑜𝑜𝑘_𝑎ℎ𝑒𝑎𝑑_𝑟𝑒𝑠𝑖𝑑𝑢𝑒(𝑁𝑗))  

𝐼𝑘 =  𝐼𝑘−1  ∪  𝑖𝑘 
( 2-12) 

The process of calculating the final residue in the look ahead residue function is similar to the OMP algorithm. Therefore, 

the LAOMP algorithm for CLT can be summarized as Algorithm 1.  

Algorithm 1.  

Step 1. Input the surface light flux b and the systematic matrix A 

Step 2. Normalize the systematic matrix by diagonal matrix 𝛬 

𝑁𝑦 = 𝑏, 𝑁 = 𝐴Λ, 𝑦 = Λ−1𝑥 

Step 3. Initial 𝑦0 = 0,  𝑟0 = 𝑏,  𝐼0 =  ∅,  𝑈 = 𝑟𝑎𝑛𝑔𝑒 (1,   𝑐𝑜𝑙(𝑁)) ,  𝑘 = 0 
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Step 4. Repeat 

            𝑘 = 𝑘 + 1 

            𝑇𝑘 = max(𝑑𝑜𝑡 (𝑁𝑈− 𝐼𝑘−1
,  𝑟𝑘−1) ,  𝐿) 

            𝑖𝑘 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑗∈𝑇𝑘
(𝐿𝑜𝑜𝑘_𝑎ℎ𝑒𝑎𝑑_𝑟𝑒𝑠𝑖𝑑𝑢𝑒(𝑁𝑗))  

           𝐼𝑘 =  𝐼𝑘−1 ∪ 𝑖𝑘 

           Until 𝑘 > 𝐾 

Step 5. Calculate 𝑦 =  𝑁𝐼𝑘
+𝑏,  𝑥∗ = Λ𝑁𝐼𝑘

+𝑏 

Step 6. Output 𝑥∗ 

 

3. EXPERIMENTS AND RESULTS 

In order to validate the reconstruction performance of the LAOMP algorithm, a series of simulation experiments were 

conducted. The digital mouse model was employed in the numerical simulation experiments. As the optical source was set 

at the abdomen part, about 30mm of trunk was cut off from the digital mouse. As a heterogeneous model, the trunk was 

divided into seven tissues manually according to the threshold of voxel, including bone, heart, stomach, liver, kidney, lung, 

muscle. At the wavelength of 650nm, the medium anisotropy factor g, the light absorbing coefficient 𝜇𝑎(𝑟) and the reduced 

light scattering coefficient 𝜇𝑠
′ (𝑟) of different tissues were listed in Table 1.  

Table 1. Optical coefficient of different tissues at the wavelength of 650nm 

Organs g 𝜇𝑎(𝑟)(𝑚𝑚−1) 𝜇𝑠
′ (𝑟)(𝑚𝑚−1) 

Bone 0.93 0.0017 1.1930 

Heart 0.90 0.0080 1.0066 

Stomach 0.93 0.0254 1.4798 

Liver 0.93 0.0473 0.7000 

Kidney 0.90 0.0090 2.3585 

Lung 0.93 0.0265 2.2091 

Muscle 0.97 0.0118 0.4674 

A spherical shape Cherenkov source with radius 0.5mm was set at the center (9.0mm, 20.0mm, 13.0mm)  inside the 

liver and the intensity of source was set to 1nw (Figure 1(a)). Then a mesh with 15824 nodes and 85029 tetrahedrons was 

generated from the heterogeneous trunk of digital mouse by Amira 5.2 (Figure 1(b)). With the optical coefficients and the 

generated mesh, the systematic matrix can be calculated by finite element method and the surface light flux was calculated 

by Monte Carlo method with MOSE v2.1 developed by our lab (Figure 1(c)). [14]  
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Figure 1. The results of the forward process with the digital mouse model. (a) The trunk part of heterogeneous digital 

mouse divided into seven different tissues, (b) the mesh generated from the trunk and (c) the surface light flux.  

Based on the systematic matrix and the surface light flux obtained by MC simulation, the LAOMP algorithm was 

used to solve the inverse problem and reconstruct the optical source for CLT. At the same time, OMP algorithm and StOMP 

algorithm were conducted to reconstruct the optical source as the contrast group. The reconstructed results were shown in 

Figure 3. The slice at axis Z=13.0mm was selected to show the results of different algorithm. The true source was displayed 

with the white cycle (Figure 2(a)). Figure 2(c)-(d) were the reconstructed results by LAOMP algorithm, OMP algorithm 

and StOMP algorithm respectively. It showed that the result of LAOMP algorithm had the most similar position and shape 

with the true source compared with other two method.  

 

 

Figure 2. Reconstruction results of different algorithm. (a) The true source, (b) the results of LAOMP algorithm, (c) the 

results of OMP algorithm and (d) the results of StOMP. 
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4. DISCUSSION AND CONCLUSIONS

In this study, a novel algorithm named LAOMP algorithm was proposed to solve the inverse problem of CLT 

reconstruction. Compared with OMP algorithm and StOMP algorithm, proposed method selected the column more in a 

more cautious way by the look ahead strategy and obtained more accurate and robust reconstruction for CLT. Meanwhile, 

the shape could also be restored well according to LAOMP algorithm. It is believed that LAOMP can replace other OMPs 

as the fast reconstruction algorithm for CLT.  

5. ACKNOWLEDGMENTS
This study was supported by the National Key Research and Development Program of China (2016YFC0102600, 

2017YFA0205200), the National Natural Science Foundation of China (NSFC) (81227901, 81527805, 61622117, 

81671759), the Beijing Nova Program (Z181100006218046), the Scientific Instrument Developing Project of the Chinese 

Academy of Sciences (YZ201672), and Chinese Academy of Sciences under Grant No. GJJSTD20170004. 

REFERENCES 

[1] Cerenkov, P. A. (1934). Visible luminescence of pure liquids under action of γ-radiation. Dok. Aka. Nau.(USSR),

2, 451-454.

[2] Robertson, R., Germanos, M. S., Li, C., Mitchell, G. S., Cherry, S. R., & Silva, M. D. (2009). Optical imaging of

Cerenkov light generation from positron-emitting radiotracers. Physics in Medicine & Biology, 54(16), N355.

[3] Thorek, D. L., Robertson, R., Bacchus, W. A., Hahn, J., Rothberg, J., Beattie, B. J., & Grimm, J. (2012). Cerenkov

imaging-a new modality for molecular imaging. American journal of nuclear medicine and molecular imaging,

2(2), 163.

[4] Boschi, F., & E Spinelli, A. (2014). Cerenkov luminescence imaging at a glance. Current Molecular Imaging,

3(2), 106-117.

[5] Li, C., Mitchell, G. S., & Cherry, S. R. (2010). Cerenkov luminescence tomography for small-animal imaging.

Optics letters, 35(7), 1109-1111.

[6] Zhong, J., Tian, J., Yang, X., & Qin, C. (2011). Whole-body Cerenkov luminescence tomography with the finite

element SP3 method. Annals of biomedical engineering, 39(6), 1728-1735.

[7] Hu, Z., Liang, J., Yang, W., Fan, W., Li, C., Ma, X. & Wang, J. (2010). Experimental Cerenkov luminescence

tomography of the mouse model with SPECT imaging validation. Optics express, 18(24), 24441-24450.

[8] Spinelli, A. E., Kuo, C., Rice, B. W., Calandrino, R., Marzola, P., Sbarbati, A., & Boschi, F. (2011). Multispectral

Cerenkov luminescence tomography for small animal optical imaging. Optics express, 19(13), 12605-12618.

[9] Guo, H., He, X., Liu, M., Zhang, Z., Hu, Z., & Tian, J. (2017). Weight multispectral reconstruction strategy for

enhanced reconstruction accuracy and stability with Cerenkov Luminescence Tomography. IEEE transactions on

medical imaging, 36(6), 1337-1346.

[10] Guo, H., Hu, Z., He, X., Zhang, X., Liu, M., Zhang, Z. & Tian, J. (2017). Non-convex sparse regularization

approach framework for high multiple-source resolution in Cerenkov luminescence tomography. Optics Express,

25(23), 28068-28085.

[11] Liu, H., Hu, Z., Wang, K., Tian, J., & Yang, X. (2015, March). Cerenkov luminescence tomography based on

preconditioning orthogonal matching pursuit. Medical Imaging 2015: Image Processing. International Society for

Optics and Photonics, 2015, 9413: 94131X.

[12] Cong, W., Wang, G., Kumar, D., Liu, Y., Jiang, M., Wang, L. V., & Cong, A. (2005). Practical reconstruction

method for bioluminescence tomography. Optics Express, 13(18), 6756-6771.

[13] Swamy, P. B., Ambat, S. K., Chatterjee, S., & Hari, K. V. S. (2014, February). Reduced look ahead orthogonal

matching pursuit. In Communications (NCC), 2014 Twentieth National Conference on (pp. 1-6). IEEE.

[14] Tian, J., Liang, J., Chen, X., and Qu, X., “Molecular optical simulation environment," [M]//Molecular Imaging.

Springer, Berlin, Heidelberg, 2013: 15-46.

Proc. of SPIE Vol. 10871  1087114-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10 May 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


