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ABSTRACT
Sequential recommendation is intended to model the dynamic be-
havior regularity through users’ behavior sequences. Recently, var-
ious deep learning techniques are applied to model the relation of
items in the sequences. Despite their effectiveness, we argue that
the aforementioned methods only consider the macro-structure
of the behavior sequence, but neglect the micro-structure in the
sequence which is important to sequential recommendation. To
address the above limitation, we propose a novel model called Motif-
aware Sequential Recommendation (MoSeR), which captures the
motifs hidden in behavior sequences to model the micro-structure
features. MoSeR extracts the motifs that contain both the last behav-
ior and the target item. These motifs reflect the topological relations
among local items in the form of directed graphs. Thus our method
can make a more accurate prediction with the awareness of the
inherent patterns between local items. Extensive experiments on
three benchmark datasets demonstrate that our model outperforms
the state-of-the-art sequential recommendation models.

CCS CONCEPTS
• Applied computing→ Online shopping; • Information sys-
tems → Recommender systems.
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1 INTRODUCTION
With the explosive growth of information on the Internet, recom-
mendation systems have been widely used in many online services
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Figure 1: Illustration of differentmotifs in sequential recom-
mendation. Each solid arrow represents a common global
purchase order between items. The dotted arrows denote the
behaviors we need to predict. Three motifs present the colli-
sion structure, unidirectional dependency and bidirectional
dependency relations respectively.

such as e-commerce, advertising and information retrieval to alle-
viate information overload. Sequential recommendation is one of
the fundamental tasks in recommendation systems which aims to
model the behavior regularity through users’ behavior sequences.

Various methods have been proposed for the sequential recom-
mendation. Traditional methods [1, 11] model the relation from
an item to the next item. Recently, deep learning methods such
as GRU4Rec, Caser [3, 4, 7, 13], employ recurrent neural network
or convolution neural network to learn the sequential regularity
of user-item interactions. Nevertheless, these methods fail to cap-
ture some complex sequential characteristics of behaviour, such as
long term relation, periodical relation. With the widespread use of
attention mechanism, many models [6, 12] are proposed to intro-
duce attention to distinguish the importance of items in sequences.
These attention-based methods can provide a more accurate picture
of the entire sequence. Besides the sequential structure of models,
graph-based methods [15, 16] are proposed to capture complex
transitions of items which are difficult to be revealed by the conven-
tional sequential methods. They combine all the sequences into an
item graph to learn the global relations of item transition features
and achieve satisfactory results.

The aforementioned methods focus on the macro-structure of
the whole sequence. However, they pay little attention to the micro-
structure hidden in the sequence. Recent research [5, 9] on the motif
of the dynamic graph shows that micro-structure is highly relevant
to the future linkage. Such micro-structure is also common and
important in recommendation systems. Taking Figure 1 as exam-
ples, solid arrows demonstrate users’ frequent interaction patterns
from one item to another. Different types of motifs explicitly reflect
different micro-structure. Motif (1) shows collision relation, as one
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may not buy another cell phone just after an Iphone. Motif (2) rep-
resents unidirectional dependency, since a user probably needs a
Mobile HD and U Disk after having a Laptop, while seldom buying
a Laptop after a U Disk. Motif (3) is a bidirectional dependency
relation, where a user has a high probability to buy others after hav-
ing any one in the motif. These micro-structure features explicitly
model the probability of next items through topological relations
between local items.

To address the above limitation, we propose to use motif to
model micro-structure features for the sequential recommenda-
tion model. Specifically, we summarize all sequences of training
set into a directed item graph and extract motifs that contain the
last behavior and the target item from the directed graph. For the
sake of complexity and sparsity, we concentrate on the simplest
and fundamental motif, triad. The motif features are calculated
by edge weights in extracted motifs. Finally, we combine the mo-
tif features, representation of user sequence and the target item
representation as the input to predict the probability of the target
item at the next time step. We conduct extensive experiments on
three benchmark datasets. The experimental results demonstrate
the effectiveness of the proposed method over the state-of-the-arts.
The main contributions of this work are as follows,

• We design a micro-structure motif feature hidden in users’
behavior sequences which plays an important role in sequen-
tial recommendation.

• Wepropose amotif-aware sequential recommendationmodel
called MoSeR, which takes motif into account in the predict-
ing stage.

• Experiments on three public datasets show the effectiveness
of our model in capturing micro-structure features. The code
will be released after publication.

2 PROPOSED METHODS
In this section, we present a novel method called MoSeR. An item
graph is constructed from user behavior at the beginning in Section
2.2. Then, we capture the motif feature based on G in Section
2.3. We introduce a sequential recommendation model based on
Transformer [6, 14] to combine themotif feature with item sequence
in Section 2.4.

2.1 Problem Formulation
Let Q denote the item set and |Q| denote the number of items. In
sequential recommendation task, the behavior sequence of a user
𝑢 is denoted as 𝑠𝑢 = [𝑠𝑢1 , 𝑠

𝑢
2 , ..., 𝑠

𝑢
𝑡 , ..., 𝑠

𝑢
𝑇
], where 𝑇 is the length of

sequence, 𝑠𝑢𝑡 represents the item index in Q that user 𝑢 interacts
with at time step 𝑡 . The recommendation task is to predict the
potential item 𝑠𝑢

𝑇+1 at the next time step.

2.2 Item Graph Construction
To capture the structural information among items, we summarize
all the sequence relation of items into a directed graph. Similar to
the previous graph based sequential recommendation method [15],
we construct a weighted directed graph G by the behaviour order
of items. Each node of G represents an item. Each edge denotes
a directed transition from one item to another. The weight of an
edge (𝑖, 𝑗) is calculated by the frequency of the transition relation
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Figure 2: Nine types of open triad motifs.

occurs on the training dataset, which is written as,

𝐴(𝑖, 𝑗) =
∑
𝑢 𝑝 (𝑠𝑢𝑡 = 𝑖, 𝑠𝑢

𝑡+1 = 𝑗)∑
𝑢 𝑝 (𝑠𝑢𝑡 = 𝑖) , (1)

where 𝑝 (𝑠𝑢𝑡 = 𝑖, 𝑠𝑢
𝑡+1 = 𝑗) denotes the frequency of 𝑢 interacting

with item 𝑖 and then 𝑗 at any time 𝑡 . When 𝑢 never interacts with
𝑖 after 𝑗 , it equals 0. 𝑝 (𝑠𝑢𝑡 = 𝑖) represents the frequency of 𝑢 inter-
acting with 𝑖 . Based on the item graph, we could extract the motif
features for sequential recommendation.

2.3 Motif Feature Extraction
From G, we could discover the motif patterns of items. For simplic-
ity, we only discuss the motifs containing three nodes, i.e., triad
motifs. Predicting the next item 𝑠𝑢

𝑡+1 could be considered as learning
the probability of a future links from 𝑠𝑢𝑡 to 𝑠𝑢

𝑡+1. In that case, the
most related motifs are the open triad motifs containing 𝑠𝑢𝑡 and
𝑠𝑢
𝑡+1, which are shown in Figure 2. There are totally nine types of
motifs. The (𝑘)-type open triad motif set contains 𝑠𝑢𝑡 and 𝑠𝑢

𝑡+1 could
be written as,

𝐻Δ𝑘
(𝑠𝑢𝑡 , 𝑠𝑢𝑡+1) = [(𝑠𝑢𝑡 ,𝑚1, 𝑠

𝑢
𝑡+1), (𝑠

𝑢
𝑡 ,𝑚2, 𝑠

𝑢
𝑡+1), ...], (2)

where [𝑚1,𝑚2, ...] are the middle node indexes of the triad which
could be any item in the training set. For each triad (𝑠𝑢𝑡 ,𝑚, 𝑠𝑢

𝑡+1),
we define a function 𝜎 (𝑠𝑢𝑡 ,𝑚, 𝑠𝑢

𝑡+1) that represents the importance
of a motif by the edge weight as,

𝜎 (𝑠𝑢𝑡 ,𝑚, 𝑠𝑢𝑡+1) = 𝐴(𝑠𝑢𝑡 ,𝑚) +𝐴(𝑚, 𝑠𝑢𝑡 ) +𝐴(𝑠𝑢𝑡+1,𝑚) +𝐴(𝑚, 𝑠𝑢𝑡+1). (3)

Note that the edge weight is zero when it does not exist. The func-
tion 𝜎 (·) could be designed as other formulations. We use adding
function for simplification. Finally, we extract the motif feature
X(𝑠𝑢𝑡 , 𝑠𝑢𝑡+1) ∈ R

9 for each item pair. Each dimension of X(𝑠𝑢𝑡 , 𝑠𝑢𝑡+1)
corresponds to one type of motif pattern,

X𝑘 (𝑠𝑢𝑡 , 𝑠𝑢𝑡+1) =
∑

(𝑠𝑢𝑡 ,𝑚,𝑠𝑢
𝑡+1) ∈𝐻Δ𝑘

(𝑠𝑢𝑡 ,𝑠𝑢𝑡+1)
𝜎 (𝑠𝑢𝑡 ,𝑚, 𝑠𝑢𝑡+1) . (4)

In practice, processing all the motifs brings much computational
cost. Thus we fix the maximum number of candidate triads as
𝑀𝑚𝑎𝑥 in this paper, select candidate triads randomly and discuss
its influence in section 3.3.

2.4 MoSeR Framework
In this section, we apply the extracted motif feature for sequen-
tial recommendation. Similar to the practice in SASRec [6], we
randomly initialize item representation as Q ∈ R |Q |×𝑑 . Then, we
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model the user behavior sequence by stacking transformer blocks.
The concatenation of the sequence representation and motif fea-
tures is the input of the prediction layer and output is considered
as the user’s preference on the next item.

2.4.1 Position-aware transformer blocks. Given the user behavior
sequence 𝑠𝑢 = [𝑠𝑢1 , 𝑠

𝑢
2 , ..., 𝑠

𝑢
𝑡 , ...𝑠

𝑢
𝑇
]. After injecting the learnable

position embedding P ∈ R𝑇×𝑑 , the input matrix S is written as,

S = [Q𝑠𝑢1
+ P1,Q𝑠𝑢2

+ P2, ...,Q𝑠𝑢
𝑇
+ P𝑇 ], (5)

where Q𝑠𝑢𝑡
is the representation of item 𝑠𝑢𝑡 .

The common transformer block has the input of query, key and
value. Here, we use S as the input, and convert it into query, key
and value by three learnable projection matrices. The transformer
block is defined as following,

Attention(S) = softmax
(
SW1 (SW2)𝑇

√
𝑑

)
SW3, (6)

where W1,W2,W3 ∈ R𝑑×𝑑 are the projection matrices. The block
uses the whole behavior history S to generate the attention weight
for items at each time step. We denoted S(𝑏) as the output after
(𝑏)-th layers of transformer blocks. The final representation of
user preference F on the next item is obtained through a 2-layer
fully-connected networks (FCN), which is written as,

S(𝑏) = Attention(S(𝑏−1) ),

F = FCN\1 (S
(1) + S(𝑏) ),

(7)

where \1 is the learnable parameters of FCN. We add the first layer
S(1) as a residual connection which makes the training of lower
layer representation better.

2.4.2 Motif-aware next item prediction. The final representation
F denotes the user’s preference on the next item, where F𝑡 is the
preference at time 𝑡 + 1. To predict the rate 𝑟𝑢,𝑖,𝑡 of item 𝑖 that
whether user 𝑢 interacts with it at the next time step 𝑡 + 1, we
aggregate the representation F𝑡 , Q𝑖 and the motif feature X(𝑠𝑢𝑡 , 𝑖)
and output a scalar through a 2-layer FCN,

𝑟𝑢,𝑖,𝑡 = FCN\2 (concatenate(F𝑡 ,Q𝑖 ,X(𝑠𝑢𝑡 , 𝑖))), (8)

where \2 is the trainable parameters of the FCN.

2.5 Training Strategy
In the training stage, we fix each user sequence to a certain length.
We cut the early records when the sequence exceeds the maximum
length, and pad default zero vectors at the beginning when the
sequence is not long enough. We adopt the binary cross entropy
loss as the objective function,

𝐽 = −
∑
𝑢

𝑇∑
𝑡

log(𝑓 (𝑟𝑢,𝑠𝑢𝑡+1,𝑡 )) +
∑
𝑗∉𝑠𝑢

log(1 − 𝑓 (𝑟𝑢,𝑗,𝑡 ))
 , (9)

where 𝑓 (·) is the sigmoid function written as, 𝑓 (𝑥) = 1/(1 +
exp(−𝑥)). In each epoch, we randomly generate one negative item
for each time step in each sequence. More implementation details
are described in the experiment Section 3.1.

Table 1: Statistics of Datasets.

Dataset #Users #Items Avg.length #Actions

Games 31,013 23,715 9.3 0.3M
Beauty 52,024 57,289 7.6 0.4M
MovieLens-1M 6,040 3,416 163.5 1.0M
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Figure 3: Performance of MoSeR with different maximum
candidate motif𝑀𝑚𝑎𝑥 .

3 EXPERIMENTS
In this section, we first describe the experimental settings. We then
report results by answering the above research questions in turn.

3.1 Experiment Setup
Datasets. Following [1, 2, 11], we conduct experiments on the fol-
lowing three real-world datasets, whose statistics can be found in Ta-
ble 1. Games, Beauty [8] are two subsets of Amazon dataset1. It is
widely used as a benchmark dataset in the recommendation, which
contains product reviews and metadata from Amazon. Movie-
Lens2 is a movie rating dataset which is widely used for evaluating
recommendation algorithms. We use the well-established version
(MovieLens-1M) that includes 1 million user ratings. We follow the
same preprocessing procedure as [1, 2, 11]. We discard users and
items with fewer than 5 related actions, and adopt the leave-one-out
protocol for evaluation. For each user, we use the last behavior for
testing, the second to last for validation and the others for training.
During testing, the input sequences contain training actions and
the validation action. Data statistics are shown in Table 1 in detail.
Compared Methods. We compare MoSeR with eight methods.
Two static methods include PopRec (most popular recommenda-
tion) and Bayes Personalized Ranking (BPR) [10]. Three traditional
sequential methods include Factorized Markov Chains (FMC), Fac-
torizing Personalized Markov Chains (FPMC) [11] and Translation-
based Recommendation (TransRec) [1]. Three sequential neural net-
work methods include GRU4Rec+ [3, 4], Convolutional Sequence
Embeddings (Caser) [13] and SASRec [6].
Settings. Following the experiment setting of previous work [6],
we consider latent dimensions𝑑 from [10, 20, 30, 40, 50] for all meth-
ods except PopRec. For traditional methods, the 𝑙2 regularizer is
chosen from [0.0001, 0.001, 0.01, 0.1, 1]. In our model, the length
of behaviors is set as 200 for Movielens and 50 for others. Two
1http://jmcauley.ucsd.edu/data/amazon/links.html
2https://grouplens.org/datasets/movielens/1m/
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Table 2: The performance of sequential recommendation on three datasets.

PopRec BPR FMC FPMC TransRec GRU4Rec+ Caser SASRec MoSeR

Games Hit@10 0.4724 0.4853 0.6358 0.6802 0.6838 0.6599 0.5282 0.7410 0.7605
NDCG@10 0.2779 0.2875 0.4456 0.468 0.4557 0.4759 0.3214 0.5360 0.5536

Beauty Hit@10 0.4003 0.3775 0.3771 0.431 0.4607 0.3949 0.4264 0.4854 0.5012
NDCG@10 0.2277 0.2183 0.2477 0.2891 0.302 0.2556 0.2547 0.3219 0.3361

Movielens Hit@10 0.4329 0.5781 0.6986 0.7599 0.6413 0.7501 0.7886 0.8245 0.8306
NDCG@10 0.2377 0.3287 0.4676 0.5176 0.3969 0.5513 0.5538 0.5905 0.6004

stacked transformer blocks are used to model sequences. We tune
hyper-parameters using the validation set, and terminate train-
ing if validation performance does not improve for 20 epochs. We
use HIT@10 and NDCG@10 to evaluate the performance of our
methods.

3.2 Model Comparison
Table 2 shows the performance of all compared methods on three
datasets. Traditional static methods, PopRec and BPR get the worst
results on all the three datasets, since they ignore the sequential
information of user behaviors. As traditional sequential methods
FMC, FPMC and TransRec focus on explicitly modeling the sequen-
tial relations between item pairs, they can even get better results
than some neural sequential methods on some datasets. It indicates
the importance of micro relations hidden in the sequence, espe-
cially on sparse datasets such as Games and Beauty. SASRec uses
attention mechanism to adaptively attend items within different
ranges on different datasets and achieves better performance than
other baseline methods. However, it still has difficulty in captur-
ing the micro-structure information of items. For this reason, our
model MoSeR achieves the best results on all the three datasets.
Especially on Beauty, it achieves an improvement of 3.25% with re-
spect to HIT@10 and 4.41% with respect to NDCG@10. Compared
with SASRec, MoSeR has the similar sequential neural networks
structure to catch the sequential patterns. Thus, the improvements
mainly come from motif features.

3.3 Influence of𝑀𝑚𝑎𝑥

Calculating all the motifs of each item pair brings too much com-
putation cost. Here, we discuss how the maximum number of can-
didate motifs𝑀𝑚𝑎𝑥 selected for a pair of items may influence the
performance. Figure 3 shows the results with different𝑀𝑚𝑎𝑥 . Gen-
erally, the performance of MoSeR increases with the increasing of
𝑀𝑚𝑎𝑥 , and decreases when 𝑀𝑚𝑎𝑥 goes too large. It is reasonable
since the motif feature may not be sufficient when the candidate
motifs are few. However, when the candidate motif set is too large,
some rare but important types of motifs may lose their effect when
there are too much useless candidate motifs. On both datasets the
best performance is achieved when𝑀𝑚𝑎𝑥 equal to 13.

3.4 Influence of Different Motif Patterns
We present the feature characteristics of each motif pattern in
Figure 4. The x-axis denotes the 9 motif patterns plotted in Figure
2. The orange bar denotes the average motif feature for each type
of motifs in the positive training set. The purple bar denotes the
same feature in the positive testing set. Green bars indicate the
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Figure 4: The visualization of motif weights andmotif influ-
ence on dataset Games.

influence of motifs on the prediction layer. We obtain the influence
by averaging the weight matrix of first layer in FCN\2 (·), since
the last 9 rows of the matrix are the weight parameters for motif
features. It can be seen that the feature of the testing set maintains
the similar distribution as the training set, which indicates motif
features perform stably on recommendation. Among the first four
types of motifs, the second and fourth motifs do not appear as
frequent as the other motifs, which verifies the example (1) and (2)
of Figure 1 in Section 1. Thus, the influence of second and fourth
motifs are lower than the others. Generally, the motifs that get the
averagely high feature also have high influence on prediction layer,
except the motif pattern 9. Motif 9 indicates a bidirectional relation
of query and target items. Items in this motif are highly related.
This relation could be easily modeled by the item representations
through prediction layer without the assistance of motif features.

4 CONCLUSION
In this paper, we highlight the importance of micro-structure fea-
tures in sequential recommendation and propose a novel model
MoSeR. MoSeR captures micro-structure features by extracting
motifs from the item graph formed by behavior sequence. The ex-
tracted motif features are used to enhance the next item prediction
with transformer blocks. Experiments on three real-world datasets
demonstrate that our proposed model achieves the state-of-the-art
performance in sequential recommendation.
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