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Abstract. Extensive studies focus on analyzing human brain functional
connectivity from a network perspective, in which each network contains
complex graph structures. Based on resting-state functional MRI (rs-
fMRI) data, graph convolutional networks (GCNs) enable comprehensive
mapping of brain functional connectivity (FC) patterns to depict brain
activities. However, existing studies usually characterize static proper-
ties of the FC patterns, ignoring the time-varying dynamic information.
In addition, previous GCN methods generally use fixed group-level (e.g.,
patients or controls) representation of FC networks, and thus, cannot
capture subject-level FC specificity. To this end, we propose a Temporal-
Adaptive GCN (TAGCN) framework that can not only take advantage
of both spatial and temporal information using resting-state FC patterns
and time-series but also explicitly characterize subject-level specificity of
FC patterns. Specifically, we first segment each ROI-based time-series
into multiple overlapping windows, then employ an adaptive GCN to
mine topological information. We further model the temporal patterns
for each ROI along time to learn the periodic brain status changes. Exper-
imental results on 533 major depressive disorder (MDD) and health con-
trol (HC) subjects demonstrate that the proposed TAGCN outperforms
several state-of-the-art methods in MDD vs. HC classification, and also
can be used to capture dynamic FC alterations and learn valid graph
representations.

1 Introduction

Major depression disorder (MDD), one of the largest mental diseases, affects as
many as 300 million people annually. Patients suffer this debilitating illness from
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Fig. 1. llustration of the proposed Temporal-Adaptive Graph Convolutional Network
(TAGCN) and details on adaptive GCN layer. The whole framework contains 3 parts:
1) Using step-wise slice windows to generate several time series blocks. 2) Applying
an adaptive GCN layer to construct flexible brain functional connectivity topology
structure within each block. 3) Employing a temporal convolutional layer to extract
dynamic information between blocks on one ROI. With the output of temporal convo-
lutional layer, a fully-connected layer is employed to predict MDD classification (with
N-dimensional input and the class label as output). As shown in the right panel, three
types of matrix (i.e., A, R, and S), Normalized Embedded Gaussian function (i.e.,
0, and ¢) and several simple operations constitute the whole adaptive GCN layer. ®
and ® denote the element-wise summation and matrix multiplication operations. Pink
boxes present those parameters are learnable while blue boxes denote fixed parts.

depressed mood, diminished interests, and impaired cognitive function [1,2].
Despite many efforts have been made from different areas such as basic science,
clinical neuroscience, and psychiatric research, the pathophysiology of MDD is
still unclear. In addition, conventional diagnosis of MDD often depends on a
subjective clinical impression from Diagnostic and Statistical Manual of Mental
Disorders (DSM) criterion and treatment responses. Recently, many researchers
have developed various computer-aided diagnostic tools based on noninvasive
neuroimaging techniques to better understand the neurobiological mechanisms
underpinning this mental disorder [3-5].

Among various neuroimaging techniques, resting-state functional magnetic
resonance imaging (rs-fMRI) can depict large scale abnormality or dysfunc-
tion on brain connectivity networks by measuring the blood-oxygen level in
the brain [6,7]. This technology has been widely used to identify MDD from
healthy controls (HCs) [4,8]. Most of the existing rs-fMRI based studies hold an
implicit but strong assumption that the brain functional connectivity network is
temporal stationary through the whole scanning period, by relying on static
functional connectivity (FC) networks. Therefore, these methods ignore the
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temporal dynamic information of brain FC networks, which can not well monitor
the changes of macroscopic neural activities underlying critical aspects of cog-
nitive/behavioral disorders [9,10]. Spectral graph convolutional neural networks
(GCNs) have been used to explicitly capture topological information for learn-
ing useful representations of brain FC networks [11,12]. However, conventional
GCNs generally use fixed group-level rather than subject-level adjacent matrix
to model the relationships among different brain regions, failing to capture the
time-varying information in fMRI data. Intuitively, it is interesting to capture
subject-level specificity of functional connectivities to boost the performance of
automated MDD identification.

In this paper, we propose a Temporal-Adaptive Graph Convolutional Net-
work (TAGCN) to extract both static and dynamic information of brain FC pat-
terns for MDD identification, as shown in Fig. 1. Specifically, we first extract rs-
fMRI time-series signals from each specific region-of-interest (ROI), and employ
fixed-size sliding windows to divide time-series data into multiple overlapped
blocks. For each block, an adaptive graph convolutional layer is subsequently
used to generate a flexible connectivity matrix, which can help model multi-
level semantic information within the whole time series. After that, convolution
operations on each ROI along different blocks are used to capture temporal
dynamics of the complete time series. Finally, a fully connected layer followed
by a softmax function is used for MDD classification. Experimental results on
533 subjects from an open-source MDD dataset demonstrate the effectiveness of
our TAGCN in capturing dynamic FC alteration and learning valid graph rep-
resentations. Also, our TAGCN achieves better performance than several state-
of-the-art methods in the task of MDD vs. HC classification. To the best of our
knowledge, this is among the first attempt to use an end-to-end GCN model to
capture adaptive FC topology for automated MDD diagnosis.

2 Method

2.1 Data and fMRI Pre-processing

A total of 533 subjects from an open-source MDD dataset [13] with rs-fMRI
data are used in this work, including 282 MDD subjects and 251 healthy controls
(HCs) recruited from the Southwest University. For each scan, the TR, (repetition
time) is 2,000ms, TE (echo time) is 30 ms, slice thickness is 3.0 mm, and time
points are 242 s. The demographic information of the studied subjects is provided
in Table 1.

Each rs-fMRI scan was pre-processed using the Data Processing Assistant
for Resting-State fMRI (DPARSF) [14]. Specifically, we first discard the first
ten time points, followed by slice timing correction, head motion correction,
regression of nuisance covariates of head motion parameters, white matter, and
cerebrospinal fluid (CSF). Then, fMRI data are normalized with an EPI tem-
plate in the MNI space, and resampled to the resolution of 3 x 3 x 3mm?,
followed by spatial smoothing using a 6 mm full width half maximum Gaussian
kernel. Finally, the Harvard-Oxford atlas, with 112 pre-defined regions-of-interest
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Table 1. Demographic information of studied subjects in the MDD dataset. M: Male;
F: Female; Y: Yes; N: No; D: Lack of record; Mean + Standard deviation.

Category | Sex Age Education |First Period On Medication Duration of Illness
MDD 99M 183F|38.7 & 13.6|10.8 =+ 3.6|209(Y)/49(N) 24(D) | 124(Y)/125(N) 33(D) |50.0 + 65.9 35(D)
HC 87M 164F|39.6 + 15.8/13.0 £ 3.9|- - -

(ROIs) including cortical and subcortical areas, are nonlinearly aligned onto each
scan to extract the mean time series for each ROL.

2.2 Proposed Temporal-Adaptive Graph Convolutional Network

As shown in Fig. 1, our model aims to capture temporal and graph topology
information to identify MDD subjects from HCs based on rs-fMRI time series.
Denote a subject as X = (x1,Xa, -+ ,xx)7 € RV*M where x,, € RM (n =
1,--+,N) contains all time-series information at the n-th ROI. Here, N = 112
and M = 232 denote the number of ROIs and the time points, respectively. The
slicing window size L is set to 25 TR (i.e., 50s) and the stride of slide window is
set to 10 TR (i.e., 20s). To reduce the overlap of the last two blocks, we discard
the first TR and generate T" = 10 blocks for each subject.

Spectral Graph Convolutional Network. Spectral Graph Convolutional
Network (GCN) has recently shown its superiority in learning high-level graph
features from brain fMRI data [11,12,15]. Denote f;, and f,y: as the input and
output of a GCN, respectively. The simplest spectral GCN layer [16] can be
formulated as:

fout = Wfin(]jioﬁl&f)io‘B)a (1)

where D denotes the N x N degree matrix (with N representing the number
of ROIs), and W denotes the learnable weighted matrix for those connected
vertices. Here, A=A+ I, where A and I denote the adjacent matrix and an
identity matrix, respectively. However, in the definition of spectral graph con-
volution, the localized first-order approximation makes the nodes i and j share
the same parameter if the node j is directly connected to i. To enable specifying
different weights to different nodes in a neighborhood, a Graph Attention (GAT)
[17] layer is further proposed, with its definition shown in the following:

fout = Wfin(D"2AD 2) 0 M, (2)

where D is a N x N degree matrix that only adds constant small numbers to
avoid empty rows. ® denotes the dot product and M is an attention map which
presents the importance of each node/vertex/ROI. However, both the conven-
tional spectral GCN layer and GAT layer still highly depend on the construction
of brain functional connectivity topology, while each f{MRI scan is usually treated
as a complete/fully-connected graph.
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Adaptive Graph Convolutional Layer. To solve the problem caused by
the fixed topology of brain functional connectivity, we employ a new adjacent
matrix A + R + S to generate an end-to-end learning module. The definition of
the adaptive graph convolutional layer is shown as follows:

fout:szn(A+R+S) (3)

where the definitions of A, R and S are shown below.

The matrix A is an N x N adjacency matrix, which determines whether a
connection exists between two ROIs (i.e., vertices). Specifically, we first calculate
the mean FC matrix of all training subjects within the same time-series block and
then construct a k-Nearest Neighbour (KNN) graph by connecting each vertex
with its top k nearest neighbors (with the Pearson’s correlation coefficient as the
similarity metric).

The matrix R is an N x N adjacency matrix, which is parameterized and
optimized in the training process with other tunable parameters. It is a data-
driven matrix without any constraint, through which one can learn graphs more
individualized for different topology information between different time-series
blocks. Although the attention matrix M in Eq. (2) can model the existence
and strength of connections between two ROIs, the dot operation ® leads to
that those zero elements in the adjacent matrix A always be 0 (i.e., not affected
by M). Different from the attention matrix M, R is learned in a data-driven
manner, and thus, is more flexible.

The matrix S is used to learn the topology information of brain functional
connectivity in each time-series block. We employ a normalized embedding Gaus-
sian function [18] to calculate the similarity of two ROIs in S. Specifically, this
function determines whether two ROIs (e.g., r; and ;) should be connected and
also the connection strength if the connection exists, defined as follows:

ee(Ti)TCb(Tj)

rig = fri,rj) = 22;1 Or)Td(rn)’

(4)

where 7; ; is the element of S and 0(x) and ¢(x) are two embedding functions.
These two embedding functions map the input feature map (C;,, x T' x N) into
the size of (Ce x T x N), where Cy,, C. and T denote the numbers of channels,
embedding size and temporal blocks, respectively. We use the 1 x 1 convolutional
layer as the embedding function. After rearranging the new feature maps into the
shape of N x C.T and C.T x N, a N x N matrix S is generated by multiplying
them. The element 7;; in the matrix S denotes the similarity of two ROIs (i.e.,
r; and ;) that is normalized to [0,1]. Details on adaptive graph convolutional
layer are shown in the right panel of Fig. 1.

Temporal Convolutional Layer. For the temporal dimension, since the num-
ber of blocks is fixed as T = 10 (as mentioned in Sect. 2.2), we perform the graph
convolution similar to the traditional convolution operation. Specifically, a K; x 1
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convolution operation is employed to work on the output feature maps calcu-
lated from adaptive graph convolutional layer, where K is the kernel size of the
temporal dimension. The kernel size is set as K; = 3 empirically.

Implementation. We optimize the proposed TAGCN model via the Adam
algorithm, with the learning rate of 0.001, the number of epochs of 200, and the
mini-batch size of 5. For a new test subject, our TAGCN costumes about 8.6
seconds to predict its class label (i.e., MDD or HC) using a single GPU (NVIDIA
GTX TITAN 12 GB).

3 Experiment

Experimental Setup. We evaluate the proposed TAGCN on the MDD dataset
based on a 5-fold cross-validation strategy. The performance of MDD identifica-

tion from age-matched HCs is measured by four metrics, i.e., accuracy (ACC),
sensitivity (SEN), specificity (SPE), and area under the ROC curve (AUC).

Competing Method. We first compare the proposed TAGCN method with
two baseline methods based on static FC matrices, i.e., (1) support vector
machine (SVM) with Radial Basis Function kernel, and (2) Clustering Coef-
ficients (CC) with SVM (CC+SVM). CC not only measures the clustering
degree of each node in a graph but also can be treated as a feature selec-
tion algorithm. Hence, we employ SVM with and without CC to discriminate
MDD from HCs based on their static FC matrices. Specifically, each static FC
matrix (corresponding to a specific subject) is constructed based on the Pear-
son’s correlation between the whole time series of each pair of pre-defined ROIs.
The SVM method direct perform classification based on the static FC matrix.
The CC+SVM method is associated with the degree of network sparsity, where
the sparsity parameter is chosen from {0.10,0.15,--- ,0.40} according to cross-
validation performance. The parameter C' in SVM with RBF kernel is chosen
from {0.80,0.85,---,3.00} via cross validation, and we use default values for the
other parameters.

We also compare our TAGCN with two state-of-the-art GCN methods,
including (1) sGCN [16] shown in Eq.1, and (2) GAT [17] shown in Eq.2.
Both networks are tested on static FC matrices generated from rs-fMRI. Li
et al. [19] found that spectral GCN models can be explained as a special form
of Laplacian smoothing which employs features of each vertex as well as its
neighbors. In order to use brain functional network more effectively, we con-
struct a KNN graph, instead of fully-connected graphs which cannot capture
the node-centralized local topology via spectral GCNs, by connecting each ver-
tex with its k-nearest neighbors to model the node-centralized local topology.
It should be noted that the graph topology (reflected by vertices and their con-
nectivity) of such a group-level (rather than subject-level) KNN graph is shared
by all subjects. The parameter k for constructing KNN graphs is chosen from
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m Accuracy (Std) | Sensitivity(Std) | Specificity(Std)
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—— SVM AUC=0.659
—— CC + SVM AUC=0.672
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Fig. 2. Three indexes (i.e., accuracy, sensitivity, and specificity), ROC curves and
related AUC values of five different methods in the task of MDD vs. HC classifica-
tion.

{1,2,---,30}. These networks contain 3 graph convolutional layers and one fully-
connected layer. Besides, these 3 graph convolutional layers share the same size
of inputs to make sure that features can be well explained. The number of heads
on GAT is chosen from {2, 3,--- ,6} via cross validation. The parameter of atten-
tion dropout is 0.6 and the negative slope of leaky ReLU is 0.2.

Result. In the left panel of Fig.2, we report the disease classification results
achieved by 2 traditional machine learning methods (i.e., SVM and CC+SVM),
2 GCN methods (i.e., sSGCN and GAT) and our TAGCN. We further show the
ROC curves and AUC values of these methods in the right panel of Fig. 2. From
Fig.2, one can have the following interesting observations. First, GCN-based
models are superior to traditional methods (including SVM and CC+SVM) sig-
nificantly. For instance, these traditional methods (without considering graph
topology information) achieve at least 5% lower performance than other GCN-
based models. This demonstrates the necessity and effectiveness of exploit-
ing graph topology on FC. Second, GAT (with different weights to different
nodes/ROIs in a neighborhood) outperforms sGCN, which means GAT might
conquer the negative influence of using group-level adjacent matrix. Besides,
our proposed adaptive learning strategies with flexible brain connectivity topol-
ogy structure achieve better performance than GAT and sGCN. It implies that
modeling subject-level functional connectivity topology structure helps capture
discriminative features than group-level topology structure.

Ablation Study. To evaluate the contributions of our proposed three matrices
and temporal learning strategy, we further compare TAGCN with its four types
of variants, including (1) TAGCN _noT based on static FC matrix, i.e., ignoring
temporal dynamic information, (2) TAGCN without the KNN adjacency matrix
A in Eq. 3, denoted as TAGCN_noA, (3) TGCN without the randomly initial
adjacency matrix R (TAGCN_noR), and (4) TGCN without the similarity
matrix S (TAGCN_noS). For the fair comparison, all GCN-related layers in
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1.0
m Accuracy (Std) W Specificity(Std)
0.8

TAGCN_noT  0.7194+0.051 0.727+0.046 0.707£0.057

e
o
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TAGCN_noS 0.720+0.040 0.738+0.058  0.705+0.055

True Positive Rate

—— TAGCN_noT AUC=0.7341
—— TAGCN_noR AUC=0.7141
—— TAGCN_nos AUC=0.7369
—— TAGCN_noA AUC=0.7489
—— TAGCN AUC=0.7637
---- AUC=0.5
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Fig. 3. Three indexes (i.e., accuracy, sensitivity, and specificity), ROC curves and
related AUC values of our TAGCN and its four variants in the task of MDD vs. HC
classification.

six GCN methods(without GAT) are followed by a batch Normalization (BN)
layer and a ReLU layer. The experimental results are shown in Fig. 3.

Figure 3 suggests that TAGCN with temporal information promotes the clas-
sification results, compared with TAGCN_noT using the static FC matrix. This
confirms that dynamic fluctuation in FCs also contributes to discriminating
MDD from HCs. In addition, TAGCN _noR achieves the highest specificity with-
out random Matrix R, indicating that topological information based on KNN
may pay more attention on abnormal FC. Also, three variants of TAGCN (i.e.,
TAGCN_noR, TAGCN_noS, and TAGCN_noA) yield comparable results with
TAGCN, suggesting that three matrices (i.e., R, S, and A) in Eq. (3) provide
complementary useful information for MDD identification.

As shown in the right of Figs. 2 and 3, our proposed TAGCN achieves good
ROC performance and the best AUC value when compared to the competing
methods. These results further suggest the efficiency of TAGCN in MDD vs. HC
diagnosis.

4 Conclusion

In this paper, we propose a temporal-adaptive graph convolution network
(TAGCN) to mine spatial and temporal information using rs-fMRI time series.
Specifically, the time-series data are first segmented with fixed sliding windows.
Then, an adaptive GCN module is employed to generate unfixed topological
information, by mainly focusing on each specific sliding window. We further
model the temporal patterns of each ROI within the whole time series to learn
periodic changes of the brain. The proposed TAGCN can not only learn com-
pleted data-driven based graph topology information but also effectively capture
dynamic variations of brain fMRI data. Instead of sharing one group-level adja-
cent matrix, TAGCN with an adaptive GCN layer takes subject-level topological
information (i.e, self adjacent matrix) into consideration. Experimental results
on the MDD dataset demonstrate that our method yields state-of-the-art per-
formance in identifying MDD patients from healthy controls.
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In the current work, we only focus on using rs-fMRI data to capture subject-
level connectivity topology. Actually, other modalities (e.g., structure MRI and
diffusion tensor imaging) can also help uncover the neurobiological mechanisms
of MDD by providing more direct structural connectivity topology. In future, we
will extend TAGCN to multi-modal brain imaging data. Moreover, it is interest-
ing to design other strategies to generate and segment fMRI time-series to take
advantage of temporal dynamics.
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