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Abstract—Multi-instance learning (MIL), a variant of super-
vised learning framework, has been applied in many applica-
tions. More recently, researchers focus on two important issues
for MIL: Instances’ contextual structures representation in the
same bag and online MIL schemes. In this paper, we present an
effective context-aware multi-instance learning technique using
a hierarchical sparse representation (HSR-MIL) that addresses
the two challenges simultaneously. We firstly construct the
inner contextual structure among instances in the same bag
based on a novel sparse 𝜀-graph. We then propose a graph
kernel based sparse bag classifier through a modified kernel
sparse coding in higher-dimension feature space. At last, the
HSR-MIL approach is extended to achieve online learning
manner with an incremental kernel matrix update scheme. The
experiments on several data sets demonstrate that our method
has better performances and online learning ability.

Keywords-Context-aware; Multi-Instance Learning; Hierar-
chical Sparse Representation

I. INTRODUCTION

As a variant of supervised learning framework, Multiple

Instance Learning (MIL) represents a sample with a bag of

several instances instead of a single instance. It only gives

each bag, not each instance, a discrete or real-value label. In

binary classification case, the bag will be considered to be

positive if at least one instance in it is positive, and will be

considered to be negative if all instances in it are negative.

The first MIL algorithm is proposed to predict the drug

molecule activity level [1]. Since then, MIL has been used

in many applications, including image categorization [2][3],

image retrieval [4], text categorization [5][6], computer

security [7], face detection [8][9], visual tracking [18] and

computer-aided medical diagnosis [10], etc.

More recently, researchers begin to focus on two impor-

tant issues of MIL: Instances’ contextual structures in the

same bag [17]and online learning scheme[18][19]. In this

paper, we propose a novel Hierarchical Sparse Representa-

tion for Multi-Instance Learning (HSR-MIL) algorithm that

addresses these two challenges simultaneously. Specially, the

proposed algorithm includes two levels, each being solved

through sparse coding[20][21]: one is to obtain contextual

structures among instances in the same bag and the other

one is to obtain an optimal classifier for the bags. The

contributions in this paper include three major parts: (1)

A novel sparse 𝜀-graph is proposed to represent the inner

structural information in bags. (2) A sparse classifier is

defined in higher dimensional space through kernel function

on graphs. (3) An online MIL classifier is given out using

an incremental kernel matrix update scheme for HSR-MIL.

The experiments on several data sets show that our method

has better performances and online learning ability.

The remainder of this paper is organized as follows.

We briefly review related work in section 2. Section 3

briefly introduces the sparse coding technique. The details

of proposed HSR-MIL are given out in Section 4. The

experimental results and analysis are reported in Section 5.

Section 6 concludes this paper.

II. RELATED WORK

Past decades have witnessed great progress in mathemat-

ical models for the MIL problem, from axis-parallel con-

cepts [1] to Diverse Density method [11], k-Nearest Neigh-

bor based algorithm Citation-kNN [13], and Expectation-

Maximization version of Diverse Density(EMDD) [12]. In

addition, kernel method is also introduced for solving MIL

problem. MI-kernel method proposed by Gartner et al [15]

regards each bag as a set of feature vectors and then

applies set kernel directly for bag classification. Besides

these, Andrews et al[5] proposed mi-SVM and MI-SVM

through extending Support Vector Machine (SVM). The mi-

SVM tries to identify a maximal margin hyperplane for the

instances with the constraints that at least one instance of

each positive bag locates in the positive half-space; MI-SVM

tries to identify a maximal margin hyperplane for the bags

by regarding margin of the “most positive instance” in a

bag as the margin of that bag. Zhou et al [16] proposed

MissSVM method by regarding instances of negative bags as

labeled examples while those of positive bags as unlabeled

examples with positive constraints. Wang et al [14] proposed

the adaptive p-posterior mixture-model(PPMM) kernel by

representing each bag as some aggregate posteriors of a

mixture model derived on unlabeled data. However, as Zhou
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et al[16] indicated, all these MIL algorithms always treated

the instances in a bag as independently and identically

distributed (i. i. d), which is not true in reality and will in-

evitably impairs the performance of classification. Therefore,

they [17] proposed two multi-instance learning methods,

miGraph and MIGrph, which treat the instances non-i. i.

d through defining the contextual structure information with

𝜀-graph. We can categorize these two methods as context-

aware MIL methods. The better performance are shown to

be gained by the structural information in each bag.

Although divers MIL methods have been proposed, they

are trained in batch settings, in which whole training set

should be available before training procedure begins. But it

is not true for many applications, such as object tracking,

video understanding, etc. To solve this problem, some online

MIL algorithms are recently given out. Babenko et al.

[18] proposed an online MI algorithm based on boosting

technique, and obtained encouraging object tracking results

on several challenging video sequences. However, this online

MIL method imposes a strong assumption that all the

instances in a positive bag are positive, which can be easily

violated in many other practical multi-instance applications.

Recently, Li et al [19] extended MILES to an online MIL

algorithm. The big weak point of both online methods is the

fact that neither of them takes the structural information of

instances into account.

The above analysis shows that the existing context-aware

MIL methods cannot be trained in online manner, while the

existing online MIL methods take no structural information

into account. In this paper, we aim to propose a novel

MIL classifier that simultaneously takes instances’ structural

information and online learning scheme into account. To this

end, we extend the sparse coding, an efficient technique for

many applications, into MIL problem by proposing a novel

MIL algorithm based on Hierarchical Sparse Representa-

tion (HSR-MIL). In particular, our HSR-MIL builds up a

hierarchical graph framework by sparse coding technique to

find relationship between instances and optimal classifier for

bags.

III. SPARSE CODING REVIEW

Because sparse coding is the basis of the proposed al-

gorithm, we start with a brief overview of it. Sparse cod-

ing technique recently is widely applied in many practical

applications, such as face recognition, image classification,

etc[20][21][27]. The goal of sparse coding is to sparsely

represent input vectors approximately as a weighted linear

combination of a number of “basis vectors”. Concretely,

given input vector 𝑥 ∈ 𝑅𝑘 and basis vectors U =
[𝑢1, 𝑢2, ..., 𝑢𝑛] ∈ 𝑅𝑘×𝑛, the goal of sparse coding is to

find a sparse vector of coefficients 𝛼 ∈ 𝑅𝑛, such that

𝑥 ≈ U𝛼 =
∑

𝑗 𝑢𝑗𝛼𝑗 . It equals to solving the following

objective.

min
𝛼
∥𝑥−U𝛼∥2 + 𝜆∥𝛼∥0, (1)

where ∥𝛼∥0 denotes the ℓ0-norm, which counts the number

of nonzero entries in a vector 𝛼. But it is well known that

the sparsest representation problem is NP-hard in general

case, and difficult even to approximate. However, recent

results[29][21] show that if the solution is sparse enough,

the sparse representation can be recovered by the following

convex ℓ1-norm minimization [29][21] as:

min
𝛼
∥𝑥−U𝛼∥2 + 𝜆∥𝛼∥1, (2)

where the first term of Eq(2) is the reconstruction error,

and the second term is used to control the sparsity of the

coefficients vector 𝛼 with the ℓ1 norm. 𝜆 is regularization co-

efficient to control the sparsity of 𝛼. The larger 𝜆 implies the

sparser solution of 𝛼. Recently, Lee et al [26] proposed an

efficient approximation method, called Feature-Sign Search

algorithm (FSS), to solve the optimization in Eq(2). And

because ∥𝑥−U𝛼∥2 = 𝑥𝑇𝑥+ 𝛼𝑇U𝑇U𝛼 − 2𝛼𝑇U𝑇𝑥, FSS

only needs the U𝑇U and U𝑇𝑥, which are the dot product

matrix among training samples and the dot product vector

between testing vector and training samples respectively, to

obtain the optimized sparse coding (more details can be

found in [26]).

IV. HIERARCHICAL SPARSE REPRESENTATION FOR

MULTI-INSTANCE LEARNING

Hierarchical sparse representation for multi-instance

learning (HSR-MIL) proposed in this paper is based on two-

level sparse representation: the first level uses sparse coding

to represent the contextual structure among instances in each

bag through a sparse 𝜀-graph, and the second one uses sparse

coding to build up a classifier among bags by introducing

graph kernel function.

Before giving out the details of the algorithm, we briefly

review the formal definition of multi-instance learning as

following. Let 𝜒 denote the instance space. Given a data

set {(𝑋1, 𝑦1), ..., (𝑋𝑖, 𝑦𝑖), ..., (𝑋𝑁 , 𝑦𝑁 )} , where 𝑋𝑖 =
{𝑥𝑖,1, 𝑥𝑖,2, ..., 𝑥𝑖,𝑛𝑖} ⊆ 𝜒 is called a bag and 𝑦𝑖 ∈ Ψ= { −
1,+1} is the label of bag 𝑋𝑖. Here 𝑥𝑖,𝑗 ∈ 𝑅𝑘 (suppose each

𝑥𝑖,𝑗 is normalized to have unit ℓ2 norm) is called an instance

in bag 𝑋𝑖. If there exists 𝑚 ∈ {1, ..., 𝑛𝑖} such that 𝑥𝑖,𝑚 is

a positive instance, then 𝑋𝑖 is a positive bag and 𝑦𝑖 = 1;

otherwise 𝑦𝑖 = −1. Here, the concrete value of 𝑚 is always

unknown. That is, for any positive bag, we can only know

that there is at least one positive instance in it, but cannot

figure out which ones they are from. Therefore, the goal of

multi-instance learning is to learn a classifier to predict the

labels of unseen bags.

A. Sparse 𝜀-Graph for Bag Inner Structure Representation

The importance of instances structure in MIL has at-

tracted researchers’ attention. Zhou et al [17] used the 𝜀-

graph [22] to model the local manifold structure among

instances in the same bag. Since the 𝜀-graph is from pair-

wise Euclidean distance and global threshold, it is sensitive
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to noises and brings several isolated vertexes easily. On the

other hand, intrigued by the research on manifold learning

that shows the efficiency of sparse graph in characterizing

locality relations for classification purpose, Cheng et al [23]

construct a ℓ1-graph whose edge weights between any two

adjacent vertex are from sparse coding. However, locality

must lead to sparsity but not necessary vice versa [24][25],

i.e., the adjacent vertexes in ℓ1-graph generated by sparse

coding cannot guarantee that they are also near in Euclidean

distance metric. Consequently, the ℓ1-graph can easily result

in adjacent vertexes with larger Euclidean distance.

To address the disadvantages from these existing graph

techniques, we build a new 𝜀-graph, called “sparse 𝜀-graph”,

by integrating the advantages of ℓ1-graph and 𝜀-graph.

Comparing with 𝜀-graph, the sparse 𝜀-graph considers the

relationship between any two instances locally and adap-

tively through introducing sparse coding under Euclidean

distance constrains.

In the sparse 𝜀-graph, given any instance 𝑥𝑖,𝑗 and

other instances U = [𝑥𝑖,1, 𝑥𝑖,2, ...𝑥𝑖,𝑗−1, 𝑥𝑖,𝑗+1, ..., 𝑥𝑖,𝑛𝑖 ] ∈
𝑅𝑘×(𝑛𝑖−1) in bag 𝑋𝑖 , we find a sparse vector of coefficients

𝛼 ∈ 𝑅𝑛𝑖−1 under a Euclidean distance constrain so that 𝑥𝑖,𝑗

can be approximated as a weighted linear combination of

others. Different from traditional sparse coding, we not only

consider the minimization of reconstruction error, but also

take Euclidean distances from 𝑥𝑖,𝑗 to others into account, so

the object function is extended from Eq (2) and redefined

as:

min
𝛼
∥𝑥𝑖,𝑗 −U𝛼∥2 + 𝜆∥D𝛼∥1

D = 𝑑𝑖𝑎𝑔(∥𝑥𝑖,𝑗 − 𝑥𝑖,1∥ , ... ∥𝑥𝑖,𝑗 − 𝑥𝑖,𝑗−1∥ ,
∥𝑥𝑖,𝑗 − 𝑥𝑖,𝑗+1∥ , ..., ∥𝑥𝑖,𝑗 − 𝑥𝑖,𝑛𝑖∥)

(3)

where the first term of Eq(3) is reconstruction error, the same

as that in Eq(2); D represents the Euclidean distances from

𝑥𝑖,𝑗 to other instances. So the regularization item 𝜆∥D𝛼∥1
considers both sparsity of and Euclidean distances.

The optimization in Eq(3) is not straightforward. In-

spired by solution of Locality-constrained Linear Coding

(LLC)[24] , we give out an efficient approximation solution

via FSS. Considering that dot products embedded in the

U𝑇U and U𝑇𝑥𝑖,𝑗 in FSS represent the similarities between

any two instances, we redefine them by a new calculation

𝑃 (𝑥𝑖,𝑝, 𝑥𝑖,𝑞) , with a threshold 𝜀 to control the locality,

shown in Eq(4).

𝑃 (𝑥𝑖,𝑝, 𝑥𝑖,𝑞) =

{
𝑥𝑇
𝑖,𝑝𝑥𝑖,𝑞, ∥𝑥𝑖,𝑝 − 𝑥𝑖,𝑞∥ ≤ 𝜀
0, ∥𝑥𝑖,𝑝 − 𝑥𝑖,𝑞∥ > 𝜀

(4)

We can use this new dot product formula 𝑃 (𝑥𝑖,𝑝, 𝑥𝑖,𝑞) in

the embedded matrix U𝑇U and U𝑇𝑥𝑖,𝑗 to obtain the sparse

code solve 𝛼∗ in Eq(2) via FSS. The sparse code 𝛼∗ that

considers both sparsity and locality constrains can be viewed

as an approximated solution for Eq(3). After getting the

sparse code 𝛼∗, the sparse 𝜀-graph construction algorithm

for each bag in HSR-MIL can be summarized as table 1.

Table I
SPARSE 𝜀-GRAPH CONSTRUCTION FOR EACH BAG.

Algorithm 1 sparse 𝜀-graph construction for each bag.
1: Input: A bag in MIL as 𝑋𝑖 = {𝑥𝑖,1, 𝑥𝑖,2, ..., 𝑥𝑖,𝑛𝑖} ⊆ 𝜒,

regularization coefficient 𝜆 and locality threshold 𝜀

2: For 𝑗 = 1 : 𝑛𝑖 Do
Set U = [𝑋𝑖∖𝑥𝑖,𝑗 ].

Solve the sparse 𝜀-graph problem min
𝛼
∥𝑥𝑖,𝑗 −U𝛼∥2 + 𝜆∥D𝛼∥1

in Eq(3) by the proposed approximated solution via FSS, and
obtain the approximation value of sparse code 𝛼∗ .

Set 𝛼∗ = ∣𝛼∗∣/∥𝛼∗∥1.

For 𝑡 = 1 : 𝑛𝑖 Do
If 𝑡 < 𝑗, set 𝑊𝑗,𝑡 = 𝛼∗𝑡 ;
If 𝑡 == 𝑗, set 𝑊𝑗,𝑡 = 1;
If 𝑡 > 𝑗, set 𝑊𝑗,𝑡 = 𝛼∗𝑡−1;

End
End

3: Output: 𝐺 = {𝑋𝑖,W} as the inner directed weighted graph with
vertex 𝑋𝑖 and adjacency weights matrix W = {𝑊𝑗,𝑡}.

Obviously, MI-kernel and ℓ1-graph can be interpreted as

the same algorithm applied with different instantiations of

threshold 𝜀 in the sparse 𝜀-graph framework. If 𝜀 ≤ 0, all

the elements in U𝑇U and U𝑇𝑥𝑖,𝑗 are equal to 0 and 𝛼∗ is a

zero vector. The sparse 𝜀-graph becomes a set of independent

instances. The HSR-MIL algorithm will be degenerated into

a MI-kernel method without structural information. If 𝜀 ≥ 1,

the 𝑃 (𝑥𝑖,𝑝, 𝑥𝑖,𝑞) is equivalent to general dot production, and

the sparse 𝜀-graph actually is ℓ1-graph [23]. If 𝜀 is set to be

between 0 and 1, 𝜆 will be used to indicate sparsity of the

edges, the lower 𝜆 is, the less sparse the edges will be.

B. Bag Classification based on Graph Kernel Sparse Clas-
sifier

After getting sparse 𝜀-graph representation of instances

in each bag, the following step is to build second level

sparse representation in which each node is a bag with a

graph pattern. Consequently, the MIL here can be treated as

a graph pattern classification problem. Although there are

many existing classifiers, such as SVM [17], they cannot

solve imbalance samples and online learning very well.

Therefore, we use sparse coding technique again and develop

a graph kernel sparse classifier. In comparison with SVM,

the sparse classifier is a training free classification scheme. It

does not need to learn a model to predict the unseen samples,

but directly uses the existing training samples and their

corresponding labels to predict the test samples. Moreover,

the prediction procedure in sparse classifier is only based on

sparse “support” training samples with nonzero coefficients;

so it is relatively robust to handle imbalance training samples

in classification.

Given a bag data set

{(𝑋1, 𝐺1, 𝑦1), ..., (𝑋𝑖, 𝐺𝑖, 𝑦𝑖), ..., (𝑋𝑁 , 𝐺𝑁 , 𝑦𝑁 )}, where

𝐺𝑖 is the sparse 𝜀-graph in bag 𝑋𝑖. Suppose 𝑦𝑖 ∈ {1, . . . , 𝐶}
is an integer class tag. A test bag with a sparse 𝜀-graph
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is also given as (𝑋 ′, 𝐺′). Unfortunately, the test graph

cannot directly be represented by training bags based

on sparse coding as Eq(2). But we can apply a feature

mapping function 𝜑 : 𝐺 → 𝑅𝑑 to maps the graph 𝐺
to a higher dimensional feature space as: 𝐺 → 𝜑(𝐺).
Thus the basis matrix U in Eq(2) can be replace by

V = [𝜑(𝐺1), 𝜑(𝐺2), ..., 𝜑(𝐺𝑛)]. And the sparse coding in

Eq(2) can be rewritten in high dimensional feature space as

:

min
𝛽
∥𝜑(𝐺′)−V𝛽∥2 + 𝜆′∥𝛽∥1, (5)

where

∥𝜑 (𝐺′)− V𝛽∥2 = [𝜑(𝐺′)]𝑇 𝜑(𝐺′) + 𝛽𝑇V𝑇V𝛽 −2𝛽𝑇V𝑇 𝜑( 𝐺′)

= 𝐾(𝐺′, 𝐺′)

+𝛽𝑇

⎡
⎢⎢⎣

𝐾𝑔(𝐺1, 𝐺1) 𝐾𝑔(𝐺1, 𝐺2) ... 𝐾𝑔(𝐺1, 𝐺𝑁 )
𝐾𝑔(𝐺2, 𝐺1) 𝐾𝑔(𝐺2, 𝐺2) ... 𝐾𝑔(𝐺2, 𝐺𝑁 )

... ...
𝐾𝑔(𝐺𝑁 , 𝐺1) 𝐾𝑔(𝐺𝑁 , 𝐺2) ... 𝐾𝑔(𝐺𝑁 , 𝐺𝑁 )

⎤
⎥⎥⎦𝛽

−2𝛽𝑇

⎡
⎢⎢⎣

𝐾𝑔(𝐺1, 𝐺
′)

𝐾𝑔(𝐺2, 𝐺
′)

...
𝐾𝑔(𝐺𝑁 , 𝐺′)

⎤
⎥⎥⎦

= 1 + 𝛽𝑇KVV𝛽 − 2𝛽𝑇KV𝐺′

,

(6)

where 𝐾𝑔() is a kernel function that expresses the dot

product of graphs in the high dimensional feature space. The

KVV and KV𝐺′ are the key points for solving Eq (5) via

FSS, because they represent the correlations and differentials

among training bags with different labels. Many existing

graph kernel functions can be applied. To compare with

Zhou’s work [17], we use the same graph kernel function in

their work:

𝐾𝑔(𝐺𝑖, 𝐺𝑗) =

∑𝑛𝑖

𝑎=1

∑𝑛𝑗

𝑏=1
𝜔𝑖,𝑎𝜔𝑗,𝑏𝐾(𝑥𝑖,𝑎,𝑥𝑗,𝑏)∑𝑛𝑖

𝑎=1
𝜔𝑖,𝑎

∑𝑛𝑗

𝑏=1
𝜔𝑗,𝑏

𝐾(𝑥𝑖,𝑎, 𝑥𝑗,𝑏) = exp
(
−𝛾∥𝑥𝑖,𝑎 − 𝑥𝑗,𝑏∥2

) , (7)

where 𝜔𝑖,𝑎= 1/
∑𝑛𝑖

𝑢=1 𝑊
𝑖
𝑎,𝑢, 𝜔𝑗,𝑏= 1/

∑𝑛𝑖

𝑢=1 𝑊
𝑗
𝑏,𝑢 , 𝑊 𝑖 and

𝑊 𝑗 are the adjacency weights matrixes for bag 𝑋𝑖 and

𝑋𝑗 , respectively. In addition, 𝐾(𝑥𝑖,𝑎, 𝑥𝑗,𝑏) is defined using

Gaussian radial basis function (RBF) kernel. Once the graph

kernel is defined, we can easily calculate the kernel matrix

KVV and KV𝐺′ in Eq(6), then the sparse code of test

bag (𝑋 ′, 𝐺′) can also be obtained as 𝛽 via FSS. Thus the

reconstruction residual of (𝑋 ′, 𝐺′) in class 𝑞 is defined as:

𝑟𝑞(𝐺
′) = ∥𝜑(𝐺′)−V𝛿𝑞(𝛽)∥2

= 1 + 𝛿𝑞(𝛽)
𝑇KVV𝛿𝑞(𝛽)− 2𝛿𝑞(𝛽)

𝑇KV𝐺′ ,

[𝛿𝑞(𝛽)]𝑘 =

{
𝛽𝑘, 𝑦𝑘 = 𝑞
0, 𝑦𝑘 ∕= 𝑞

(8)

where 𝛿𝑞(𝛽) is a coefficients selector that only selects

coefficients associated with class 𝑞 . The final class 𝑐 that

is assigned to the test bag (𝑋 ′, 𝐺′) is the one that gives the

smallest residual, as:

𝑐 = argmin
𝑞

(𝑟𝑞(𝐺
′)). (9)

C. Online HSR-MIL

In Comparison with other existing online learning algo-

rithms [17, 18], the training free character embedded in the

sparse classifier makes it possible to be extended as an online

MIL classifier. The proposed online HSR-MIL can not only

online update the classifier through learning the new training

samples with seen labels, but also online add new classes to

the classifier through the new training samples with unseen

labels. In addition, the online HSR-MIL with decremental

update can immediately forget the training samples or labels

that have no use in the future classification. This forgetting

ability can avoid obviously impossible misclassification so

as to improve the classification performances. This ability

is also necessary in many applications, such as forgetting

operation in visual tracking.

Considering that the key factors for the graph kernel

spare classifier are the kernel matrix KVV in Eq(6) and the

corresponding tag of each training sample, we propose an

online training scheme by incrementally updating the kernel

matrix, KVV . The accompany advantage is to overcome

the runtime limitation, the computation complexity of the

kernel matrix KVV can be reduced from 𝑂(𝑛2) to 𝑂(𝑛).
The details of update algorithms are given out in Table 2.

These update schemes in Table 2 include two operations:

incremental update and decremental update. The incremental

operation is to update the kernel matrix KVV with new in-

coming samples with seen or unseen labels. The decremental

operation is to remove the certain samples that should be

forgotten from the kernel matrix.

V. EXPERIMENTS

The experiments in this paper include two parts: the first

part includes the experiments on the HSR-MIL with batch

training scheme; the second one include the experiments

with online HSR-MIL.

A. Date Set

Two popular data sets are adopted in this paper for evalu-

ating the proposed algorithms. The first data set includes five

benchmark data sets that are widely used in the studies of

multi-instance learning, including Musk1, Musk2, Elephant,

Fox and Tiger. Musk1 contains 47 positive and 45 negative

bags, Musk2 contains 39 positive and 63 negative bags, and

each of the other three data sets contains 100 positive and

100 negative bags. More details of these five data sets can

be found in [1] [5].

The second set is an image categorization set, one of the

most successful applications of multi-instance learning. It

includes two subsets: 1000-Image set and 2000-Image set

that contain ten and twenty categories of COREL images,
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Table II
ONLINE UPDATE FOR HSR-MIL.

Algorithm 2 Online update for HSR-MIL.
Incremental Update:
1: Input: Existing training bags B = [𝑋1, 𝑋2, ..., 𝑋𝑁 ], corresponding

Graphs G = [𝐺1, 𝐺2, ..., 𝐺𝑁 ] and tags 𝑇 = [𝑦1, 𝑦2, ..., 𝑦𝑁 ]; the
existing kernel matrix KVV .
A new training bag 𝑋𝑁+1 and its tag 𝑦𝑁+1 .

2: Compute the inner sparse 𝜀-graph 𝐺𝑁+1 of the bag 𝑋𝑁+1 using
the sparse 𝜀-graph construction algorithm.

3: For 𝑗 = 1 : 𝑁 Do
Compute 𝐾𝑔(𝑋𝑖, 𝑋𝑁+1).
Set 𝐾𝑁+1 = [𝐾𝑁+1,𝐾𝑔(𝑋𝑖, 𝑋𝑁+1)].

End

4: Update: B = [B, 𝑋𝑁+1], G = [𝐺,𝐺𝑁+1], 𝑇 = [𝑇, 𝑦𝑁+1] and

KVV =

[
KVV 𝐾𝑇

𝑁+1
𝐾𝑁+1 1

]
.

5: Output: B, G, 𝑇 and KVV .

Decremental Update:
1: Input: Existing training bags B = [𝑋1, 𝑋2, ..., 𝑋𝑁 ], corresponding

Graphs G = [𝐺1, 𝐺2, ..., 𝐺𝑁 ] and tags 𝑇 = [𝑦1, 𝑦2, ..., 𝑦𝑁 ]; the
existing kernel matrix KVV .
A bag 𝑋𝑝 and its tag 𝑦𝑝 that will be removed from training set.

2: Update: B = B∖𝑋𝑝, G = G∖𝐺𝑝, 𝑇 = 𝑇∖𝑦𝑝, and

KVV =

[
(KVV)1→𝑝,1→𝑝 (KVV)1→𝑝,𝑝+1→𝑁

(KVV)𝑝+1→𝑁,1→𝑝 (KVV)𝑝+1→𝑁,𝑝+1→𝑁

]
.

3: Output: B, G, 𝑇 and KVV .

respectively. Each category of these two image subsets has

100 images. Each image is regarded as a bag, and the ROIs

(Region of Interests) in the image are regarded as instances

described by nine features [3] [2].

B. Experiments on HSR-MIL

1) Results on Benchmark Data Sets: In this subsection,

we compare HSR-MIL with miGraph, MIGraph and MI-

Kernel via repeating 10-fold cross validations ten times

through following the same procedure described in [17]. In

order to validate the effectivity of the proposed sparse 𝜀-

graph, we also use SVM, the same classifier as miGraph,

on the sparse 𝜀-graph (denoted as SG-SVM) for bags clas-

sification. The same as Zhou’s experiment’s setting[17], the

parameters are determined through cross validation on train-

ing sets. The average test accuracy and standard deviations

are shown in Table 3. The experimental results of other

methods, including MI-SVM and mi-SVM [5], MissSVM

[16], PPMM kernel [14], the Diverse Density algorithm[11]

and EM-DD [12], are cited from the work of Zhout et al

[17].

Table 3 shows that the performance of HSR-MIL is pretty

good. It achieves better performances than MIGraph and

miGraph on Musk1, Elephant, Fox and Tiger sets. The

performances of HSR-MIL, MIGraph, miGraph and MI-

Kernel on Musk2 are comparable. In addition, we can notice

Table III
ACCURACY (%) ON BENCHMARK SETS.

Algorithm Musk1 Musk2 Elephant Fox Tiger
HSR-MIL 91.8(±1.7) 88.9(±1.8) 87.5(±0.9) 63.4(±1.5) 86.6(±0.8)
SG-SVM 89.6(±1.5) 88.6(±1.7) 88.4(±1.2) 62.8(±1.4) 87.8(±1.6)
miGraph 88.9(±3.3) 90.3(±2.6) 86.8(±0.7) 61.6(±2.8) 86.0(±1.6)
MIGraph 90.0(±3.8) 90.0(±2.7) 85.1(±2.8) 61.2(±1.7) 81.9(±1.5)

MI-Kernel 88.0(±3.1) 89.3(±1.5) 84.3(±1.6) 60.3(±1.9) 84.2(±1.0)
MI-SVM 77.9 84.3 81.4 59.4 84.0
mi-SVM 87.4 83.6 82.0 58.2 78.9
missSVM 87.6 80.0 N/A N/A N/A

PPMM 95.6 81.2 82.4 60.3 82.4
DD 88.0 84.0 N/A N/A N/A

EMDD 84.8 84.9 78.3 56.1 72.1

Table IV
ACCURACY (%) ON IMAGE CATEGORIZATION.

Algorithm 1000-Image 2000-Image
HSR-MIL 81.2:[80.8,82.2] 67.7:[66.2,68.4]
SG-SVM 82.8:[81.9,83.2] 69.2:[66.5,69.8]
miGraph 82.4:[80.2,82.6] 70.5:[68.7,72.3]
MIGraph 83.9:[81.2,85.7] 72.1:[71.0,73.2]

MI-Kernel 81.8:[80.1,83.6] 72.0:[71.2,72.8]
MI-SVM 74.7:[74.1,75.3] 54.6:[53.1,56.1]
DD-SVM 81.5:[78.5,84.5] 67.5:[66.1,68.9]
missSVM 78.0:[75.8,80.2] 65.2:[62.0,68.3]

Kmeans-SVM 69.8:[67.9,71.7] 52.3:[51.6,52.9]
MILES 82.6:[81.4,83.7] 68.7:[67.3,70.1]

that the proposed HSR-MIL has lower standard deviations

on different benchmark sets, which indicates the stableness

of HSR-MIL.

Furthermore, HSR-MIL gains higher performances than

SG-SVM on Musk1, Musk2, and Fox sets; but lower

performances on Elephant and Tiger sets. This phenomenon

implies that the graph kernel sparse classifier is comparable

to SVM on the benchmark sets. The performances of

SG-SVM are also generally better than miGraph, which

indicates that the proposed sparse 𝜀-graph is much more

effective than the 𝜀-graph on inner contextual structure

representation for MIL in these sets.

2) Results on Image Categorization Sets: The second

experiment is conducted on the two image categorization

sets. We use the same experimental routine as that described

in [2]. For each data set, we randomly partition the images

within each category in half, and use one subset for training

and leave the other one for testing. The experiment is

repeated five times with five random splits, and the average

results are recorded. The overall accuracy as well as 95%

confidence intervals is also provided in Table 4. For refer-

ence, the table also shows the best results of some other

MIL methods that are given out by Zhou et al. [17]

From table 4, we can find that the SG-SVM has compa-

rable performances to miGraph on 1000-Image and 2000-

Image sets, which again validates the effectivity of sparse

𝜀-graph. Although the proposed HSR-MIL has better per-

formances than most MIL methods without structural in-
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formation, the accuracy of HSR-MIL is slightly lower than

miGraph and SG-SVM on these two sets.

By analyzing and comparing the results in table 3 and

table 4, we may obtain an observation that the graph

kernel sparse classifier has relatively lower performances

than SVM when facing multi-class classification. However,

the proposed HSR-MIL, a good alternative MIL method,

has many other advantages that will be discussed in the

following experiments.

3) Learning with imbalance Samples: We next conduct

experiments on robustness of HSR-MIL for imbalance sam-

ples. Considering both scale and classification accuracy

range of each set in Table 1, Elephant and Tiger sets are

selected in this experiment. In each set, we select 20 positive

bags and 20 negative bags to compose the test set. The left

80 negative bags are used as negative samples in training set.

Then we respectively pick out 10, 20, 30, ⋅ ⋅ ⋅ ,80 positive

bags from the left 80 positive bags to compose the positive

samples in training set. In order to compare the robustness

between sparse classifier and SVM, The HSR-MIL and

SG-SVM are trained on the training set with 10pos/80neg,

20pos/80neg, ⋅ ⋅ ⋅, 80pos/80neg samples respectively, and

tested on the test set. The experimental results with different

rates of positive and negative samples are shown in Fig.1.

Fig. 1 shows that the change ranges of HSR-MIL are

[0.70, 0.90] and [0.65, 0.85] on the two sets, while the

ranges of SG-SVM are [0.525, 0.905] and [0.50, 0.875]. The

performance change ranges of HSR-MIL are much lower

than these of SVM. It shows that our HSR-MIL classifier has

much more stable accuracy values than SVM with imbalance

data sets.

C. Experiments on Online HSR-MIL

In this subsection, we evaluate the online HSR-MIL

from three aspects: incremental online training with known

labels, incremental online training with new labels and

decremental online training.

1) Online HSR-MIL with Known Labels: We use the

Elephant and Tiger sets, including 200 samples, to eval-

uate online HSR-MIL with known labels. Inspired by the

experimental setting for online neural networks in [28], we

select 20 positive bags and 20 negative bags in each set to

compose the test set, and divide the remaining 80 positive

and 80 negative bags into 8 training subsets evenly. In each

training procedure, a new training subset is added in, and

the classification accuracy on the same test set is calculated.

We compare our method with the online MIL algorithm

in [18] (referred to be OMIL) on these two data sets. The

results shown in Figure 2 indicate that the classification

performances of both algorithms are increasing with the

growth of training set. And the proposed HSR-MIL is much

Figure 1. (A) Accuracy with imbalance samples on Elephant set. (B)
Accuracy with imbalance samples on Tiger set.

better. This is because that OMIL is specially based on the

hypothesis [18] that nearly all instances in positive bag are

positive, which may be right in object tracking, but cannot

be satisfied well in general multi-instance problems. In

addition, there is no cumulative loss for online HSR-MIL

due to its training free character. That is to say, the online

HSR-MIL has the same performances to the HSR-MIL

with retrain manner.

2) Online HSR-MIL with New Labels: Online learning

with new labels is also important for online classifier to

many practical applications, such as a new object appearing

in the video surveillance. In this experiment, the 1000-

image categorization set is used . There are 10 different

categories, each of which includes 100 images.We partition

all images within each category into half, first 50 images

for training and the last 50 images for testing. Now we have

10 training subsets denoted as {𝑠1, 𝑠2, ..., 𝑠10} and 10 test

subsets denoted as {𝑡1, 𝑡2, ..., 𝑡10}.
The whole experiment is divided into 9 phases. Initially,

the training set is 𝑆 = 𝑠1 and test set is 𝑇 = 𝑡1. In the

𝑖𝑡ℎ phase (𝑖 = 1...9), a new training subset 𝑠𝑖+1 is added
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Figure 2. (A) Accuracy of online learning on Elephant set. (B) Accuracy
of online learning on Tiger set.

into the training set as 𝑆 = 𝑆 ∪ 𝑠𝑖+1, and a new test subset

𝑡𝑖+1 is also added into the test set as 𝑇 = 𝑇 ∪ 𝑡𝑖+1. This

kind of experimental setting can guarantee that there is

always a new added-in label in each phase. To evaluate

the classification performance, we also use SVM to retrain

the whole training data for classification in each phase.

The comparison results between SVM and HSR-MIL are

shown in Fig.3(A). According to the experimental results,

even though the HSR-MIL learns with online manner and

SVM learns with retrain manner, the HSR-MIL is still

comparable to SVM. This result also implies the good

online learning performance of online HSR-MIL.

3) Online HSR-MIL with Decremental Training: In many

practical applications, an online classifier should not only

learn new data dynamically, but also “forget” some former

samples, such as those samples with the labels that won’t

appear any more. The final experiment comes from online

decremental learning with HSR-MIL. The same as what we

have done in the previous experiment, the procedure is also

divided into 9 phases. The initial training set is set as 𝑆 = 𝑠1
and test set is set as 𝑇 = 𝑡1. In the 𝑖𝑡ℎ phase, the test set

Figure 3. (A) Online learning with new labels. (B) Online learning with
decremental training.

is set as 𝑇 = 𝑡𝑖 ∪ 𝑡𝑖+1, and a new training subset 𝑠𝑖+1 is

added to training set as 𝑆 = 𝑆 ∪ 𝑠𝑖+1. Because the labels

of test samples are in either 𝑖𝑡ℎ or (𝑖 + 1)𝑡ℎ category in

each phase, it is better to forget the training samples fall

in category 1 to category 𝑖 − 1 in order to reduce the

obvious misclassification. Consequently, the online HSR-

MIL with the decremental update operation given out in

algorithm 2 is applied to address this online classification

issue. The experimental results of decremental HSR-MIL

(denoted as HSR-MIL(Decremental)) and its comparison

with online incremental HSR-MIL excluding decremental

operation (denoted as HSR-MIL(Incremental)) are shown

in figure 3(B). The result tells us that the HSR-MIL with

decremental update operation has higher and stable perfor-

mances, which justifies the necessity of decremental learning

in this situation. From the results shown in Fig.3(B), the

HSR-MIL without decremental update operation has much

lower performances. Furthermore, the performance of HSR-

MIL without decremental update rapidly decreases with

the new samples coming. This phenomena further implies

the necessity of decremental learning in this situation. The

performance reduction from HSR-MIL(Incremental) is due
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to the misclassification of the labels that no longer appears.

VI. CONCLUSION

In this paper, we have proposed a novel context-aware

multiple instance learning model based on hierarchical

sparse representation (HSR-MIL) that aims to simultane-

ously address instances’ structural information and online

learning scheme for MIL. To the end, we first give out a

novel sparse 𝜀-graph based on sparse coding to represent

the interactions between any two instances in a bag. Then,

through extending the sparse coding to kernel sparse coding,

we present an advanced graph-based sparse classifier for

bag classification. Finally, the HSR-MIL is extended to be

an dynamically online MIL classifier. We have tested our

approach on a wide variety of data sets and studied its online

training performances. The experimental results show that

our model is superior to most prevailing MIL methods.
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