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ABSTRACT
Commonsense understanding is a long-term goal of natural lan-
guage processing yet to be resolved. One standard testbed for com-
monsense understanding is Story Cloze Test (SCT) [22], In SCT,
given a 4-sentences story, we are expected to select the proper
ending out of two proposed candidates. The training set in SCT
only contains unlabeled stories, previous works usually adopt the
small labeled development data for training, which ignored the suf-
ficient training data and, essentially, not reveal the commonsense
reasoning procedure. In this paper, we propose an unsupervised
sequence-to-sequence method for story reading comprehension,
we only adopt the unlabeled story and directly model the context-
target inference probability. We propose a loss-reweight training
strategy for the seq-to-seq model to dynamically tuning the train-
ing process. Experimental results demonstrate the advantage of
the proposed model and it achieves the comparable results with
supervised methods on SCT.
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1 INTRODUCTION
Machine comprehension (MC) of text is one of the ultimate goals
in natural language processing (NLP) and artificial intelligence.
However, teaching a machine to comprehend text is extremely chal-
lenging since comprehension involves many aspects of knowledge,
such as information retrieval, fact reasoning, commonsense infer-
ence, etc. [36]. In recent years, many datasets have been proposed
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① Dakota	was	a	senior	in	high	school	with	mediocre	grades.	
② Dakota	filled	out	an	application	to	his	local	college.	
③ He	waited	for	a	letter	of	reply	from	the	college.	
④ One	day	he	went	to	the	mailbox	and	found	a	thin	envelope.	
⑤ He	opened	the	envelope	and	was	disappointed	he	hadn't	
been	accepted.

① Bob	had	a	young	puppy.
② The	puppy	loved	to	play	catch	with	Bob.
③ Of	course,	the	puppy	grew	into	a	dog.
④ The	dog	grew	old	and	could	no	longer	play	catch.

1. Bob	was	very	happy	about	this.
2. This	made	Bob	sad.

Context

Candidate	Target

s

Figure 1: An example of SCT, the upper half is a training
instance and the lower half is a test instance.

to evaluate the comprehension ability of a system, such as MCTest
[29], SQuAD [28], MARCO [23], or cloze style datasets such as
CNN/Daily Mail [13], Clicr [37] etc. However, most of these datasets
are focused on factoid questions, and the reasoning abilities required
to answer these questions are limited to shallow linguistic features,
which makes it easy for even simple keyword matching algorithms
to achieve high accuracy [35, 36]. The deeper inference ability of a
system has not been thoroughly evaluated. Story Cloze Test (SCT)
[22], on the contrary, is a story cloze dataset that requires deeper
understanding of the document. This dataset contains many stories,
each story is made up of 5 highly recapitulative sentences. The story
in SCT captures a rich set of causal and temporal relations between
daily events. During the test period, given a four sentences story
plot (context), we must predict from two candidates that which is
more likely to be inferred from the context. SCT requires reason-
ing with implicit commonsense knowledge, rather than matching
explicit information in the text. An example of SCT is shown in
Figure 1.

A main characteristic of SCT is that the training data is unlabeled
which only contains the positive examples (i.e., the 5th sentence), so
the traditional discriminative models are hard to apply. Nonetheless,
the development set is similar to the test set that contains the
human-crafted negative sentences, so previous works on this task
usually adopt the small labeled development set for training [2,
6, 17, 20, 27, 31, 33]. However, only utilizing the development set
may not reveal the real difficulty of the commonsense reasoning
in SCT. For example, Schwartz et al. [31] find that when trained
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on the development set, only using the target sentence (without
the context) for classification could yield a very good result, which
means the development set (and test set) is biased towards some
linguistic features in the target sentence, the inference procedure
from the context to the target has not been throughout exploited.

In this paper, rather than employing the superficial linguistic fea-
tures adopted by previous methods, we focus on the commonsense
inference procedure between the context and the target. So instead
of using the biased development set we directly use the unlabeled
stories for training. Concretely, we use a sequence-to-sequence
model to transform the context to the target, we model the context
by an encoder and then generate the target sentence word by word
via a decoder. The loss is the cross-entropy between the generated
word and ground truth target word. The encoder is a hierarchi-
cal model consists of two LSTMs to represent the meaning of the
context by word⇒sentence⇒document hierarchy. The decoder is
another LSTM model which is trained to maximize the likelihood
of the target. During inference period, we cast the sentence classi-
fication problem as a conditional probability estimation problem,
the prediction is the sentence that has higher decoding likelihood.

Nonetheless, for the seq-to-seqmodel, the training instances may
result in the optimization-inequality: when the context contains
more sentences, it would be more confident about what will happen
in the next, and the prediction loss of the decoder should be small;
when given only a little (or even no) context information, it would be
less certain about the next sentence, and the corresponding decoder
loss is expected to be high. To take the hardship of each training
instance into account, we propose a novel loss-reweighted method
to train the decoder. For each sentence, we use its encoder hidden
representation to determine its weight in the final loss calculation.
In this manner, the loss weight is tailored to the data itself.

In addition, as the proposed methods are pure unsupervised
which only requires the context-target pairs. The abundant instance
in other text may benefit a lot for our reasoning system. Inspired by
the recent success of utilizing the large unlabeled data for natural
language processing, such as BERT [9], ELMO [25] Skip-thought
[16]. We extend the proposed methods on external large unlabeled
data, such as BookCoprpus and Wikipedia, which serves as the
pre-training step. We found that this pre-training is very useful and
achieves a significant improvement in the final result.

We conduct several experiments on SCT. Our unsupervised
model obtains nearly 10 percents absolute improvements over other
unsupervised methods. When enhanced with abundant external
data, our model even achieves comparable results with most super-
vised counterparts. The results and quality analysis reveal that:
• The proposed unsupervised models are more suitable to the
context-inference problem compared with the discriminative
model when it is hard to get the negative sample.
• When pre-trained on the large unlabeled dataset, we could
obtain significant improvement, which means the abundant
unlabeled data contains a lot of information that benefit our
commonsense inference application.
• The quality of the generated sentence relies on the amount
of information in the context, so devising a strategy (loss-
reweight in this paper) to take each sentence weight into
account is important to train the decoder.

2 METHODOLOGY
Each story in SCT contains five consecutive sentencesD = (s1, ..., s5)
where each sentence si consists of a sequencewords: si = (wi1, ...,win ).
During inference period, given four context sentencesC = (s1, ..., s4)
we should predict which candidate sentence, i.e. t1 or t2, is more
likely to be inferred by C .

2.1 Hierarchical Encoder Decoder
2.1.1 Encoder. The encoder is a hierarchical model, which consists
of a sentence level LSTM encoder to processed the words; and a
document level LSTM to process the sentences.

Sentence level encoder takes the word embedding w as input,
then process the sentences in the context forward and backward
with two separate LSTMs:

−→
ht =

−−−−→
LSTM(

−→
h t−1,wt )

←−
ht =

←−−−−
LSTM(

←−
h t+1,wt )

(1)

we concatenate the forward and backward representation for each
word: ht = [

−→
ht ;
←−
ht ]. Finally, we average each word hidden repre-

sentation as the sentence representation: si = 1
ni

∑ni
t=1 hit where

ni is the number of word in ith sentence.
Document level encoder is built upon the sentence level rep-

resentation to derive a global representation of the document. It
processes the sentences with a uni-directional LSTM that takes the
sentence representation si as input:

oi = LSTM(oi−1, si ), ci =
1
i

i∑
j=1

oj (2)

where i ∈ [1, 4]. oi is the document representation and ci is the
document embedding for sentence i that fed into the decoder.

2.1.2 Target Sentence Attentive Decoder. After encoding the con-
text sentences [s1, ..., si ] with the above two-level LSTM architec-
ture, we use a decoder to decode the target sentence word by word.
The objective of the decoder is to maximize the log likelihood of
the target sentence:

log P(si+1 |s1:i ) =
ni+1∑
t=1

log P(wt |w1:t−1, s1:i ) (3)

and each word probability could be calculated by:

hdt = LSTMdecoder (ht−1;wt−1)

ĥt = [hdt ; ci ], ht = tanh(Wp · ĥt )

P(wt |w1:t−1, s1:i ) =
exp(hTi ·wt )∑ |V |
j=1 exp(h

T
i ·wj )

(4)

The superscript d stands for ‘decoder’,Wp is a projection matrix
to transform the decoder hidden representation into the word em-
bedding space. |V | is the vocabulary size.

However, decoding the target sentence si+1merely by the context
vector ci is not an elegant way, because different part of the target
sentencemay derived from different context sentences. In this paper,
we embed the well-developed attention mechanism [19] into the
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Figure 2: The whole architecture of our hierarchical encoder-decoder to model the context and target.

decoder: Instead of a fixed context representation ci , we use an
attention-weighted context representation:

α j ∝ oTj h
d
t , at =

t∑
j
α joj

ĥt = [hdt ; at ]

(5)

α j is the attention score for sentence j w.r.t. the current word t .

2.1.3 Loss Reweighted Training Strategy. During the decoding pe-
riod, traditional encoder-decoder architecture takes the summation
of each word loss as the sentence loss, whichmeans each word takes
the equal weight. However, when decoding the several opening
words, we have less information, so the predictions are somewhat
random. On the contrary, after predicting some words, we are con-
fident about what to decode next. In this work, we use the word
hidden representation hdt to determine its loss weight. Concretely,
for a specific sentence si with length ni , the loss is:

β ′i j =w
T
s · h

d
i j , j = 1, ...,ni

βi j =
exp β ′i j∑ni

k=1 exp β
′
ik

Li = −

ni∑
j=1

ni · βi j · log P(w j |w1:j−1, s1:i−1)

(6)

ws is the weight vector to calculate βi j -the (normalized) weight for
jth word in final loss summation. When set this weight to constant
1
ni , the model is reduced to traditional sum-loss scheme in Equation
3. In this manner, the loss of each word is not equal or fixed but
tuned by the model i.

Document Level Loss Reweight: In SCT, each story instance
contains 5 ⟨context-target⟩ pairs: {⟨s0:i−1, si ⟩|i ∈ [0, 4]}. We use
each sentence representation oi to determine its loss weight in the
context, thus the loss for each story is:

γ ′i =w
T
d · oi

γi =
expγ ′i∑5

k=1 expγ
′
k

L =

5∑
i=1

γi · Li

(7)

wd is the document level loss weight vector. L is the final objective
we try to minimize.

2.1.4 Inference. As the whole architecture is optimized to maxi-
mize the likelihood of the target sentence conditioned on the con-
text, so the inference could be made by how likely the target is
given the context. We select the target that has a less conditional
perplexity:

P(ti |s1:4) = exp 1
ni

ni∑
j=1

log P(w j ) (8)

where P(w j ) is defined in Equation 4. This criterion is similar with
Schwartz et al. [31] who also proposed a language model for this
task, nevertheless, our architecture is hierarchical so we directly
adopt the target sentence perplexity.

2.2 Pre-training
As the whole architecture only takes the unlabeled context-target
pairs as input that it could trivially enhance our model by the
large amount unlabeled data, such as Wikipedia articles or fiction
stories. In this paper, we choose two types of unlabeled text as
pre-training resources. The first one is the BookCorpus stories [41]
that contains 2662 unpublished novels from 16 categories such
as Mystery Adventure or Science fiction. The second one is the
Wikipedia article, which consists of the detailed description for
the item in the world. This two types of external unlabeled data
are complementaries to each other consists of different aspects of
commonsense.

Compared to previous pre-training methods, our methods have
two characteristics. 1) As the inference is made by the context-target
probability in Equation 8, the pre-training and fine-tuning step are
equivalent so there is no need for devising new architecture for the
fine-tuned model, and even obviates the fine-tuned step that we
could directly use the pre-trained model for inference. 2) Previous
pre-training method for NLP mainly focuses on local information,
for example, word embedding is mainly focus on word level in-
formation, and Skip-Thought, Elmo, and Bert is mainly focus on
sentence-level pre-training. However, we focus on document level
information which captures the long-range dependencies between
sentences.

To better utilize the abundant training data, in this paper, for
each sentence si in the unlabeled dataset, we treat its preceding n
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System Accuracy
Lin et al. [17] 67.02%

Mihaylov and Frank [20] 72.42%
Schwartz et al. [31] 75.20%

Cai et al. [2] 74.70%
Chaturvedi et al. [6] 77.60%

BOW 73.54%
Embedding 76.45%

CNN 75.38%
Table 1: SCT test results of our proposed supervised models
compared with state-of-the-art models.

sentences, i.e. {sj |j ∈ [i−n, i−1]} as the context. We use the contex-
tual n sentences to predict the current sentence via our hierarchical
encoder-decoder. In this paper, the number of context sentences is
randomly sampled from [1, 20]. The objective for pre-training is to
minimize the negative log likelihood of the target sentences.

3 EXPERIMENT
In the experiment, we first show that adopting the development
set in SCT for training, is not an appropriate setting to evaluate
the context inference ability of a system. Then we compare our
model with other unsupervised architecture, including generative
and discriminative models, and demonstrate the specific advantage
of our model.

3.1 Revisiting Supervised Setting
In this setting, similar with previous methods on SCT that achieve
state-of-the-art result, we adopt the development set in SCT, which
contains 1871 labeled story (i.e., each story combined with both
positive and negative target ending sentence), for training. So in
this setting SCT is reduced to a 2-class classification problem. We
proposed three simple methods which are purely based on word
information as baselines:
• BOW: We use bag-of-words as the feature vector for each
target sentence, and each word is weighted by its Tf-IDF. We
use a simple logistic model for classification.
• Embedding: This model is similar with fastText [12]. We
use the average word embedding of each sentence as the
feature vector. Then a linear layer is applied for classification.
• CNN: This model is similar with Embedding, we apply con-
volutional neural networks on the word embedding, which
captures the local information of the input.

It needs to mention that to emphasize the characteristic of the la-
beled data in SCT, all of the proposed supervised models are merely
based on the ending sentence, i.e., we did not take the context in-
formation into account. We use 300-d Glove [24] representations as
the word embedding. CNN windows size was set to 3. We compare
these supervised models with five state-of-the-art models on SCT:
• Lin et al. [17] proposed a method based on heterogeneous
knowledge. They adopt sentiment, event relationships, dis-
course relations etc. as features for classification.

• Mihaylov and Frank [20] proposed two models for classifica-
tion: 1) features: it use several similarity score as the feature.
2) neural: it use attention based neural networks to modeling
the sentence.
• Schwartz et al. [31] use several sophisticated features, such
as sentence length, word frequency, word n-grams, character
n-grams etc. as features for classification.
• Chaturvedi et al. [6] proposed model based on sophisticated
features, such as event relations in FrameNet [1], sentiment
trajectory, topical consistency etc.
• Cai et al. [2] proposed a simple neural based attention model
to model the sequence.

The result is shown in Table 1.
We can see from the table that although the proposed supervised

models are relatively simple, they could achieve a similar result
with previous works. Given that these models are merely based on
the ending sentence, and did not take the context four sentences
into account, this reveals the fact that: the right prediction could
be made by only using the ending sentence information 1, without
the need to find clues in the context. So models trained on the labeled
development set may not reveal the story comprehension ability.

On the contrary, in this paper, we proposed an unsupervised
generative model to derive the context-target probability, which
directly modeling the commonsense inference process in a story. In
the next several sections, we only use the unlabeled training data,
where we could not access to the negative ending sentence. And
we evaluate our model in development and test set.

3.2 Common Setup
The SCT training set contains 98167 stories, both dev and test
set contains 1871 stories. For the pre-training Bookstory dataset,
we remove the target sentences that is too short or too long. For
Wikipedia, we use the 2018-06-01 wikidumps2 and extract only the
text passages and ignore lists, tables, and headers. After preprocess-
ing we get more than 90 millions <context, target> pairs.

For our hierarchical encoder-decoder model, we set the word
embedding size to 1024, and sentence level LSTM encoder and
document level encoder are 4-layers LSTM. We use the byte pair
encoding (BPE) to fixed the vocabulary size to 35k. Batch size is set
to 256 in the pre-training and 32 in the fine tuning step. We use
vanilla dropout [34] on the word embedding layer and variational
dropout [10] on the LSTM output layer, with a drop probability 0.1.
We use Adadelta [40] with ρ = 0.999 to update the parameter. L1
and L2 criteria with weight 10−5 are added to regulate the parameter.
And we adopt a 100k warm-up steps and final 100k training steps
during the pre-training period. For all experiments without pre-
training, we halve the encoder size to prevent overfitting.

3.3 Baselines
There are several baseline methods proposed in [22] such as using
word embedding similarity, sentiment tendency prediction, etc. We
compare four of them in this paper: GenSim: choose the candidate

1which is referred as writing style [31].
2https://dumps.wikimedia.org/enwiki/
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Gen
sim

Narr
ative

-Cha
ins-A

P

Narr
ative

-Cha
ins-S

DSS
M

LST
M

LM HLS
TM

w/o
att

HLS
TM

HLS
TM+LR

HLS
TM+LR

+PT

Supe
rvise

d SO
TA

Dev 0.545 0.472 0.510 0.604 0.621 0.618 0.642 0.647 0.694 0.775 0.772
Test 0.539 0.478 0.494 0.585 0.612 0.609 0.631 0.660 0.702 0.753 0.765

Table 2: Accuracy of different unsupervised methods in SCT. Our hierarchical LSTM based encoder decoder model is denoted
as HLSTM. w/o att means the model is not equipped with attention mechanism. LR denotes loss reweight, and PT denotes the
pre-training. Supervised SOTA is a lexical matching method trained on development set achieves the best result [33] in SCT.

with its average word embedding closer to the context. Narra-
tive Chains-AP: Implements the standard approach to learning
chains of narrative events based on Chambers and Jurafsky [3]
and chooses the hypothesis whose co-referring entity has the high-
est average PMI score with the entity’s chain in the document.
Narrative Chains-S: The same model as above one but is trained
on Story Cloze Test. Deep Structured Semantic Model (DSSM):
This model is trained to project the context and the fifth sentence
into same space [14].

In addition to the above baselines, we also compare our methods
with some other unsupervised model that are generatively based
on encoder-decoder architecture.
• Language Model (LM): is a model similar to [31], which
treats each story as a single sentence and decodes it with an
LSTM. Thus the context information is modeled on-the-fly
by the LSTM.
• LSTM: It has the same decoder architecture with the pro-
posed model, but the encoder is a single LSTM model that
processes the four context sentences as one sequence.

The result is shown in Table 23.
We can see from the table that our proposed hierarchical encoder-

decoder model significantly outperforms other models that trained
with the unlabeled data. For the Gensim methods, as it only takes
the word information into account. However, the inference in SCT
is much more difficult which need the more complex semantic
composition from words. For the two feature engineering methods
based on narrative chains, Mostafazadeh et al. [22] only takes the
entity into account, which is not appropriate given that the ending
sentences may share the same entities.

Besides, we find that the language model (LM) or sentence level
model (LSTM) does not perform comparative result with our hier-
archical model. We conjecture that the SCT is a more complicated
inference task compared with the previous task such as recogniz-
ing textual entailments. The commonsense conveyed by the story
sentences is diverse and intricate, so it may not be modeled by
simple sequence model. In this paper, we model the context with
a hierarchical sequential model, which has better representation
capacity and thus achieves better performance.

To better understanding the advantage, we randomly sample
the predicted ending of these models in Figure 3. We can see that
as The LSTM model did not take the context-architecture into
account, its prediction is just coherent with the 4th sentence in
3For the LM, we reimplement the language model introduced in [31], unfortunately we
could not obtain the same result. To fairly compare our model with them we report the
result of our implementation which has a same software settings with other baselines.

� Newly married, Sue liked to cook for 
her husband.

� Unfortunately Sue was a terrible 
cook.

� Bob ate her food anyway and told 
her it was good.

� On their first anniversary Bob gave 
Sue cooking lessons.

<s/> sue begins to cook very well </s>
<s/> sue studies the cooked lessons </s> 
<s/> sue cooked for cooked for cooked for
bob </s>

Context:

Targets:

Prediction:
HLSTM:

LSTM:
LM:

Fake: She never cooked again.
Real: She became a better cook.

Figure 3: Predictions of different models given context.

context. In the language model, it doesn’t discriminate context and
target, so during greedy decoding the generated tokens only present
the word-by-word coherence. The ending sentence generated by
our HLSTM model is most coherent with the context and most
similar with the real target sentence. The advantage of HLSTM
also accord with previous works such as dialogue systems [32],
document summarization [5] who also show hierarchical models
are sometimes excel at representing the document level information.

3.4 Unsupervised Pre-training
We can see in table 2 that the unsupervised pre-training step im-
proves our model significantly. To make a deeper exploitation of
the unsupervised pre-training we conduct several experiments:

1) Instead of taking a lot of context sentences, we only use one
context sentence to pre-train our model. This is similar with Skip-
though [16] which also uses LSTM encoder to encode the source
sentence and two decoders to predict the previous and following
sentence.

2) We do not fine-tune our model on SCT but directly use the
pre-trained model for inference.

3) We remove either Wikipedia or BookCorpus to evaluate their
contribution during pre-training.

The result of unsupervised pre-training is shown in Table 3.
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dev test
Skip-Thought 0.603 0.589
w/o fine tune 0.692 0.703
w/o Wikipedia 0.752 0.749
w/o BookCorpus 0.702 0.700

pre-training+fine tuning 0.762 0.759
Table 3: Result of different pre-training strategy. It needs to
mention that our our model (w/ fine tune) is not enhanced
with loss-reweight training.

We can see that the skip-thought, which only takes one sentence
into account, is not competitive for SCT. The intuition behind Skip-
Thought is to model the sentence-to-sentence inference process, so
it is very suitable to sentence similarity or entailment tasks [16].
However, in SCT, the inference is beyond sentence level so the Skip-
Though could not achieve good result. In addition, it is surprising
that the model without fine-tuning could also achieve a very good
result in SCT, which demonstrate the rich semantic information are
well modeled by our encoder-decoder, and the knowledge could
be transformed to SCT. For the two pre-training resources, as the
textual style of Wikipedia is very formal, which is different from
SCT. However, the BookCorpus is narrative stories andmore similar
to SCT, so its influence is more significant.

3.5 Our methods vs. Discriminative methods
The proposed unsupervised models try to learn the discriminative
pattern without the negative sample. On the contrary, traditional
models to deal with textual inference tasks mostly build upon a
discriminative architecture [8, 18] in which both positive and nega-
tive samples are present in the data. Thus we compare our model
with these discriminative models. To make the discriminative clas-
sifier available, we proposed three ways to generate the negative
sentences. I: Randomly sample a sentence from the training dataset.
II: Randomly shuffle the positive sentence. III: Randomly generate
a sequence from the word vocabulary. It needs to mention that
the second and third method may generate the ungrammatical
sentence.

In this paper, we proposed three types of discriminative models
to calculate the score of a <context-target> pair:

(1) HLSTM-D: we use the HLSTM to get the document repre-
sentation c, and the sentence LSTM encoder to get the target
sentence representation h. We compare the document with
target by their dot value: score = σ (oT · h) and σ is sigmoid
function. We adopt max-margin hinge loss as the training
objective:

L =max{0,M − score+ + score−} (9)

where the score+ and score− are scores for the positive and
negative target.M is a pre-defined margin set to 0.15.

(2) AHLSTM-D: [8] is similar with HLSTM-D, except that the
context representation c is not average of each context sen-
tence representation oi but an attentive weighted sum of
them.

Test Dev

Discriminative
HLSTM-D 0.571 0.584
AHLSTM-D 0.599 0.603
CGANs 0.609 0.625

Generative HLSTM 0.694 0.702
Table 4: Result of our proposed models compared with dis-
criminative classifiers. The term ‘generative’ is not accord to
the generative model in machine learning, but a conceptual
reference of models that generate text.
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Figure 4: Average accuracy and hinge margin w.r.t. the num-
ber of fake examples. Histogram is themargin and solid line
is the accuracy.

(3) CGANs: [39] uses a conditional generative adversarial net-
works [11] to generate the negative targets and then apply a
hierarchical discriminator on them.

To fairly compare our model with this discriminative classifiers,
we do not apply the loss-reweight or data-enhancement on our
HLSTM and only use the original stories. The result is shown in
Table 4.

We can see that although enhanced with attention mechanism,
the discriminative model could not outperform the proposed un-
supervised methods. This may be attributed to the fact that the
randomly generated example cannot provide enough discrimina-
tive information for the classifier. To see this more concrete, we
generate more and more negative sentences to the discriminative
classifier, then given two candidates, we calculate the margin be-
tween the larger score and the smaller one based on Equation 9.
The result is shown in Figure 4.

We can see that the negative sampling methods for the discrimi-
native classifier are ineffective for inference. In the previous works,
when it hard to normalize the probability, such as word embed-
ding [21] or large vocabulary language modeling [15], they usually
adopt negative sampling or importance sampling to sample words
or entities. However, the sentence space is so huge compared to
word space making the randomly sampled negative pattern hard,
if not impossible, to be used for probability normalization, which
hinders the discriminative generalization of the classifier.
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BLEU-2 BLEU-4 Test Dev

L-sum 0.3883 0.3382 0.635 0.638
L-mean 0.3719 0.3221 0.632 0.634
LR-G 0.4141 0.3335 0.644 0.638
LR-A 0.3699 0.3292 0.659 0.628

w/o SLLR 0.4101 0.3423 0.673 0.668
w/o DLLR 0.4225 0.3512 0.674 0.682
HLSTM+LR 0.4413 0.3921 0.694 0.702

Table 5: The result of different training strategy in terms of
the translation quality and SCT accuracy. We set p to 1.2 for
LR-G and 1

n−1 for LR-A.

3.6 The Improvement by Loss Reweight
An important innovation in this paper is that we propose a loss
reweight strategy for training the encoder-decoder model. In table
2 we show that our model achieves better results when enhanced
with the loss-reweight strategy. We use two criteria to measure this
improvement: I, following traditional machine translation evalu-
ation, we use BLEU score as the metric to measure the similarity
degree between the generated texts and the ground-truth texts.
Specifically, we set n-gram to be 2 (BLEU-2) and 4 (BLEU-4). II, The
improvement of downstream accuracy in SCT. We design several
types of comparison experiment:

(1): Ablation experiments: Remove the sentence level loss reweight
(w/o SLLR) or document level loss reweight (w/o DLLR).

(2): Replace the weighted loss with the summation of each word
loss (L-sum).

(3): Replace the weighted loss with the average of each word loss
(L-mean).

(4): The proposed hypothesis is that the loss weight of each word
should correlate to the number of words that have been fed to the
decoder. So we set each word loss in a sentence linear to its position.
Concretely, given a sentence with length n, the loss weightwi for
the ith word is:

(LR-G) Geometric:

wi =
n(p − 1)pi

pn − 1
s .t . p > 1

(10)

which means the loss for ith word is p times larger than the loss
for (i − 1)th.

(LR-A) Arithmetic:

wi = 1 − p(n − 1 + 2i2 )

s .t . 0 < p <
2

n − 1

(11)

The result is shown in Table 5.
We can see from the table that when training the decoder with

loss reweight strategy, the performance (both in terms of the gen-
erated sentence quality and inference accuracy) could be improved.
Best results are achieved when we employ the self-determined loss
reweight strategy. In this manner, the loss is self-adjusted during
the different training period and among different training instances.

As the training procedure is tuned by the model itself, so it would
be better adjust the learning process and achieves a better result.

4 RELATEDWORK
Machine comprehension is a recently proposed natural language
understanding task which aims at teaching amachine to understand
the text and accomplish question answering or textual inference
problem. Since the MCTest [29] was proposed, many researchers
have been focused on this task. Hermann et al. [13] proposed a
large cloze style CNN/Daily Mail dataset in which the target is to
generate the word in a statement slot given the context. However,
this dataset is derived semi-automatically from the newspaper and
the target words are limited to nouns, which confines the inference
ability required to answer the questions [7]. SQuAD [28], NewsQA
[38] and MARCO [23] are recently released MC datasets. Most of
the questions in these datasets are limited to syntactic variation
or lexical variation [35]. In this paper, we are focused on SCT,
which evaluates the deeper semantic inference ability of a system.
The baseline models proposed in [22] contain not only feature
engineering systems but also deep learning models, nonetheless,
the performance is still poor compared with human. Schwartz et al.
[31] proposed some supervised methods based on the writing style
of the annotator, which achieves a good result on SCT. Mihaylov
and Frank [20] proposed a lexical matching method on this data,
which compares the two ending candidates by n-gram overlap. Lin
et al. [17] proposed to employing external knowledge, such as event
relations, to deal with SCT. Chaturvedi et al. [6] also proposed a
model based on linguistic features and model them with a hidden
coherence model. Cai et al. [2] proposed a simple neural based
attention model with LSTM. Despite substantial improvement over
baselines, these methods are based on the labeled development data,
which did not fully take the unlabeled training set into account.

Script Learning is a canonical representative of traditional tex-
tual inference methods. It processes the temporally ordered se-
quences of symbolically structured events and tries to predict future
events. Previous methods are non-probabilistic and brittle which
pose serious problems for automated learning. In recent years, there
has been a growing body of research into statistical script learning,
which enables statistical inference of implicit events from the text
[26, 30]. Chambers and Jurafsky [3, 4] describe some simple event
co-occurrence based systems which infer (verb dependency) pairs
related to a particular discourse entity. However, these methods rely
heavily on dependency parser and co-reference tools to transform
the document into event chains. Which brings noise to SCT.

UnsupervisedPre-trainingUnsupervised pre-training has been
widely adopted in the deep learning era. In computer visions, many
methods first pre-train their models on Imagenet and then fine-
tuned on the task at hand. In NLP community, instead of just op-
timizing the models from random initialization, some parameters
are initialized by an unsupervised application in a large amount
of data. For example, word2vec [21] or Glove [24] are two repre-
sentative methods to initialize the word embedding. However, they
only take the word information into account. ELMO [25] and GPT
[27] try to initialize the sentence embedding by a language model.
Skip-thoughts [16] is another sentence embedding initialization
methods which are similar to our proposed methods, but they only
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take the nearby sentence into account which may not capture the
long-term dependencies between sentences. Very recently, Devlin
et al. [9] proposed a self-attention model to initialize the sentence
embedding by a mask language model, which obtains significant
improvements in many NLP applications. But their pre-training is
focus on sentence level initialization and must be fine-tuned dur-
ing inference. In contrast, our initialization is exactly same with
the inference process, and the hierarchical architecture enable our
model to capture structure information in the text.

5 CONCLUSION
In this paper, to deal with story comprehension application SCT,
unlike most previous works which utilize the small development
set for training. We directly modeling the unlabeled stories with
two hierarchical encoder-decoder. We develop a self-determined
loss reweight training strategy to optimize the decoder. We also
adopt a large amount of unlabeled data to pre-training our model
and achieve comparative result with supervised models. We demon-
strate the advantage of our proposed model compared with other
unsupervised generative and discriminative model. In addition,
the loss-reweight training strategy proposed in this paper could
strengthen the decoding quality of the encoder-decoder model.
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