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Abstract

Recent developments of Correlation Filter based
trackers (CF trackers) have attracted much atten-
tion because of their top performance. However,
the boundary effect imposed by the basic periodic
assumption in their fast optimization seriously de-
grades the performance of CF trackers. Although
there existed many recent works to relax the bound-
ary effect in CF trackers, the cost was that they can
not utilize the kernel trick to improve the accuracy
further. In this paper, we propose a novel Gaussian
Process Regression based tracker (GPRT) which is
a conceptually natural tracking approach. Com-
pared to all the existing CF trackers, the bound-
ary effect is eliminated thoroughly and the kernel
trick can be employed in our GPRT. In addition, we
present two efficient and effective update methods
for our GPRT. Experiments are performed on two
public datasets: OTB-2013 and OTB-2015. With-
out bells and whistles, on these two datasets, our
GPRT obtains 84.1% and 79.2% in mean overlap
precision, respectively, outperforming all the exist-
ing trackers with hand-crafted features.

1 Introduction

Visual object tracking is one of the fundamental problems in
computer vision with many applications. In generic visual
object tracking, given the initial state (e.g., position and size)
of a target object in the first frame, the task is to estimate the
states of the target in the subsequent frames. It is commonly
known that despite significant progresses in recent decades,
visual object tracking is still a challenging problem due to
some extremely challenging factors (e.g. large appearance
changes, occlusions, background clutters and fast motion)
and very limited sample datas [Wu er al., 2015]. Therefore,
it is crucial to research how to construct a robust appearance
model from very limited samples to distinguish target from
background in visual tracking.

Recently, Correlation Filter based trackers (CF trackers)
have shown high accuracy and robustness when tracking d-
ifferent types of targets. In CF trackers, they mainly learn
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the filter from circular samples to regress a gaussian response
map in fourier domain, and the process of learning and tar-
get detection can be accelerated by using the Convolution
Theorem and Fast Fourier Transform (FFT). [Bolme et al.,
2010] proposed to learn a Minimum Output Sum of Squared
Error (MOSSE) filter for visual tracking on gray-scale im-
ages. They used a base image patch and the circulant virtual
ones to train the filter directly in the Fourier domain. [Hen-
riques et al., 2015] proposed Kernelized Correlation Filter
(KCF) which not only expended the MOSSE tracker to learn
multi-channel filters on multi-dimensional features, but also
took advantage of the kernel trick. Compared to MOSSE,
the tracking performance had been greatly improved by KCF
when using the HOG [Dalal and Triggs, 2005] feature and
gaussian kernel on OTB-2013 [Wu et al., 2013]. However,
the basic periodic assumption leads to an inaccurate repre-
sentation of the real samples, and produces unwanted bound-
ary effects in CF trackers. This problem obviously reduces
the discriminative power of the learned model and severely
degrades the performance of standard CF trackers. In order
to relax the boundary effect, [Kiani Galoogahi et al., 2015]
and [Danelljan et al., 2015] respectively proposed Correla-
tion Filters with Limited Boundaries (CFLB) and Spatially
Regularized Discriminatively Correlation Filters (SRDCF).
In CFLB, Galoogahi et al. added a rectangular window to
the circular samples in CF trackers, and then used the Alter-
nating Direction Method of Multipliers (ADMM) algorithm
to solve a objective optimization problem with equality con-
straints. In SRDCEF, Danelljan et al. added a spatial regular-
ization component in the standard CF formulation to penalize
the correlation filter coefficients depending on their spatial
location in the learning process. Even though the CFLB and
SRDCEF relaxed the boundary effect in CF trackers, they still
can not solve the problem thoroughly. Furthermore, CFLB
and SRDCEF can not use the kernel trick to improve the accu-
racy further [Henriques et al., 2015], because there is no way
to calculate the value of the kernel after they add a window to
sample space or filter space.

In this paper, to solve the problems in CF trackers, we ap-
ply the Gaussian Process Regression (GPR) [Rasmussen and
Williams, 2006] to visual tracking and propose a novel GPR
based tracker (GPRT) which is a conceptually natural track-
ing approach. In our GPRT, following the basic GPR theory,
we construct gaussian covariance matrix using training sam-
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Figure 1: Qualitative comparisons of our GPRT with the other state-
of-the-art trackers, ECOHC, SRDCEF, and Staple on 3 sequences of
OTB-2015. In all three cases, CF trackers suffer from the boundary
effect or can only use the linear discriminator with low discriminan-
t. These issues cause inaccurate target location in cases of occlud-
ed by similar objects (top row), complex background (middle row)
and blur foreground (bottom row). However, our GPRT successfully
tackles these situations and lead to better performance.

ples and employ the constructed GPR model to predict the
regression values of the test samples in the detection process.
Through above, our GPRT does not have the boundary effect
and we can also promote the tracking performance by utiliz-
ing the kernel trick (see Figure. 1). For the sake of simplic-
ity, in experiments we only use single gaussian kernel with
hand-crafted features (i.e. HOG [Dalal and Triggs, 2005] and
Color-Names [Danelljan ef al., 2014b]). As for the parame-
ters in gaussian kernel, it is time-consuming to solve the max-
imum likelihood to get the optimal parameters for each frame,
and we found that there is no significant difference in tracking
performance between only solving them in the first frame and
just like the KCF to design them by the rule of thumb. Ad-
ditionally, considering the importance of the update method
in visual tracking, we present two different update methods
which are efficient and effective for updating our GPRT in the
tracking process. The one is based on the directly apply GPR
to the tracking problem which mainly update the appearance
model in order to make the detection process faster, and the
other, which not only the appearance model but also the GPR
model needed to be updated in tracking process, is based on
the relationship between GPR and Kernel Ridge Regression
(KRR) [Rasmussen and Williams, 2006]. It is worth mention-
ing that our GPRT can be expanded to multi-kernel, conve-
niently. Furthermore, convolutional neural networks (CNN)
features can also accessibly be added to our approach, even
though they may have different resolutions in different layers.
In summary, we make the following three contributions.

e We propose a novel and conceptually natural tracking
approach, called GPRT, which mainly apply the GPR to
object tracking.

e We present two different update methods for our GPRT,
and these methods are proved to be effective and effi-
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cient in experiments.

e We perform our GPRT on two public datasets: OTB-
2013 and OTB-2015, and our GPRT achieves state-of-
the-art results. Without bells and whistles, on these two
datesets, our GPRT obtains 84.1% and 79.2% in mean
overlap precision, respectively, and outperforms all the
existing trackers with hand-crafted features.

We will release code to facilitate future research.

2 Related Work

[Rasmussen and Williams, 2006] briefly introduced what G-
PR is and how to use it in practice to solve regression prob-
lem. Different from general tasks based on the regression
problem, image processing, especially video analysis task,
has the characteristics of needing to deal with a large num-
ber of high-dimensional data. There are many approxima-
tion schemes which rely on the use of a series of inducing
points to reduce the high computational complexity when ap-
plying the GPR to large data [Quifionero-Candela and Ras-
mussen, 2005]. [Titsias, 2009] suggested a variational ap-
proach which provides an objective function to optimize these
inducing points. In addition, [Hensman et al., 2013] proposed
Stochastic Variational Inference (SVI) for GPR to extend the
variational idea. They showed how the variational objective
could be reformulated with additional parameters to enable
stochastic optimization. Furthermore, they trained the GPR
model using mini-batches which allowed them to learn from
a large dateset which contains 700,000 samples. However,
their method may not suitable for object tracking problem,
because we need a simple and efficient online update method
for object tracking in order to make the tracking model adapt
to the change of the target appearance. Unlike [Hensman et
al., 20131, for applying GPR to object tracking, we propose
two efficient and effective methods to update the GPR model,
and after effective update we can gradually obtain better gen-
eralization ability of the GPR model through a large number
of data in online tracking process.

In recent years, there are a few researches applying the G-
PR to the visual tracking problem. [Gao et al., 2014] pro-
posed the TGPR which directly analyzes the probability of
target appearance using the GPR. They divided the labeled
samples into auxiliary and target samples, and learned the
observation model for regression in a semi-supervised fash-
ion. Unlike TGPR, we apply all the known samples as many
as possible to construct and update the GPR model, and our
online learning and update method are effective and efficient.
The experiments confirm that in the mean distance and over-
lap precision, our GPRT obviously exceeds (about 11% and
14%, respectively) the TGPR on OTB-2013 dataset !

3 Proposed Method

In this section, we firstly review the gaussian process regres-
sion, and secondly introduce our GPRT tracking framework
including online learning, update and detection, finally we
show how to accelerate calculation in our GPRT.

'The TGPR does not report its performance on OTB-2015
dataset, so here we only compared with it on OTB-2013 dataset.
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3.1 Gaussian Process Regression

For a useful introduction to GPR, we suggest the reader re-
ferring to [Rasmussen and Williams, 2006; Ebden, 2015].

Traditionally parametric models can be used for regression
and classification problems and they have an advantage in
ease of interpretability. However, for complex datasets, sim-
ple parametric models may lack expressive power, and even
though their more complex counterparts (such as neural net-
works) may have a stronger expressive power, they may not
easily work in practice. In order to solve the problems above,
the advent of GPR has opened the possibility of flexible mod-
els which are practical to work for complex datasets [Ras-
mussen and Williams, 2004].

Given a training set D = {(x;,¥;) | ¢ =1,...,n}, where
X = {x1,...,x,} € RPX" is the matrix of input data,
vy = {v1,.-,yn} € R™ is the vector of desired regression
values with respect to X and D is the dimension of input
data, the main assumption of GPR is y = f (x) + € where
the output y are considered as the points sequence sampled
from a multivariate gaussian distribution, and € ~ N (0,02)
represents the noice in training outputs. Moreover, it can be
assumed that this gaussian distribution has the mean of zeros
and a commonly used covariance function is the Radial Ba-
sis Function (RBF) with additive white noise and it can be
expressed as:

2
[Ix — x|

k(x,x') = o7 exp < T ) +026(x,x) (1)

where the hyperparameter oy governs the magnitude of co-
variance, ! modulates the exponential decay of covariance,
and o,, describes additive white noise.

In GPR method, the reliability of our regression is depen-
dent on how well we select the covariance function, so it is
necessary to estimate the values of the hyperparameters in
kernel. According to the GPR theory, the optimal hyperpa-
rameters of RBF corresponding to maximizing:

1 _ 1 n
logp(y | X, 0) = —gyTK 1y—§10g|K|—§10g27T )

where @ = {l,07,0,}.

According to above, given the training samples and labels,
it is necessary to establish three covariance matrices as fol-
lows when we would like to estimate the regression value of
the test samples.

k(xi,x1) Fk(x1,%x2) k(x1,%xp)
k(x2,x1) Fk(x2,X2) k (x2,%,)

K=| .. (3a)
B (nx1) k(KX)o K (X0, %0)

K. = [k (X4, %1) k (X, X2) .ok (X, X,)] (3b)

K.. = [k (%, %)] (30)

where x, is the sample to be predicted. And then, the proba-
bility of y, follows a gaussian distribution:

ye |y ~N (KK 'y, K.. - K.K'KT) 4)
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Namely, the mean and variance of y, can be formulated as:
J. =K.Ky (52)
var (y,) = Ky — K,K KT (5b)

where 7, and var (y.) are the expectation and variance of the
test sample x,, respectively.

3.2 Our Tracking Framework
Here, we predefine the KXin as follows.

k(xi1,x51)  k(xi1,%;2) E (%1, Xjn)

k(xi2,%51) Kk (Xi2,Xj2) k (Xi2, Xjn
KXLXJ = aee

k(Xin,%;1) Kk (Xin,Xj2) k (Xin, Xjn)

(6)

where X; and X ; come from the different frames when ¢ # j
or same frame when ¢ = j, and x;,, represents the n-th sample
in X;. (6) represents the constructed covariance matrices with
X; and X, and it is often used in subsequent sections.

Online Learning. For each frame f;, where ¢ = 1,..., T,
assuming that the target position is p; and the area of the
target is s; = w; X h;. We densely sample the training
data around p; with sampling region S; = ovw; X h; X
ov/w; x h; and all samples X; = {x;; | j =1,...,N}in f;
have the same size s;. Then, we straightforwardly construct
the covariance matrix Kx,x, based on training samples X;,
and in common with KCF to construct the gaussian like label
y; for calculating the expectation of test samples.

Online Update and Detection (I) Considering that the
general object detection method based on linear weighted in
tracking can be formulated as:

t—1
F(X:)=> Bh(Xy,Xi) (t>2) 7
i=1

where X, represents the test samples in the current frame
ft» X; (i < t) represents the training samples in the previous
frames f; (i < t), B; represents the weight of f;, h (X4, X;)
represents the predicted expectation of X; based on X;, and
according to (5a) in our GPRT it can be formulated as:

h (X, X;) = Kx,x, Kx'x, ¥ 8)

where y; is the label vector which obeys the gaussian distri-
bution, and in our GPRT y; = y;, Vi, j.
Combining (7) and (8), it is easy to obtain the detection
formula in our GPRT as follows.
t—1
f(X)=> BKxxKxxyi (=2 9
i=1
In (9), we can observe that for getting f (X;) we need
to construct the Kx,x, as well as Kx,x, and calculate the
K)_(,lxiYi as well as Kx,x, (K;(}Xi yi) for all © < t. Com-
pared to the other three operations, the complexity of cal-
culating Kx,x, (Kx'x,y:) can be negligible. Despite con-
structing Kx,x, and calculating K;(ixiyi can be done only
once then saved, we still need to utilize (6) (¢ — 1) times to
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construct the Kx,x, (i < t) in each prediction process and it
is extremely time-consuming when ¢ and [V is large.

For applying the GPR to tracking, we propose (9) can be
approximately replaced by the following expression:

t—1
£(Xi) =Ky, yr1px, D AKxlx,yi (t>2) (10)
=1

and after such a simple approximation we have been greatly

reduced the amount of calculation in the process of detection.
After we replace the f (X;) in (7) with (10), it is easy to

obtain the ultimate detection and update formula as follows.

f(Xt) = KXtAt_lBt—l (t Z 2) (113)
Ay =(1-0)A +6X, (11b)
B, = (1-6)B_1 + 0Ky x, vt (11¢)

where ¢ represents the learning rate in tracker, moreover the
relationship between {3; | i = 1,...,t — 1} and J can be de-
scribed as:

Br=(1-24)"?

t—1

Y Bi=1 (12)
i=1

Bi—1/Bi =1-6 (i>2)

Following (11), we can not only predict the regression val-
ue of test samples quickly by our GPRT model but also update
our GPRT model in an efficient way. It is worth noting that
this scheme allows the model to be updated without storing
all the previous information, and only the current model A,
and B, need to be saved for predicting the next frame. By
using this predict and update method for our GPRT, we call it
GPRTE in the following sections.

Online Update and Detection (II) In the Kernel Ridge
Regression (KRR) [Vovk, 2013], we are mainly solving em-
pirical risk minimisation in dual space as:

N
mainz lyi — (w, ¢ (x:))]* + X [|w|?
=t (13)

N
s.t.w = Zaigb (xi)
i=1

where ¢ (x;) is mapping the input of a linear problem to a
non-linear space.

Considering the relationship between the GPR and KR-
R [Rasmussen and Williams, 20061, it is easy to prove that if
in KRR we use the same kernel as the covariance function in
GPR and moreover, the regularisation parameter A in KRR is
the same as the noise variance a% in GPR, then the GPR pos-
terior mean coincides with the KRR estimates of the function.
For this reason, we wish to take advantage of the relationship
between the GPR and KRR to get the update method when
applying the GPR to tracking.

For tracking, we can formulate the cost function of KRR in
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dual space as:

e iﬂf (ZNI [0 (<) ws) = )" +A|wj||2>

m=1

N
stow; =Y o (x)
i=1

(14
where P represents the number of frames, N represents the
number of training samples in each frame, x7" and y;" rep-
resents the m-th sample in j-th frame and 1ts label, simi-
lar to (7), B; represents the weight of each frame, o =
{a1, ag, ..., an } represents the dual variables to be optimized
and the solution is restricted to only contain one set of dual
variables for keeping the simplicity

The cost function in (14) is minimized by:

-1
P

P
= Z BiKx,x, (Kx,x, + AI) Z BiKx;x,¥;
j=1 j=1
15)
According the relationship between GPR and KRR and
compared (5a) and (15), we can naturally bring (15) into (8),
and utilize the approximate method in (10) as well, then it is
easy to obtain the ultimate detection and update formula as
follows.

£(Xy) = KXtAf,_lMtilthfl (t>2) (16a)
A= (1—8) A + 06X, (16b)
M; = (1 - 0) M1 + 6Kx,x, (Kx,x, +AI)  (16¢)
N, =(1-6)N;_; + 0Kx,x,¥t (16d)

Compared to GPRTE, this update approach considers the
relationship between GPR and KRR, moreover, from the per-
spective of minimizing empirical risk directly derived how to
update the GPR model during tracking and it is slightly more
complex than GPRTE. Similar to GPRTE, this scheme also
allows the model to be updated without storing all the pre-
vious information, and only the current model A;, M; and
N, need to be saved for predicting the next frame. By us-
ing this update method for our GPRT, we call it GPRT in the
following sections.

3.3 Accelerated Calculation

As we know, in GPR, when the number of training samples
and the feature dimension of each sample are large, it is high-
ly time-consuming to calculate the gaussian covariance ma-
trix K. However, it is not difficult to observe that there are a
large number of parallel operations in calculating the K. As-
suming that the target size is w X h, the sampling region is
W x H = ow X oh, the channels of hand-crafted features is
d, so the feature dimension of each sample is d x w x h and the
number of samples is (W — w + 1) x (H — h + 1). To estab-
lish the gaussian covariance matrix K, the time complexity is
about O (dwhW H) = O (dw?h?c?). We propose that using
the GPUs allows the K to be computed in the time complexi-
ty O (dw?h*c?/ P) instead of O (dw?h?c?), where P is the
maximum degree of parallelism in GPU. In practice, w and h
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Algorithm 1 Proposed tracking framework.

Input:
Initial target location and scale x; = (p1, $1);
Output:
Estimated target location and scale x; = (py, s¢);
1: Compute 1 = +/min (4000, max (s1, 1000)) /s1 as the
scaling ratio to ensure the speed and accuracy;
2: repeat
3:  Crop out the square searching region S; in frame ¢
based on x;_; and crop ratio o;
4:  Resize S; according to the s; and scaling ratio u;
5:  Extract the HOG and Color-Names features from S
and do L2 regularization to 1 and 0.4, respectively;
6:  Compute the regression value of test samples using
(11a) or (16a) and find the maximum value to locate
the new position of the target p,;
7:  Build the scale pyramid based on p; and s;_1, then
using DSST to estimate the scale of the target s;
8:  Crop out the square learning region L, in frame ¢ based
on x; and crop ratio o;
9: Do 4 and 5 operations on L;
10:  Update the GPRT model using (11) or (16);
11:  Build the scale pyramid based on p; and s;, then up-
date the DSST model;
12: until End of video sequences;

are about 15 (HOG and Color-Names features with cell size
4), o is about 4, d is about 40, and P is about 3600. So, we
can probably reduce the time complexity from O (dw2h202)
to O (dwh) by GPU which allows us to perform about 3000
times faster than before.

4 Implementation Details

We present an outline of our method in Algorithm 1 and more
implementation details are discussed as follows.

Features. For simplicity, our GPRTE and GPRT are
both based on hand-crafted features. We use 31-channels
HOG [Dalal and Triggs, 2005] and 10-channels Color-
Names [Danelljan et al., 2014b] features since they show
high robustness in object tracking [Danelljan er al., 2016a;
Tang and Feng, 2015; Danelljan et al., 2016al. Similar to
MKCEF tracker [Tang and Feng, 2015], we also set the cel-
1 size of 4 x 4 in both HOG and Color-Names features, but
unlike it, we normalize the HOG and Color-Names features
and make their L2-norm equal to 1 and 0.4, respectively.

Scale. As for scale estimation, we use DSST [Danelljan et
al., 2014a] and similar to it we only use HOG features.

Parameters Setup. We set the learning rate § in section
3.2 to 0.004 and 0.007 for our GPRTE and GPRT, respec-
tively. Meanwhile, we set the learning and search ratio o in
section 3.2 to 4 for both GPRTE and GPRT 2. For accuracy
and speed, we resize the target in the first frame to ensure the

*In fact, because of our GPRT does not exist the boundary ef-
fect, this characteristic allow us to set up a wider range to learning
and detection. But considering the speed of the tracker, we set the
learning and search ratio similar to SRDCFE.
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Figure 2: The average precision and success plots of GPRT, GPRTE,
ECOHC, SRDCFdecon, SRDCEF, Staple, LCT, KCF and DSST on
OTB-2013 and OTB-2015 datasets. We report the mean distance
precision score and AUC score of each tracker in the legend. Our G-
PRT and GPRTE outperform all the existing state-of-the-art trackers
including ECOHC with hand-crafted features.

minimum and maximum area are 1000 and 4000 pixels, re-
spectively, and in the subsequence, to ensure the number of
the training samples in each frame are the same, and the fea-
ture dimension of each sample are the same too, we resize the
target in each frame to the same as the size in the first frame.

Kernel Selection. We use single gaussian kernel described
in (1). In gaussian kernel, we set 0y = 1.0 and o, = 0.01,
and even though the parameter [ can be obtained by maxi-
mization (2) in the first frame of every sequence, we observe
that this parameter roughly presents a gaussian distribution
centered at 1.4 on OTB-2015 dataset, therefore for the sake
of simplicity we set it to 1.4 on all sequences.

Platform. Our GPRTE and GPRT are both implemented
under MATLAB and C++. The experiments are performed
on Linux with IntelE5-2673 2.4GHz CPU and single TITAN
X GPU with CUDA-8.0.

5 Experimental Results

We show the performance of our GPRTE and GPRT on two
public benchmarks: OTB-2013 [Wu et al., 2013] and OTB-
2015 [Wu et al., 2015], and compare them with the state-of-
the-art trackers with hand-crafted features. All parameters of
our GPRTE and GPRT are kept consistent across all experi-
mental comparisons. The mean fps of our GPRTE over the
OTB-2015 sequences is about 7 and GPRT is about 5.

All trackers are quantitatively evaluated by six metrics,
(i) Center Error, which is calculated as the average Euclidean
distance between the centers of located objects and their
ground truths in a sequence; (ii) Distance Precision, which is
the percentage of frames where the objects are located within
the center errors of 0 to ¢, pixels, with ¢, = 20; (iii) Precision
Plot, which is simply a curve of the distance precisions with
t. changing from 0 to 50 pixels; (iv) Overlap Ratio, which
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Tracker GPRT GPRTE ECOHC SRDCFdecon SRDCF LCT Staple DSST KCF
Mean OP (OTB-2013)  84.1 83.4 79.4 79.9 78.3 739 722 673 62.6
Mean OP (OTB-2015)  79.2 78.3 77.7 75.9 72.8 63.0 69.1 61.6 553

Table 1: A comparison with state-of-the-art trackers on the OTB-2013 and OTB-2015 datasets using mean overlap precision (in percent). The
best three results for each dataset are shown in red, blue and magenta fonts, respectively. Our GPRT achieves a gain of 4.2% and 1.5% on
OTB-2013 and OTB-2015 respectively compared to the second best tracker except for our GPRTE.
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Figure 3: The success plots of GPRT, GPRTE, and the other state-of-the-art trackers on 8 main attributes of OTB-2015 (i.e. background
clutters, deformation, fast motion, in plane rotation, illumination variation, occlusion, out of plane rotation and scale variation). We report
the mean AUC score of each tracker in the legend. Our GPRT and GPRTE outperform the other state-of-the-art trackers in most cases.

is defined as the average ratio of intersection and union of
the estimated bounding box and ground truth in a sequence;
(v) Overlap Precision, which is the percentage of frames with
the overlap ratio exceeding ¢, in a sequence, with t, = 0.5;
(vi) Success Plot, which is simply a curve of overlap preci-
sions with the overlap ratio changing from O to 1, and AUC is
the area under the success plot.

Overall performance. Our tracker, denoted by GPRT and
GPRTE, are compared with the other seven state-of-the-art
trackers, including ECOHC [Danelljan et al., 2016al, SRD-
CFdecon [Danelljan et al., 2016b], SRDCF [Danelljan et al.,
2015], Staple [Bertinetto et al., 2016], LCT [Ma et al., 2015],
KCF [Henriques et al., 2015] and DSST [Danelljan ef al.,
2014a]. All trackers are based on the hand-crafted features,
and all except KCF have the scale estimation part.

Table. 1 shows the mean Overlap Precision (OP) of our G-
PRT and GPRTE, as well as the other state-of-the-art trackers
on OTB-2013 and OTB-2015 datasets. The best results on
these two datasets are obtained by our GPRT with a mean OP
of 84.1% and 79.2% respectively, leading to a significant gain
of 4.2% and 1.5% compared to the second best tracker excep-
t for our GPRTE. In addition, our GPRTE also ahead of the
other state-of-the-art trackers on both datasets in mean OP.

Figure. 2 shows the average precision and success plots of
our GPRT and GPRTE, as well as the other state-of-the-art
trackers on OTB-2013 and OTB-2015 datasets, respectively.
We also report the distance precisions and AUCs in the leg-
end. Our GPRT and GPRTE have the similar performance

on both datasets. Our GPRT obtains the distance precision
score of 86.7% and 84.3% as well as the AUC score of 67.7%
and 65.5% on OTB-2013 and OTB-2015 datasets, respective-
ly. Furthermore, our GPRT and GPRTE outperform the best
existing tracker (ECOHC) with hand-crafted features.

Compared to all the existing CF trackers which achieve
the state-of-the-art performance, the boundary effect is elim-
inated thoroughly and the kernel trick can be employed in
our GPRT and GPRTE, therefore our GPRT and GPRTE can
achieve better tracking performance than them.

Attribute-based evaluation. The videos in the benchmark
dataset OTB-2015 are annotated with 11 attributes which are
useful for analyzing the performance of trackers in different
aspects. Following [Ma et al., 2015], we also compared our
GPRT and GPRTE to the other state-of-the-art trackers on 8
main challenging attributes of OTB-2015 dataset. Figure. 3
shows the success plots and AUCs of our GPRT and GPRTE
as well as the other state-of-the-art trackers on 8 main chal-
lenging attributes, respectively. It illustrates that our GPRT
and GPRTE outperform the other state-of-the-art trackers in
most cases.

6 Conclusion

A novel tracking framework, GPRT which applying the Gaus-
sian Regression Processes to visual tracking, has been pre-
sented in this paper. Compared to all the existing CF trackers,
our GPRT not only does not exist the boundary effect, but al-
so can take advantage of the kernel trick at the same time. In
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addition, we propose two different efficient and effective up-
date methods for our GPRT. We perform comprehensive ex-
periments on two benchmark datasets: OTB-2013 and OTB-
2015. Our GPRT outperforms all the existing trackers with
hand-crafted features on both two datasets.
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