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a b s t r a c t 

Training a supernet using a copy of shared weights has become a popular approach to speed up neural ar- 

chitecture search (NAS). However, it is difficult for supernet to accurately evaluate on a large-scale search 

space due to high weight coupling in weight-sharing setting. To address this, we present a shrinking- 

and-expanding supernet that decouples the shared parameters by reducing the degree of weight shar- 

ing, avoiding unstable and inaccurate performance estimation as in previous methods. Specifically, we 

propose a new shrinking strategy that progressively simplifies the original search space by discarding 

unpromising operators in a smart way. Based on this, we further present an expanding strategy by ap- 

propriately increasing parameters of the shrunk supernet. We provide comprehensive evidences showing 

that, in weight-sharing supernet, the proposed method SE-NAS brings more accurate and more stable 

performance estimation. Experimental results on ImageNet dataset indicate that SE-NAS achieves higher 

Top-1 accuracy than its counterparts under the same complexity constraint and search space. The abla- 

tion study is presented to further understand SE-NAS. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Neural Architecture Search (NAS) is an important branch of au- 

omatic machine learning (AutoML), and has aroused growing in- 

erests due to its remarkable progress in various computer vi- 

ion tasks [1–6] . It aims to reduce the cost of human effort s on

anually designing network architectures and discover promis- 

ng models automatically by balancing performance and resource 

onstraint. Many early works of NAS are based on Reinforcement 

earning (RL) [7,8] , where a neural architecture is generated by 

gent’s action and agent’s reward is based on the evaluation per- 

ormance of the trained architecture. Evolutionary algorithm (EA) 

s an alternative to RL for optimizing the neural architecture, that 

utates well-performing models to explore better ones. However, 

hese methods [9,10] need to sample and evaluate (from scratch) 

 large number of network architectures from the search space, 

hich causes intensive computational overhead, e.g., hundreds of 

ays with thousands of GPUs. 
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To speed up the searching process, ENAS [11] is the first to 

resent weight-sharing mechanism for efficient NAS. Instead of 

raining models from scratch, it defines the supernet, in which 

ll models share one copy of weights. Another popular type of 

eight-sharing approaches are DARTS [12] and its variants [13–

5] , and they further parameterize the architecture distribution 

y a set of continuous variables, named architecture parameters. 

uch parameters and network weights are jointly optimized dur- 

ng supernet training by back-propagation. Finally, the optimal net- 

ork architecture is chosen according to the optimized architec- 

ure parameters. In contrast, One-Shot NAS [16–18] belongs to a 

ew paradigm, and it decouples the architecture search from su- 

ernet training. For training, instead of covering all weights of su- 

ernet, only a part of them are activated and optimized in one it- 

ration. As less parameters are involved, it requires less memory 

nd is more efficient. For searching, One-Shot NAS firstly samples 

any architectures by random search or evolutionary algorithms; 

hen such candidates are evaluated by inheriting weights from the 

ell-trained supernet; finally, some well-performing ones are cho- 

en from the search space. 

Though One-Shot NAS boosts searching efficiency significantly, 

t inherently suffers from terrible performance estimation in the 

valuation procedure. Because it usually searches over a large and 

omplicated network space covering billions of options for discov- 

ring the superior ones, in which supernet parameters are highly 

oupled. In this way, child models would interfere with each other 

https://doi.org/10.1016/j.patcog.2021.108025
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hen sampled and trained in different iterations, and their accu- 

acy in supernet is unavoidably averaged, so that boundaries be- 

ween strong and weak architectures are blurred. As a result, it’s 

ifficult to get stable and accurate performance ranking of candi- 

ate models by a well-trained supernet [19] . PCNAS [20] identifies 

he same issue of One-Shot NAS and calls it Posterior Fading from 

 Bayesian perspective, i.e., the gap between true parameter pos- 

erior and proxy posterior increases with the number of models in 

upernet. 

This paper aims to address the issue of weight coupling in One- 

hot NAS. From a perspective on decreasing the degree of weight 

haring, a shrinking-and-expanding supernet is presented. This is 

chieved via two strategies working at operation level and ar- 

hitecture level respectively. For the former, we propose a novel 

earch space shrinking strategy by designing powerful evaluation 

riteria of candidate operators. Our approach progressively discards 

npromising candidates from different layers and focuses on train- 

ng those potentially-good ones, which reduces difficulties of su- 

ernet to accurately predict capability of child models. For the lat- 

er, some adjacent layer-wise search spaces of small size are firstly 

erged after shrinking. And then we appropriately increase super- 

et parameters by maintaining a copy of weights independently 

or each partial model in the merged search space, so that degree 

f weight sharing is further decreased. Actually, these two strate- 

ies share the same objective and complement each other. Based 

n them, the shared weights are deeply decoupled, and the perfor- 

ance ranking of candidate architectures become more stable and 

ore accurate. 

The effectiveness of our method is verified on three popular 

earch spaces, which provides convincing empirical evidences. Ex- 

erimental results on ImageNet dataset [21] show that SE-NAS sur- 

asses existing state-of-the-art NAS methods with a clear margin 

nd achieves higher Top-1 accuracy under the same complexity 

onstraint and search space. Comprehensive experimental analy- 

is and ablation study are also conducted to further understand 

haracteristics of SE-NAS on NASBench-201 [22] . It is observed that 

he proposed shrinking-and-expanding supernet is able to provide 

ore stable and more accurate performance estimation than its 

aseline. To sum up, the main contributions of this work are as 

ollows: 

• We propose a novel search space shrinking method by de- 

signing powerful evaluation criteria of candidate operators in 

weight-sharing setting. 
• We provide a new perspective of alleviating weight coupling by 

appropriately expanding parameters of child models in super- 

net. 
• Comprehensive results show that the proposed strategies of pa- 

rameter decouple are effective, which improves the searching 

performance of one-shot NAS a lot. 

. Related Work 

Manually designed neural networks have achieved significant 

uccess in a wide range of computer vision tasks [23–27] . However, 

t is widely believed that artificial architectures are sub-optimal. 

ecently, neural architecture search (NAS) has aroused increasing 

nterests from both academia and industry. 

.1. Weight-Sharing NAS 

To reduce computation, many methods train weight-sharing su- 

ernet for efficient NAS. They fall into two categories: One-Shot 

AS [16–18,28] and gradient-based methods [12,29,30] , which dif- 

er in the modeling process of network architectures. 

Gradient-based algorithms introduce architecture parameters 

or each operator, and jointly optimize them and network weights 
2 
y back-propagation. Finally, the optimal model is chosen from a 

ell-trained supernet according to magnitudes of architecture pa- 

ameters. Early gradient-based methods [12,13] suffer from two 

ypical limitations. First, they need to utilize proxy tasks, such as 

raining with images of low resolution, or learning with only a 

ew blocks due to high consumption of GPU memory. Proxyless- 

AS [15] addresses the problem by keeping only two architectures 

n memory each time when training supernet. Second, the “winner 

akes all” effect causes premature convergence and reduces diver- 

ity of architectures. To this end, FairDARTS [31] offers each oper- 

tor independent architecture weights to resolve their unfair com- 

etition. 

One-Shot NAS belongs to a new paradigm. It firstly trains an 

ver-parameterized supernet and then searches on the discrete 

earch space covering lots of candidate models. During training 

tage, sample strategy matters since it decides how to train an ef- 

ective supernet for performance estimation. For example, the early 

ethod [32] drops out operators with increasing probability when 

raining supernet, so that weights of different models co-adapt. 

ased on this, SPOS [16] presents the uniform sampling strategy. 

or each iteration, only a single path is activated and gets opti- 

ized by regular gradient-based optimizers. FairNAS [28] strength- 

ns SPOS by complying with strict fairness for both sampling and 

raining of supernet. GreedyNAS [33] proposes a multi-path sam- 

ling strategy with rejection, and greedily discards those weak 

aths. 

Different from previous NAS methods, our approach aims to de- 

ouple supernet parameters by reducing the degree of weight shar- 

ng. Besides, this work strikes a better trade-off between searching 

erformance and cost compared to existing NAS methods. 

.2. Search Space Shrinking 

Recent progressive approaches [20,34–36] explore the network 

pace by gradually reducing the size of search space. They adopt 

rogressive shrinking strategy for different purposes. To boost 

earching efficiency, PNAS [34] performs neural architecture search 

y gradually increasing network depth. Starting from the first cell, 

ll possible block structures are trained and evaluated, in which 

ell-performing ones are further expanded and unpromising ones 

re discarded. Afterwards, EPNAS [35] extends PNAS by present- 

ng a new network transform policy with RE-INFORCE and an ef- 

ective learning strategy. To reduce memory consumption, PDARTS 

36] proposes search space approximation based on magnitudes 

f architecture parameters when progressively growing supernet 

epth. To improve ranking quality, PCNAS [20] drops out unpromis- 

ng operators layer by layer according to supernet accuracy. 

Though existing progressive methods have achieved decent re- 

ults, it’s still challenging to accurately detect unpromising oper- 

tors among lots of candidate ones due to limited capability of 

upernet. Thus, how to design effective selection criterion of op- 

rators is crucial. This work presents a new strategy of assessing 

he potential of operators by taking operator importance, selec- 

ion confidence and evaluation stability together into considera- 

ion, which is verified to benefit our shrinking method a lot. More 

mportantly, this paper presents a complementary strategy for fur- 

her alleviating weight coupling by properly expanding supernet 

arameters after shrinking step. 

. Proposed Method 

In this section, One-Shot NAS [16,28] will be briefly revisited 

rstly, followed by our motivations. Then, parameters decouple 

trategies (i.e., search space shrinking and supernet parameters ex- 

anding) will be presented to improve One-Shot NAS. 
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Table 1 

The mean Kendall’s Tau of 10 repeat experiments on NASBench-201. 

Supernet accuracy is obtained by inferring a model in weight-sharing 

setting. Standalone accuracy comes from the model by normal training 

from scratch without weight sharing. 

Metrics CIFAR-10 CIFAR-100 ImageNet-16-120 

supernet accuracy 0.543 0.532 0.539 

standalone accuracy 0.853 0.842 0.845 
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.1. Preliminary: One-Shot NAS 

Our goal is to directly learn network architectures for large- 

cale target tasks without proxy task or dataset. One-Shot NAS is 

 good choice due to its low consumption of GPU memory. Tak- 

ng MobileNet-like search space [15] as an example, the supernet 

 can be represented as a directed acyclic graph (DAG), in which 

ach node represents feature map of a network layer. An edge E i, j 

an be regarded as information flow connecting node i and node 

j, which is composed of different operations such as MobileNetV2 

locks [37] with various kernel size and expand ratio. The opera- 

ion space is defined as O and each edge has identical candidate 

perators, i.e., | O | = | O i, j | . The whole search space can be repre-

ented as a discrete set A . 

In contrast to differentiable NAS, One-Shot NAS methods decou- 

le supernet training from model search. In each iteration, a part 

f network weights sampled from N are updated for parameters 

o-adaptation. Supernet parameters can be optimized as: 

 

∗ = arg min 

W 

L train (N (A , W )) , (1) 

here L train is the loss function on the training dateset. The 

earching stage aims to find the network architecture that has the 

ptimal performance on the validation set, as: 

 

∗ = arg max a ∈ A ACC v al (N (a, W 

∗(a ))) , 
s.t. Cost(a ∗) < C, 

(2) 

here ACC v al (·) denotes supernet accuracy on the validation set. 

he architecture a inherits parameters from the well-trained super- 

et weights W 

∗ as W 

∗(a ) . Cost(a ∗) represents additional objectives 

e.g., latency or FLOPs constraint) on hardware. 

.2. Motivation 

One-Shot NAS boosts searching efficiency, while it suffers from 

wo limitations. 

First, the performance estimation of supernet is inaccurate. 

o evaluate this, we leverage Kendall’s ranking correlation coeffi- 

ient, i.e., Kendall’s Tau ( τ ), which defines a measure of correla- 

ion between two ranks. Specifically, the supernet constructed on 

ASBench-201 [22] is firstly trained following [16] . Then all child 

odels are ranked according to supernet accuracy and the ground 

ruth provided by NASBench-201 respectively. Finally, the Kendall’s 

au between such two types of ranks is computed as ranking cor- 

elation of supernet accuracy. The ranking correlation of standalone 

ccuracy (i.e., normal training from scratch without weight shar- 

ng) is also computed for comparison. Table 1 shows comparison 

esults on three different datasets. Supernet accuracy is over 0.3 

ower than standalone accuracy in ranking correlation on all three 

atasets, which suggests that supernet is far from a satisfying per- 

ormance indicator. 

Second, the model ranking based on supernet suffers limited 

tability. To verify this, we conduct 10 repeated experiments and 

et ranks of randomly selected 30 child models from NASBench- 

01 according to supernet accuracy and standalone accuracy re- 

pectively. For each child model, we retrieve its ranking values in 

ifferent runs, and visual their ranking distributions as in Fig. 1 . 
3 
ere, X-axis means child models are ordered with ground truths 

rovided by NASBench-201 and Y-axis represents model ranks 

ased on metrics. It can be found that model ranking based on 

tandalone accuracy is highly correlated to its ground-truth rank- 

ng. In contrast, supernet accuracy has a wider ranking range in 

ultiple runs. This suggests weight-sharing supernet is unstable 

s a performance estimator, which makes One-Shot NAS difficult 

o reproduce. 

Assuming inaccuracy and instability of supernet are modeled as 

 function φ and an unbiased noise q (i.e., prediction randomness) 

espectively, the issues of One-Shot NAS can be simply formulated 

s: 

CC v al (N (a, W 

∗(a ))) = φ(ACC v al (w a )) + q, 

E (q ) = 0 , (3) 

here w a denotes the weights obtained by sampling and training 

he standalone model a . Obviously, existence of φ and q will hurt 

erformance prediction of supernet. Theoretically, appropriately re- 

ucing the degree of weight sharing is a fundamental method to 

elieve negative effects of φ and q . Motivated by this, we present 

E-NAS by building a shrinking-and-expanding supernet for decou- 

ling the shared parameters, which performs search space shrink- 

ng (see Section 3.3 ) at operation level and expanding supernet pa- 

ameters (see Section 3.4 ) at architecture level respectively. 

.3. Search Space Shrinking 

Search space shrinking is a feasible method to mitigate weight 

oupling, which can reduce redundancy of supernet and improve 

ts training efficiency at the same time. However, it is compu- 

ationally intractable to enumerate all network architectures and 

valuate their performance in a large-scale search space. Hence 

hrinking search space at architecture level is impractical. Instead, 

runing operators seems to be a feasible solution. Assuming a 

iven operator is considered to be weak, it can be dropped out 

rom the search space. And those child models containing the op- 

rator are also discarded together. One of the most important con- 

erns of search space shrinking at operation level is to judge ca- 

ability of operators by an accurate metric. PDARTS [36] adopts 

hrinking methods at operation level to discard poor operators 

ccording to the magnitude of architecture parameters. One-Shot 

AS methods have no architecture parameters like PDARTS, so 

valuation criteria of candidate operators need to be defined at 

rst. 

Candidate operators evaluation. Before describing the shrink- 

ng pipeline, alternative operators in the search space is firstly 

valuated. As One-Shot NAS methods based on search space 

hrinking have to detect unpromising operators by performance 

anks of child models on the validation set, so how to evaluate 

perators based on supernet matters. The shrinking strategy aims 

o improve the ability of supernet to rank models, but it still suf- 

ers terrible performance ranking in early shrinking stage due to 

erious weight coupling. In order to prevent important operators 

rom being removed from supernet, we present a new evaluation 

riterion of candidate operators by considering evaluation stability, 

election importance and selection confidence at the same time: 

• Evaluation Stability. One trivial way of alleviating negative ef- 

fects of q is to train multiple supernets and then ignore the 

noise by computing their expectation. However, supernet train- 

ing and evaluation require extra computation cost. Thus we ap- 

proximate multiple samples by supernet parameters at different 

iterations of the last epoch. Then the averaged parameters are 

used to evaluate the child model a : 

P (a ) = ACC v al ( 
1 

K 

K ∑ 

k 

W 

∗
k (a )) , (4) 
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Fig. 1. Ranking distribution for each child model with CIFAR-10 on NASBench-201. X-axis represents ground-truth ranks sorted from the best to the worst. Each box extends 

from the lower to upper quartile values of model ranking according to different metrics (standalone accuracy and supernet accuracy). The median is marked with a line. The 

whiskers show the ranking range. Outliers are marked with circles. 
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where W 

∗
k 
(a ) represents the weight sampled at certain mini- 

batch of the last epoch. 
• Selection Importance. The selection importance of an operator 

o is further defined as the mean accuracy of child models con- 

taining the operator: 

SI o = E a ∈{ a | a ∈ A , a contains o } (P (a )) , (5) 

where o ∈ O i, j , a is uniformly sampled from the sample set 

{ a | a ∈ A , a contains o } . In practice, instead of computing the

mean accuracy precisely across the whole search space, we 

sample finite number of child models containing the opera- 

tor randomly, and then compute their mean accuracy instead. 

In Equation (5) , the operators with low importance are more 

likely to come from some weak architectures, and such oper- 

ators would encourage worse models in the search space, so 

they can be discarded safely. From this point of view, the eval- 

uation criterion is quite reasonable, since it adequately consid- 

ers the combination of an operator with other operators from 

different layers by computing mean accuracy of multiple child 

models. 
• Selection Confidence. As in Section 3.2 , empirical ACC v al (W 

∗(a )) 

causes model averaging effects and bias the performance evalu- 

ation of standalone models. In particular, weight sharing would 

narrow performance gap of different models in the search 

space. So ranking operators based on SI may cause undesired 

inconsistency with ground-truth ranking due to limited capa- 

bility of supernet accuracy. To eliminate the impacts of φ on 

search space shrinking, we further introduce the layer vari- 

ance, which reflects selection confidence of each layer and is 

leveraged to reduce uncertainty of operator selection. Assum- 

ing there’s large performance gap among different candidates 

in a layer, the operators with low importance in this layer can 

be discarded safely. That is to say, priority is always given to 

those layers with higher confidence (i.e., bigger variance) when 

pruning operators. Concretely, the confidence of an operator is 

defined as variance of candidates in corresponding layers: 

SC o = Var (SI o ) , o ∈ O i, j . (6) 

In this work, the score of an operator is defined according 

o the above three factors together. Intuitively, those operators 

ith low selection importance SI and high selection confidence SC

ould be dropped out from the search space. Therefore, the final 

core of an operator o is defined as follows: 

 o = 

normalize (SI o ) 

normalize (SC o ) 
, (7) 
t

4 
here normalize() represents mean normalization. In our ap- 

roach, S o is leveraged to rank operators and guide the whole 

hrinking process. Compared with existing shrinking methods 

20] that simply adopt supernet accuracy as a metric, the proposed 

valuation criteria are able to help supernet discover unpromising 

perators precisely. 

Removing unpromising operators As shown in Fig. 2 , we di- 

ide the shrinking pipeline into multiple stages and progressively 

iscard unpromising candidate operators. All operators (points) on 

he graph are alive before the first shrinking step. The initial train- 

ng of supernet follows [16] with uniform sampling strategy. After 

his, all operators in the operation pool are evaluated according to 

quation (7) . Then those operators with the lowest K scores are 

emoved from A and corresponding highlights in Fig. 2 are turned 

ff, which means they will not participate in the later training. The 

raining of shrunk supernet is identical to the initial training pro- 

edure. The only distinction lies in that the shrunk supernet builds 

ayer-wise search spaces of different size and flexibly samples op- 

rators for each layer. In this way, only well-performing candidate 

perators survive and those redundant ones in the original search 

pace are removed. The number of child models is gradually de- 

reasing, as if the optimal model distribution moves to a small 

rea, which can improve the ranking ability of supernet due to the 

eduction of weight coupling. It’s worthy noticing that at least one 

perator is preserved for each edge during the shrinking process, 

ince SE-NAS should not change the topology of supernet. When 

he process of search space shrinking finishes, the shrunk supernet 

an be further applied to architecture search. Finally, the optimal 

etwork architecture is retrained from scratch. The above pipeline 

f search space shrinking can be easily generalized to other cell- 

ased search spaces. 

.4. Supernet Parameters Expanding 

Layer-wise search space gradually shrinks as redundant oper- 

tors are removed by steps, enabling weight-sharing supernet to 

e decoupled. Based on this, the strategy of expanding supernet 

arameters aims at further decoupling the shared parameters, so 

hat the performance gap between a standalone model and the 

odel in weight sharing setting is bridged. Simply copying inde- 

endent weights for certain layers of a child model can decouple it 

rom other models partially, which pushes its weights more close 

o weights of the model in standalone setting. Ideally, such two 

ypes of weights will be equivalent if all layers of the model have 

heir own weights instead of inheriting weights from supernet. In 
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Fig. 2. Pipeline of the proposed method with search space shrinking. Supernet is firstly trained for some epochs with uniform sampling. After this, all operators are ranked 

by their scores according to Equation (7) . Some operators are removed from the search space by steps if their rankings fall at the tail. 

Fig. 3. A toy example of expanding supernet parameters. The algorithm starts with search space shrinking, followed by search space merging and supernet parameters 

expanding. Here, the threshold of search space merging is set to 6 and two merged child spaces are generated. 

v

j

s

c

s

d

l

g

i

c

g

m

t

r  

r

s

T

w

n

t

2

s

fi  

2

m

o

c

c

a

o

t

t

s

s

b

b

c

i

s

A

iew of this, expanding supernet parameters shares the same ob- 

ective (i.e., reduce the degree of sharing weight and decouple the 

hared weights) as the strategy of search space shrinking, and they 

omplement each other. 

Specifically, in the process of search space shrinking, we merge 

ome layer-wise search spaces of small size and continue to deeply 

ecouple the shared weights in the merged search spaces. Adjacent 

ayer-wise search spaces are merged from shallow to deep layers 

radually when the size of the child search space to be merged 

s no more than a threshold. Supernet may contain multiple such 

hild search spaces without overlaps among them, which will be 

enerated successively. The key is that each partial model in the 

erged search space maintains one copy of weights and will be 

rained independently. A toy example of expanding supernet pa- 

ameters is shown in Fig. 3 . The number ranging from 1 to 5 rep-

esents types of candidate operators for each layer. And the initial 

upernet contains 6 layers and each layer is assigned 5 operators. 

he strategy of search space shrinking reduces the size of layer- 

ise network spaces gradually. After several shrinking steps, the 

umber of candidate operators for some layers begins to be less 

han 5. Here, the threshold of search space merging is set to 6, so 

 child search spaces are generated by merging adjacent layer-wise 

earch space, i.e., from the second to the fourth layer and from the 

fth to the sixth layer. In the merged child space 1 or child space

, each partial model does not share any parameters with other 

odels. The child model belonging to the merged search space has 

nly two or three layers, thus is called partial model. 

The training strategy remains unchanged except that the de- 

oupled supernet maintains more copy of weights for the merged 

hild search spaces. Supernet parameters are gradually expanded 

long with the shrinking process, which makes supernet accuracy 

f a model more close to its true performance in standalone set- 
5 
ing. At last, supernet will become almost perfect performance es- 

imator without sharing weight, when the size of the whole search 

pace begins to be less than the predefined threshold along with 

hrinking steps. The threshold can be simply set to 50, which could 

e flexibly adjusted according to computation resources. It has to 

e emphasized that expanding supernet parameters doesn’t in- 

rease GPU memory consumption, because only one architecture 

s used and stored in memory at each iteration due to the uniform 

ampling strategy. The whole pipeline of SE-NAS is illustrated in 

lgorithm 1 . 

Algorithm 1: SE-NAS 

Input : A supernet N , the threshold of merging layer-wise 

search spaces T , the number of operators dropped out 

per iteration k . 

Output : the optimal network architecture from N 

1 while (stopping conditions are not satisfied) do 

2 Training the supernet N with uniform sampling strategy 

following [17]; 

3 Computing scores of operators from N according to 

Equation (7); 

4 Removing k operators from N with the lowest k scores; 

5 Merging adjacent layer-wise search spaces successively, 

and generating a set of merged child spaces {A i } , where 

size of A i is not more than T ; 
6 for A i in {A i } do 

7 Expanding supernet parameters by maintaining a copy 

of weights independently for each partial model in A i . 

8 end 

9 end 
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Fig. 4. The skeleton of DARTS search space. 

Table 2 

The skeleton of MobileNet-like search space. 

Input Shape Block Type Output Channel Repeat Stride 

224 2 × 3 3 × 3 conv 40 1 2 

112 2 × 40 CBS 24 1 1 

112 2 × 24 CBS 32 4 2 

56 2 × 32 CBS 56 4 2 

28 2 × 56 CBS 112 4 2 

14 2 × 112 CBS 128 4 1 

14 2 × 128 CBS 256 4 2 

7 2 × 256 CBS 432 1 1 

7 2 × 432 1 × 1 conv 1728 1 1 

7 2 × 1728 GP - 1 1 

1 2 × 1728 FC 1000 1 - 
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.5. Search Space 

Instead of searching a proxy network architecture with fewer 

uilding blocks, this paper conducts neural architecture search 

n the target network space. Next, three different search spaces 

dopted in our method will be introduced, including NASBench- 

01 [22] , DARTS-based and MobileNet-like search spaces [12,15] . 

MobileNet-like Search Space. The MobileNet-like search space 

sed in this paper is identical to ProxylessNAS [15] and its skele- 

on is shown in Table 2 . The candidate block structure (CBS) 

dopts Inverted Bottleneck of MobileNetV2 [37] . Each layer con- 

ains 6 CBS with different kernel size and expansion ratio, plus 

ne identity operation. In addition, the expansion factor in the 

rst CBS block is set to 1, and the identity operation is not used 

n the first block of every stage. The size of search space is 

 

21 . 

DARTS Search Space . The skeleton of DARTS search space starts 

ith one 3 × 3 convolution layer. The main body of the skeleton 

s divided into three stages, connected by several reduction cells 

ith a stride of 2. Normal cell is stacked 4 times in each stage. The

keleton ends up with a classification layer to transform network 

utputs into the final prediction. Here, a cell has an ordered se- 

uence of 6 nodes (feature maps) and each node connects all pre- 

ious nodes. Every edge connecting two nodes is associated with 8 

perations ( 3 × 3 and 5 × 5 separable convolutions, 3 × 3 and 5 × 5 

ilated convolutions, 3 × 3 max and average pooling, identity and 

one). Each cell has two input nodes and a single output node. 

he input nodes are defined as the outputs of previous two cells. 

he output of a cell is obtained by concatenating all the interme- 

iate nodes. The search space is shown in Fig. 4 and its size is

 

14 . 

NASBench-201 Search Space. The search space shares the sim- 

lar skeleton as DARTS. It differs from DARTS in details. For exam- 

le, NASBench-201 stacks 5 normal cells in each stage. It replaces 

he reduction cell by a residual block with a stride of 2. In addi-

ion, each cell is composed of 4 nodes and the operation set only 

ncorporates 5 candidates ( 1 × 1 and 3 × 3 convolutions, 3 × 3 av- 

rage pooling, identity and none), which is shown in Fig. 5 . The 

earch space trains 15625 models from scratch and provides their 

round-truth performance, which allows researchers to focus on 
6 
he search algorithm itself without unnecessary repetitive training 

or the searched model. 

. Experiments 

In this section, the power of SE-NAS is demonstrated from three 

spects by experiments: first, adequate experiments are conducted 

o verify and analyze the effectiveness of the proposed shrinking- 

nd-expanding supernet in ranking correlation with ground truth 

nd ranking stability. All analysis experiments are conducted on 

ASBench-201 [22] , since it provides the real performance of all 

rchitectures, which can be treated as the ground truth labels; sec- 

nd, it is shown that the searched models by SE-NAS are able to 

onsistently outperform existing NAS algorithms (SPOS [16] , Fair- 

AS [28] , FBNet [13] , ProxylessNAS [15] , PCNAS [20] , DARTS [12] )

ith a large margin on MobileNet-like and DARTS-based search 

paces respectively; third, detailed ablation studies further demon- 

trate the impacts of each component in our method. 

.1. Dataset 

ImageNet . In the paper, all comparison experiments are per- 

ormed on ILSVRC2012, CIFAR-10 and CIFAR-100 datasets. ImageNet 

21] is a large-scale dataset which contains over 1.2 million train- 

ng images and 50,0 0 0 validation images belonging to 10 0 0 classes. 

ollowing previous works [16] , the original training set is randomly 

plitted into two parts: 50 0 0 0 images for validation and the rest as

raining set. In our experiments, supernet is trained on training set 

nd operator scores are computed on validation set. The original 

alidation set is used as a test set to measure the final performance 

f the searched network architecture. 

CIFAR . CIFAR-10 dataset contains 50,0 0 0 training images and 

0,0 0 0 test images spanning 10 categories, while CIFAR-100 dataset 

as the identical number of images spanning 100 categories. For 

hese two datasets, 50 0 0 images are randomly selected from the 

riginal training set as validation set and the others as training set. 

.2. Analysis 

Ability of SE-NAS to reserve promising architectures. To ver- 

fy the effectiveness of the proposed shrinking-and-expanding 

upernet, three different metrics (random, accuracy-based and 

agnitude-based metrics) are compared on NASBench-201. In our 

ettings, the ground-truth score of each operator is computed by 

veraging ground-truth accuracy of all models containing the given 

perator, and the ground-truth ranking is obtained based on the 

round-truth scores. Alternative operators are ranked according to 

orresponding metric-based scores, in which the operator score in 

ur approach is defined as Equation (7) ; for the magnitude-based 

etric, the magnitude of architecture parameters are directly used 

s scores to rank operators following DARTS; the baseline with 

andom scores of operators is also set for comparison. Our ap- 

roach divides the process of supernet parameters decouple into 

wo stages, where each stage discards 10 operators with the low- 

st scores respectively. 

As shown in Fig. 6 , SE-NAS retains most of operators with the 

op 21 ground-truth rankings in the first shrinking stage. For the 
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Fig. 5. The skeleton of NASBench-201 search space. 

Fig. 6. The operator distribution at different stages of supernet parameters decouple on NASBench-201 with CIFAR-10. The decouple process is divided into two stages and 

each stage discards 10 operators. 
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econd stage, both random and magnitude-based metrics remove 

ost of operators in the top 10 ground-truth rankings, while SE- 

AS reserves most of them. Moreover, our approach makes sure 

hat most of reserved operators in the second shrinking stage 

ave higher ground-truth scores than the removed ones. Actually, 

here’s no guarantee that child models with the optimal perfor- 

ance must be hidden in the shrunk search space that contains 

he operators with top ground-truth rankings. While it’s reason- 

ble to believe SE-NAS is more likely to discover well-behaved ar- 

hitectures from the shrunk search space. Because the operators 

ith the top scores tend to come from some well-performing ar- 

hitectures, and such operators would encourage superior network 

rchitectures in the search space, so SE-NAS preserves them. 

Ranking correlation of SE-NAS. Due to the weight coupling 

roblem of One-Shot NAS, there’s weak correlation between super- 

et accuracy and the ground-truth accuracy. So in this section, the 

bility of SE-NAS to rank models is verified by comparing rank- 

ng correlation of the decoupled supernet with its baseline [16] . To 

uantify ranking correlation of a supernet, we rank child models in 

he current search space according to supernet accuracy, and then 

ompute the Kendall ranking correlation coefficient (Kendall’s Tau 

or short) between the ranking and the ground-truth ranking pro- 

ided by NASBench-201. In detail, our approach divides the pro- 

ess of supernet parameters decouple into two stages and each 

tage trains supernet for 20 epochs. For some epochs, child mod- 

ls in the shrunk supernet are ranked according to the accuracy in 

eight-sharing setting and the ground-truth accuracy respectively. 

hen the Kendall’s Tau between these two types of ranks is com- 

uted as the ranking correlation coefficient. Without shrinking and 

xpanding supernet parameters, the baseline computes the ranking 

orrelation coefficient at some epochs based on its own supernet. 

Fig. 7 shows comparison results of ranking correlation on three 

ifferent datasets (CIFAR-10, CIFAR-100, ImageNet-16-120). It can 

e found that SE-NAS gradually achieves higher ranking correlation 

han its baseline at the end of the first stage of parameters decou- 

le. After the second parameters decouple stage, ranking correla- 

ion of SE-NAS surpasses the baseline with a clear margin on all 

hree datasets, which suggests that the shrinking-and-expanding 

upernet provides more accurate performance estimation than the 

riginal supernet when evaluating the capability of child models. 

(

7 
Ranking stability of SE-NAS. It has been shown that SE-NAS 

s able to improve ranking correlation of supernet. In this section, 

anking stability of the shrinking-and-expanding supernet is fur- 

her discussed. To verify this, 10 independent repeat experiments 

re conducted on three different datasets (CIFAR-10, CIFAR-100, 

mageNet-16-120) respectively. Then the distributions of ranking 

orrelation of SE-NAS and the baseline [16] in different runs are 

isualized. In detail, the process of supernet parameters decouple 

s divided into two stages and each stage trains supernet for 20 

pochs. After two parameters decouple stages, the ranking correla- 

ion of the child models in the shrunk search space is computed 

ased on the decoupled supernet. And the baseline uses its own 

upernet to compute the ranking correlation coefficient. 

As Fig. 8 shows, the ranking correlation of our approach is more 

table than the baseline in different runs. Obviously, it has much 

maller variance and higher mean than its baseline on all three 

atasets, which demonstrates SE-NAS has more stable model rank- 

ng by reducing candidate operators of search space and expanding 

upernet parameters. Additionally, the stabilized evaluation crite- 

ion ( Equation (4) ) also contributes a lot to the current results. In

ractice, stability is a crucial advantage for NAS and can relieve the 

roblem of reproducibility for weight-sharing NAS methods. 

.3. Overall Comparison Results 

In this section, comprehensive experiments are conducted to 

how the power of SE-NAS by comparing with different NAS meth- 

ds (e.g., FBNet [13] , ProxylessNAS [15] , DARTS [12] , FairNAS [28] ,

POS [16] ) on three popular search spaces. 

NASBench-201. SE-NAS is compared with various NAS ap- 

roaches on NASBench-201. In detail, the score of each operator 

s computed by Equation (7) . The process of parameters decouple 

s divided into two stages and supernet is trained for 20 epochs in 

ach stage. SE-NAS searches on validation and test set of CIFAR-10 

nly and then transfers the searched models to other datasets. 

From Table 3 , it can be observed that our approach achieves 

onsistent performance gain on all three datasets. SE-NAS outper- 

orms all NAS approaches except GDAS with a clear margin, while 

t achieves comparable results with GDAS using about one third 

f time. Besides, our approach has almost reached the upper limit 

optimal) of performance on NASBench-201. 
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Fig. 7. The evolution of ranking correlation on NASBench-201. Baseline refers to SPOS [16] without parameter decouple. Our method decouples supernet parameters at 20-th 

epoch and 40-th epoch respectively. 

Fig. 8. The distribution of ranking correlation of 10 repeated experiments on NASBench-201. Baseline refers to SPOS [16] . The Y-axis represents the range of ranking corre- 

lation coefficient from different repeated experiments. 

Table 3 

Searching results on NASBench-201. 6 different searching algorithms are compared on the search space. The mean accuracy of searched 

models is reported for different NAS methods. Training cost is computed by running each algorithm on a single GPU (GeForce GTX 1080 Ti) 

with a batch size of 256. 

Method Time (seconds) CIFAR-10 Acc. (%) CIFAR-100 Acc. (%) ImageNet-16-120 Acc. (%) 

validation test validation test validation test 

RSPS [38] 8007.1 80.42 ± 3.58 84.07 ± 3.61 52.12 ± 5.55 52.31 ± 5.77 27.22 ± 3.24 26.28 ± 3.09 

DARTS-V1 [12] 11625.7 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00 

DARTS-V2 [12] 35781.8 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00 

GDAS [39] 31609.8 89.89 ± 0.08 93.61 ± 0.09 71.34 ± 0.04 70.70 ± 0.30 41.59 ± 1.33 41.71 ± 0.98 

SETN [18] 34139.5 84.04 ± 0.28 87.64 ± 0.00 58.86 ± 0.06 59.05 ± 0.24 33.06 ± 0.02 32.52 ± 0.21 

ENAS [11] 14058.8 37.51 ± 3.19 53.89 ± 0.58 13.37 ± 2.35 13.96 ± 2.33 15.06 ± 1.95 14.84 ± 2.10 

Optimal N/A 91.61 94.37 73.49 73.51 46.77 47.31 

Ours 10561.1 90.50 ± 0.09 93.47 ± 0.14 71.14 ± 0.10 71.91 ± 0.19 44.96 ± 0.94 45.66 ± 1.05 
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MobileNet-like search space. The process of supernet param- 

ters decouple is divided into multiple stages. Supernet is trained 

or 100 and 5 epochs in the first and other stages. The same train-

ng setting as [42] is adopted for training supernet. Specifically, we 

se a stochastic gradient descent (SGD) optimizer with momen- 

um 0.9 and weight decay 4 × 10 −5 . The batch size is 1024 and

he initial learning rate is 0.5. The learning rate of each iteration 

s equal to the initial learning rate multiplying 1 − e 
T , where e and 

 represent the current iteration and the number of total itera- 

ions respectively. The score of each operator is computed based 

n Equation (7) , in which 10 0 0 models containing the given op-

rator are randomly sampled for approximating sample average of 

ll candidates. When sampling child models, SE-NAS dumps mod- 

ls that don’t satisfy FLOPs constraint. For FairNAS, SE-NAS re- 

oves one operator for each layer each time because of its fair 

onstraint. For other NAS algorithms, SE-NAS removes 10 operators 

hose rankings fall at the tail in each shrinking cycle. For each 

earched model under different efficiency constrains, the Top-1 ac- 

uracy and standard deviation of three independent repeated ex- 

eriments are reported. In the re-training phrase, the training set- 
8 
ings and hyper-parameters of all searched models follow super- 

et training. All searched network architectures are trained from 

cratch for 240 epochs (30 0 0 0 0 iterations). 

(1) Searching results under the constraint of FLOPs. As shown 

n Table 4 , it can be observed that training cost of SE-NAS is much

ess than that of its counterparts on ImageNet, which indicates SE- 

AS brings significant efficiency improvement by shrinking search 

pace, since it progressively reduces the size of search space. More 

mportantly, the proposed method achieves better searching per- 

ormance than its baselines under different FLOPs constraints. For 

xample, SE-NAS discovers the network architectures from the 

obileNet-like search space with at least 0.3%, 0.2%, 0.9% and 

.6% higher accuracy than other NAS methods at the FLOPs level 

f 250M, 320M, 470M and 590M respectively. Noticing that the 

earch space and setting of SE-NAS-D follow PCNAS [20] , which 

dds 3 more kinds of operators on basis of MobileNet-like search 

pace. Meanwhile, the detailed architectures of searched networks 

re also visualization for verification in Fig. 9, 11, 12 . Some inter- 

sting phenomena can be observed: first, SE-NAS prefers to place 

he bottleneck blocks with large kernels and expand ratio nearby 
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Table 4 

ImageNet results on DARTS and MobileNet-like search space under constraint of FLOPs. The average accuracy and standard deviation of searched 

models are reported. The structures of models searched by SE-NAS are visualized in Fig. 9 , 11 , 12 . � searched on CIFAR10. † : reported in GreedyNAS 

[33] . 

Architecture Search Method Shrinking Search Space FLOPs (M) Params. (M) Top-1 Acc. (%) Time (GPU-days) 

MobileNetV2- 1 . 0 × [37] manual × - 300 - 72.0 - 

FBNet-A [13] gradient × MobileNet 249 4.9 73.0 9 

SE-NAS-A gradient � MobileNet 250 ± 1 4.7 ± 0.1 73.30 ± 0.07 7 

ProxylessNAS-R [15] gradient × MobileNet 320 3.8 74.6 15 † 

FairNAS [28] EA × MobileNet 321 4.4 74.7 12 † 

SE-NAS-B gradient � MobileNet 321 ± 1 3.9 ± 0.2 74.86 ± 0.10 7 

Random - × MobileNet 472 ± 6 5.2 ± 0.9 72.77 ± 1.09 - 

SPOS [16] EA × MobileNet 466 7.1 74.8 12 † 

ProxylessNAS [15] gradient × MobileNet 465 7.1 75.1 15 † 

SE-NAS-C gradient � MobileNet 470 ± 2 6.0 ± 0.5 76.01 ± 0.13 7 

ShuffleNetV2- 2 . 0 × [26] manual × - 591 - 74.9 - 

NASNet-A [40] RL × NASNet 564 5.3 74.0 1800 

PCNAS [20] gradient � MobileNet 595 5.1 76.1 - 

DARTS [12] gradient × DARTS 595 4.9 73.1 4 � † 

GDAS [39] gradient × DARTS 581 5.3 74.0 0.2 

SNAS [41] gradient × DARTS 522 4.3 72.7 1.5 

SE-NAS-D gradient � MobileNet 592 ± 2 5.4 ± 0.2 76.75 ± 0.09 7 

SE-NAS-E gradient � DARTS 597 ± 3 5.2 ± 0.4 74.72 ± 0.15 8 

Fig. 9. visualization of the searched architectures under the constraint of FLOPs. Rectangle boxes are used to represent blocks for each layer. The kernel size of the depth- 

wise convolution is represented with different colors, blue for kernel size of 7, orange for kernel size of 5, green for kernel size of 3, light color for group size of 2 and empty 

for “Identity” operator. The height of rectangle boxes represents the expansion rate of the block. Totted line denotes down-sample layers with stride of 2. 

Fig. 10. visualization of the searched architectures under the constraint of latency. Rectangle boxes are used to represent blocks for each layer. The kernel size of the depth- 

wise convolution is denoted with different colors, blue for kernel size of 7, orange for kernel size of 5, green for kernel size of 3, and empty for “Identity” operator. The 

height of rectangle boxes represents the expansion rate of the block. Totted line denotes down-sample layers with stride of 2. 

9 



Y. Hu, X. Wang, L. Li et al. Pattern Recognition 118 (2021) 108025 

Table 5 

ImageNet results on MobileNet-like search space under the constraint of latency. The average Top-1 accuracy and standard de- 

viation of searched models are reported. The searched network architectures are visualized in Fig. 10 . † : reported in GreedyNAS 

[33] . 

Architecture Search Method Shrinking Latency (ms) Params. (M) Top-1 Acc. (%) Time (GPU-days) 

ProxylessNAS-R [15] gradient × 17 3.8 74.6 15 † 

SPOS [16] EA × 17 4.1 74.8 12 † 

SE-NAS-F gradient � 16 ± 1 3.9 ± 0.3 74.79 ± 0.08 7 

SPOS [16] EA × 22 7.1 75.3 12 † 

ProxylessNAS [15] gradient × 22 7.1 75.1 15 † 

SE-NAS-G gradient � 23 ± 0 6.3 ± 0.2 75.87 ± 0.10 7 

Fig. 11. Normal cell of SE-NAS-E. 
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he down-sampling block or later stages to preserve more infor- 

ation. Second, the models searched by SE-NAS tend to be deeper, 

hich differentiates our approach from existing NAS methods. Ac- 

ually, the result is reasonable: the deeper model can extract more 

owerful features, since functions that can be represented com- 

actly by deep architectures cannot be represented by a compact 

hallow architecture [43] . Besides, the searching results of random 

earch are also reported. It is worthy of noticing that SE-NAS out- 

erforms random search with a clear margin, which demonstrates 

he strong ability of our method in discovering powerful network 

rchitectures. 

(2) Searching results under the constraint of latency. Search- 

ng experiments are further conducted to compare searching per- 

ormance of SE-NAS and others under the constraint of latency. 

he results are summarized in Table 5 . In details, the target la- 

ency is set to 17ms and 22ms respectively according to our mea- 

urement of mobile setting models on GPU. Our searched model 

n the MobileNet-like search space, namely SE-NAS-G, achieves 
Fig. 12. Reduction ce

10 
5.87% Top-1 accuracy under the constraint of 22ms latency, which 

s over 0.7% higher than its counterpart. Compared with SPOS, SE- 

AS-F achieves comparable Top-1 accuracy with less training cost 

nder the constraint of 17ms latency. The network architectures 

f searched models are visualized in Fig. 10 . It can be found that 

he searched models show different preferences under different 

earching constraints: the models searched under the constraint of 

atency tend to skip more layers for saving the inference time. For 

xample, SE-NAS-C has 17 layers while SE-NAS-G only has 14 lay- 

rs. 

DARTS search space. The effectiveness of SE-NAS over DARTS 

earch space is demonstrated in this part. In details, we apply the 

earch procedure on CIFAR-10, and then retrain the searched mod- 

ls from scratch on ImageNet. Supernet is trained for 200 and 5 

pochs in the first and other stages respectively. The initial train- 

ng of supernet adopts much more training epochs due to slow 

onvergence of supernet in DARTS search space. Similarly, SE-NAS 

emoves 10 operators from different edges each time and builds 

dge-wise search spaces. The re-training stage follows the training 

etting of [36] . As reported in Table 4 , SE-NAS brings significant 

mprovement (1.6% Top-1 accuracy) compared with its baseline on 

ARTS search space. The network architectures of searched model 

re visualized in Fig. 11 and Fig. 12 . It can be observed that the

rchitecture discovered by DARTS has lots of non-parametric oper- 

tors (e.g., Identity and Pooling), while SE-NAS prefers to replace 

hem with more parametric operators, which allows the searched 

odels to be deeper. 

.4. Ablation Study 

In this section, the impacts of different components of SE-NAS 

re further studied. Here, SPOS [16] is set as the baseline, and 

t trains supernet constructed on the MobileNet-like search space 

ith uniform sampling strategy. To make clear the contribution of 

ach component, searching results of the baseline are compared by 

ombining with different policies. The experimental setting follows 

ection 4.3 . 

The overall comparison results are reported in Table 6 . It can 

e found that searched network architecture of SPOS equipped 

ith the strategy of search space shrinking achieves 75.3% Top- 

 accuracy on ImageNet, which is 0.5% higher than its baseline 

ith comparable FLOPs. To investigate the impact of layer vari- 

nce ( Equation (6) ), the searching experiment is further conducted 
ll of SE-NAS-E. 
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Table 6 

Ablation Study on ImageNet. SI refers to operator importance (see Equation (5) ). SC denotes 

selection confidence (see Equation (6) ). 

Methods Params. FLOPs Top-1 Acc. Top-5 Acc. 

SPOS [16] 7.1M 466M 74.8% 91.5% 

SPOS + Shrinking (SI) 6.6M 468M 75.3% 92.3% 

SPOS + Shrinking (SI + SC) 6.6M 467M 75.7% 92.5% 

SPOS + Shrinking (SI + SC) + Expanding 6.5M 469M 76.1% 93.0% 
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y considering SI and SC at the same time during evaluation, 

hich brings 0.4% Top-1 accuracy improvement. Equipped with all 

omponents, Top-1 accuracy of the searched network architecture 

omes to 76.1%, which surpasses all other setting with a clear mar- 

in. 

. Conclusion and Future Work 

In this paper, we point out the problem of existing One-Shot 

AS algorithms. Due to weight coupling, weight-sharing supernet 

eads to unstable and inaccurate performance estimation. To ad- 

ress this problem, a shrinking-and-expanding supernet is pre- 

ented for decoupling supernet parameters. We make a profound 

tudy on characteristics of the decoupled supernet by conducting 

omprehensive analysis experiments on NASBench-201. The power 

f SE-NAS is demonstrated by comparing with existing NAS algo- 

ithms on various search spaces and datasets. All experimental re- 

ults prove that the proposed method helps to alleviate the dark 

ide of One-Shot NAS, thus can improve its searching performance 

ignificantly. 

It is believed that NAS will be a popular direction of automatic 

achine learning (AutoML) for a long time. As a partner tech- 

ique, hyper-parameter optimization (HPO) is also an important 

opic in AutoML, with the aim of discovering appropriate hyper- 

arameters to enhance the performance of model training. Pre- 

ious works usually apply such two techniques separately or di- 

ectly search different network architectures with the same hyper- 

arameters. However, such optimization will lead to sub-optimal 

esults, since both architecture and hyper-parameter matter and 

ifferent architectures prefer their own training hyper-parameters. 

hus, we think the joint optimization of architecture and hyper- 

arameter is a promising direction in the future. Inevitably, the 

oint search space is combinatorially large and challenging, making 

t hard to efficiently discover the optimal combination of architec- 

ure and hyper-parameter. To improve searching efficiency, candi- 

ate models can be efficiently evaluated under a proxy with com- 

utationally reduced setting instead of training them from scratch, 

.g., FBNetV3 [44] uses neural acquisition function (i.e., predic- 

or) to predict architecture statistics. AutoHAS [45] trains a weight 

haring supermodel across architecture and hyper-parameter. Be- 

ides, we think improving sample efficiency using some powerful 

lack box optimization methods [46] is also a possible direction for 

ccelerating searching process in large joint search space. 
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