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Abstract
The post-filter for microphone array speech enhancement can
effectively suppress noise including point interferers. However,
the suppression of point interferers relies on the accurate esti-
mation of the number and directions of point interferers, which
is a difficult task in practical situations. In this paper, we pro-
pose a post-filtering algorithm, which is independent of the
number and directions of point interferers. Specifically, we as-
sume that the point interferers are continuously distributed at
each direction of the plane but the probability of the interferer
occurring at each direction is different in order to calculate the
spatial covariance matrix of the point interferers. Moreover, we
assume that the noise is additive and uncorrelated with the target
signal to obtain the power spectral densities (PSDs) of the target
signal and noise. Finally, the proposed post-filter is calculated
using the estimated PSDs. Experimental results prove that the
proposed post-filtering algorithm is superior to the comparative
algorithms in the scenarios where the number and directions of
point interferers are not accurately estimated.
Index Terms: microphone array, post-filter, spatial covariance
matrix, probabilistic model

1. Introduction
Microphone arrays play an important role in speech enhance-
ment and robust speech recognition. The minimum variance
distortionless response (MVDR) beamformer takes advantage
of the spatial discriminability of the array, but its noise reduc-
tion is not sufficient because MVDR is not an optimal solution
in the minimum mean square error (MMSE) sense. The opti-
mal solution is called multichannel Wiener filter (MWF), which
can be decomposed into an MVDR beamformer followed by a
single-channel post-filter [1]. Adding a post-filter can signif-
icantly improve the noise reduction performance compared to
using MVDR alone [2, 3, 4, 5, 6, 7].

The key to implementing the post-filter is to obtain reliable
power spectral densities (PSDs) of the target signal and noise.
[2] estimates these PSDs under the assumption of a spatially-
white noise field. [3] and [4] further extend the hypothesis to the
diffuse noise field to improve the noise reduction performance.
However, [2, 3, 4] neglect the effect of the point interferers on
the post-filter estimation.

In recent years, many smart voice devices have often en-
countered point interferers, such as music and interfering speak-
ers etc. Therefore, there is a demand to design a post-filter
that can suppress point interferers to improve the quality of
the target speech. To deal with this problem, many methods
have been proposed, which can be divided into deep neural net-
work (DNN)-based methods and signal processing-based meth-

ods. The DNN-based methods generally use DNN to estimate a
mask as a post-filter [8, 9, 10]. However, the DNN-based meth-
ods exhibit limited robustness to unseen acoustic environments
and the complex network structures may cause undesirable pro-
cessing delay when running on low-power chips. The signal
processing-based methods can overcome the shortcomings of
the DNN-based methods by modeling the law of the signal. To
model the point interferers, [5] use spatial clustering to obtain
the PSD for each source. [6] estimate the PSDs in a beamspace.
[7] extend [2, 3, 4] to model the spatial covariance matrix of
the point interferers into the signal model. Although [5, 6, 7]
can handle point interferers, they are not practical because they
all require the number and directions of point interferers in ad-
vance, which is difficult to estimate accurately in practical sce-
narios.

In this paper, we extend [7] and propose a post-filter, which
is independent of the number and directions of point interfer-
ers. More specifically, we assume that the point interferers are
continuously distributed at each direction of the plane and emit
the same power, but the probability of the interferer occurring
at each direction is different. The occurrence probability of the
point interferer near the target direction is low, while the oc-
currence probability of the point interferer far from the target
direction is high. We utilize the notched distribution [11, 12]
to describe this probability. From the above assumptions, we
use the integral to obtain the interferers’ spatial covariance ma-
trix that only depends on the target direction. Further, we use
the relationship among the spatial covariance matrices of differ-
ent signals and utilize the least squares (LS) algorithm to obtain
the PSDs of the target signal, diffuse noise and point interferers
respectively. Experimental results show that the proposed post-
filter shows great advantages when the number and directions
of point interferers cannot be accurately estimated in practice.

2. Problem formulation
We consider a situation where a microphone array containing
M microphones captures the target signal in a noisy environ-
ment. The M × 1 observation vector in the short-time Fourier
transform (STFT) domain is given by

y(t, f) = s(t, f) + v(t, f) + u(t, f), (1)

where t and f denote the time and frequency indices respec-
tively, and s(t, f), v(t, f) and u(t, f) are the vectors of the
target signal, point interferers and diffuse noise as received to
the microphone array. In order to obtain an estimate of the tar-
get signal ŝ(t, f), the MWF can be performed by applying a
linear filter wmwf(t, f) to the observation vector y(t, f), i.e.,

ŝ(t, f) = wH
mwf(t, f)y(t, f), (2)



where superscript ˆ denotes an estimated value and (·)H de-
notes the conjugate transposition. In Eq. (2), wmwf(t, f) can be
factorized into an MVDR beamformer wmvdr(t, f) followed by
a single-channel post-filter wpost(t, f) [1]:

wmwf(t, f) = wmvdr(t, f)
σ2
s(t, f)

σ2
s(t, f) + σ2

ψ(t, f)︸ ︷︷ ︸
wpost(t,f)

, (3)

where σ2
s(t, f) is the target signal PSD and σ2

ψ(t, f) is the noise
PSD at the output of the beamformer, defined as

σ2
ψ(t, f) = wH

mvdr(t, f) [Rv(t, f) + Ru(t, f)] wmvdr(t, f),
(4)

where Rv(t, f) = E{v(t, f)v(t, f)H} and Ru(t, f) =
E{u(t, f)u(t, f)H} are the spatial covariance matrices of the
point interferers and diffuse noise respectively, and E{·} de-
notes the mathematical expectation. If there are N discrete in-
dependent point interferers, Rv(t, f) can be written as

Rv(t, f) =

N∑
n=1

Rvn(t, f), (5)

=

N∑
n=1

σ2
vn(t, f)in(f)iHn (f), (6)

where Rvn(t, f), σ2
vn(t, f) and in(f) are the spatial covari-

ance matrix, PSD and steer vector of the n-th point interferer.
According to Eq. (3)– Eq. (6), in order to construct the

post-filter wpost(t, f), the number of the point interferers N is
required in advance. Besides, the directions of the point inter-
ferers are also required when we construct the steer vector in
Eq. (6) [7]. However, estimating the number and directions
of point interferers accurately in real-world scenarios remains a
challenging task.

3. Proposed post-filter
In this section, we introduce the proposed post-filtering algo-
rithm, which is independent of the number and directions of
point interferers. We first model the spatial covariance matrix
Rv(t, f) using a probabilistic model and then give a method for
estimating the PSDs required to construct the post-filter.

3.1. Probabilistic model for Rv(t, f)

We consider a situation where the number and directions of
point interferers are unknown. In this case, we make the fol-
lowing assumptions:

(1) The point interferers are continuously distributed at each
direction of the plane and they emit the same power
σ2
v(t, f). The occurrence probability of the point inter-

ferer at direction θ is pv(θ, θs), where θs is the target
signal’s direction.

(2) When θ tends to θs, pv(θ, θs) tends to zero. When θ
gradually away from θs, pv(θ, θs) gradually increases1.

Although the point interferers may not satisfy the above as-
sumptions in practice, we experimentally found that these as-
sumptions can help the post-filter to effectively suppress the

1Here we only consider the situation where the point interferers and
the target are not close to each other. It is difficult to separate them by
using direction cues if they come from the same direction.
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Figure 1: The notched distribution for a given direction θs = π.

point interferers. To satisfy the assumption (2), we use the
notched distribution [11, 12] to describe pv(θ, θs),

pv(θ, θs) =
eκ − eκ cos(θ−θs)

2π [eκ − I0(κ)]
, (7)

where I0 is the modified Bessel function of the first kind and κ
controls the shape of the distribution. The notched distribution
for different values of κ is illustrated in Figure 1.

According to assumption (1) and (2), Eq. (6) can be ex-
tended into a continuous form by integrating over a 2D plane:

Rv(t, f) = σ2
v(t, f)

∫ 2π

0

pv(θ, θs)iθ(f)iHθ (f) dθ (8)

= σ2
v(t, f)Ri(f), (9)

where Ri(f) can be viewed as the spatial correlation matrix
of all point interferers and iθ(f) is the steer vector correspond-
ing to the point interferer from direction θ. Under the far-field
assumption [13], iθ(f) can be expressed as

iθ(f) =
[
1, ejAf (r2−r1)

T q(θ), . . . , ejAf (rM−r1)
T q(θ)

]T
,

(10)
where (·)T denotes the transposition, j =

√
−1 is the imagi-

nary unit, Af =
2πkf
c

, kf is the frequency in Hz corresponding
to the frequency index f , rm is the 2D location vector of them-
th microphone and q(θ) = [cos θ, sin θ]T is a direction vector.

Denoting the (a, b)-th element of Ri(f) as [Ri(f)]ab, us-
ing Eq. (10), Ri(f) in Eq. (9) can be rewritten as

[Ri(f)]ab =

∫ 2π

0

pv(θ, θs)e
jAf (ra−rb)

T q(θ) dθ, (11)

where ra and rb are the 2D location vectors of the a-th micro-
phone and the b-th microphone respectively. Substituting Eq.
(7) into Eq. (11), we can obtain

[Ri(f)]ab =
eκ

2π

∫ 2π

0
ejAf rab cos(θ−θab) dθ

eκ − I0(κ)
−

I0(κ)
∫ 2π

0
ps(θ, θs)e

jAf (ra−rb)
T q(θ) dθ

eκ − I0(κ)
, (12)

where rab = |ra − rb|, θab ∈ [−π, π] is the angle between
the vector (ra − rb) and the positive direction of the x-axis
and ps(θ, θs) is the von Mises distribution [14] defined as
ps(θ, θs) = eκ cos(θ−θs)

2πI0(κ)
. After some algebraic manipulation,

we can get the analytical solution of Eq. (12), i.e.,

[Ri(f)]ab =
eκJ0(Afrab)− J0(z)

eκ − I0(κ)
, (13)



where z =
√
A2
fr

2
ab − κ2 − 2jκAfrab cos(θab − θs) is a

complex number and J0 is the zero-order Bessel function of
the first kind. We recommend readers to refer to [15] for the de-
tailed derivation of the integral on the numerator of the second
term of Eq. (12).

As can be seen from Eq. (9) and Eq. (13), the spatial co-
variance matrix Rv(t, f) no longer depends on the number and
directions of point interferers, but only the target signal’s direc-
tion θs. We assume that the target signal’s direction is known.
This assumption can be realized by using the surveillance video.

3.2. Estimation of PSDs

In this subsection, we will utilize Ri(t, f) derived in Eq. (13)
to estimate the PSDs required for wpost(t, f) in Eq. (3).

Assuming that different signals in Eq. (1) are mutually un-
correlated, the spatial covariance matrices are related as

Ry(t, f) = Rs(t, f) + Rv(t, f) + Ru(t, f), (14)

where Rs(t, f) = E{s(t, f)s(t, f)H} and Ry(t, f) =
E{y(t, f)y(t, f)H}. In practice, Ry(t, f) can be obtained us-
ing recursive averaging. Specifically,

Ry(t, f) = αRy(t− 1, f) + (1− α)y(t, f)yH(t, f), (15)

where 0 < α < 1 is a smoothing factor.
Next, we first decompose the spatial covariance matrix of

the target signal as follows:

Rs(t, f) = σ2
s(t, f)Rh(f), (16)

where
Rh(f) = h(f)hH(f) (17)

is the spatial correlation matrix of the target signal and h(f) is
the steer vector of the target signal,

h(f) =
[
1, ejAf (r2−r1)

T q(θs), . . . , ejAf (rM−r1)
T q(θs)

]T
.

(18)
We then decompose the spatial covariance matrix of the dif-

fuse noise as follows:

Ru(t, f) = σ2
u(t, f)Γu(f), (19)

where σ2
u(t, f) and Γu(f) are the PSD and spatial correlation

matrix of the diffuse noise. The (a, b)-th element of Γu(f) can
be calculated as [16]:

[Γu(f)]ab =
sin (Afrab)

Afrab
. (20)

Substituting Eq. (9), Eq. (16) and Eq. (19) into Eq. (14),
we can obtain

Ry(t, f) = σ2
s(t, f)Rh(f)+σ2

v(t, f)Ri(f)+σ2
u(t, f)Γu(f).

(21)
Considering that Ry(t, f), Rh(f), Ri(f) and Γu(f) are Her-
mitian, we can rewrite Eq. (21) into the following form:

φ(t, f) = Ω(f)χ(t, f), (22)

where

φ(t, f) = triv{Ry(t, f)}, (23)
Ω(f) = [triv{Rh(f)}, triv{Ri(f)}, triv{Γu(f)}] , (24)

χ(t, f) =
[
σ2
s(t, f), σ2

v(t, f), σ2
u(t, f)

]T
, (25)

Algorithm 1 Proposed post-filtering algorithm per subband.

Input: y(t, f) and wmvdr(t, f), t = 1, 2, 3, . . .
1: Compute Ri(f), Rh(f) and Γu(f) using (13), (17) and

(20)
2: Ω(f)← (Rh(f),Ri(f),Γu(f)) using (24)
3: for t = 1, 2, 3, · · · do
4: Compute Ry(t, f) using (15)
5: φ(t, f)← Ry(t, f) using (23)
6: Obtain σ2

s(t, f),σ2
v(t, f) and σ2

u(t, f) using (26)
7: Obtain Rv(t, f) and Ru(t, f) using (9) and (19)
8: Obtain the post-filer wpost(t, f) using (3) and (4)
9: wmwf(t, f) = wmvdr(t, f)wpost(t, f)

10: Estimate the target signal using (2)
11: end for

where triv{R} represents a M(M+1)
2

×1 column vector formed
by stacking the upper triangular parts of an M ×M matrix R.
The LS solution for χ(t, f) is given by

χ̂(t, f) = <{Ω†(f)φ(t, f)}, (26)

where superscript † denotes pseudo-inverse and <{.} denotes
real part. In Eq. (26), we use <{.} to avoid complex results in
a heuristic manner, and we experimentally found that it outper-
formed the absolute (ABS) operation. Since PSDs can only be
positive-valued, we lower-bound the PSD estimates by 0, i.e.,
σ2
s(t, f), σ2

v(t, f), σ2
u(t, f) ≥ 0.

Finally, we obtain the PSDs required to constructwpost(t, f)
in Eq. (3) through χ̂(t, f). The proposed post-filtering algo-
rithm is listed in Algorithm 1. Although Eq. (26) in Algorithm 1
requires a computationally intensive pseudo-inverse operation,
Ω†(f) in Eq. (26) is independent of the time t. Therefore,
Ω†(f) for different target directions can be pre-calculated and
loaded into the system, which makes the proposed algorithm
suitable for real-time processing.

4. Experimental results
4.1. Data and settings

To evaluate the proposed algorithm, we convolved the room im-
pulse responses (RIRs) with the target source and point interfer-
ers to generate multi-channel mixed signals. The target source
and point interferers were randomly selected from the TIMIT
dataset [17]. Their average length was 25 s and the sampling
rate was 16 kHz. We used the real RIRs measured in the speech
& acoustic lab of the Faculty of Engineering at Bar-Ilan Univer-
sity [18]. The reverberation time T60 ≈ 360 ms and the target
source and point interferers were 2 m from the microphone ar-
ray. The array contained 4 microphones with a distance of 3 cm
between each microphone. We generated 6 types of mixed sig-
nals with a target source at 30◦. The first 3 types of the mixed
signals contained only one point interferer at 90◦ with the in-
put signal-to-interference ratio (SIR) between 0 and 10 dB. The
last 3 types of the mixed signals contained two point interferers
at 90◦ and 150◦ respectively with the input SIR between 0 and
10 dB. These 6 types of the mixed signals all contained diffuse
noise with an input signal-to-diffuse-noise ratio of 15 dB [19].

The STFT frame size was 32 ms with 50 % overlap. We
experimentally set κ = 20 and α = 0.72. In order to avoid
signal cancellation problem in the adaptive implementation of
MVDR beamformer, we chose to use the super-directive (SD)



Table 1: Results (∆PESQ / ∆oSINR) for the case of one point
interferer with different input SIRs.

Method 0 dB 5 dB 10 dB
SD + HPF 0.44 / 4.74 0.37 / 3.82 0.35 / 2.52
SD 0.16 / 2.01 0.14 / 1.96 0.13 / 1.17
SD + LPF 0.31 / 3.33 0.29 / 2.42 0.28 / 1.58
SD + Proposed 0.43 / 4.55 0.34 / 3.09 0.32 / 1.82

Table 2: Results (∆PESQ / ∆oSINR) for the case of two point
interferers with different input SIRs.

Method 0 dB 5 dB 10 dB
SD + HPF 0.51 / 4.27 0.44 / 4.12 0.43 / 3.09
SD 0.24 / 1.88 0.17 / 2.15 0.17 / 1.77
SD + LPF 0.30 / 3.17 0.27 / 2.90 0.29 / 1.99
SD + HPF 1 0.48 / 4.13 0.33 / 3.66 0.32 / 2.05
SD + Proposed 0.53 / 4.55 0.46 / 4.21 0.36 / 2.88

beamformer [20] for front-end processing which uses the time-
invariant diffuse noise field [16]. We implemented two compar-
ative post-filters: one is Leukimmiatis’s post-filter [4] (LPF),
which only considers diffuse noise, and the other one is Huang’s
post-filter [7] (HPF), which depends on the oracle number and
directions of point interferers. HPF uses Eq. (6) instead of
Eq. (8) to obtain PSDs. We did not implement the algorithm
proposed in [5] because it uses the expectation-maximization
(EM) algorithm, which is not suitable for real-time processing
compared to the above algorithms. For performance evaluation,
we focused on two objective metrics: the perceptual evalua-
tion of speech quality (PESQ) [16] and the output signal-to-
interference-and-noise ratio (oSINR) [21].

4.2. Results

Table 1 shows the performance of the algorithms as a function
of the input SIRs in a scenario with only one point interferer.
For better visualization, only the improvements of the objec-
tive measures with respect to the unprocessed microphone sig-
nal (denoted by the ∆ values) were illustrated. It can be seen
from Table 1 that the proposed algorithm performs better than
LPF and has a small gap with HPF, indicating that the proposed
algorithm can effectively suppress point interferers although it
does not utilize the number and directions of point interferers.

Table 2 shows the performance of the algorithms as a func-
tion of the input SIRs in a scenario with two point interferers.
In order to simulate the case where the number of point inter-
ferers is not estimated accurately, we added a post-filter HPF 1.
It is a modified HPF, which only considers the point interferer
at 150◦. Comparing HPF and HPF 1 in Table 2, we can see
that the performance of HPF begins to decline when the num-
ber of point interferers is not estimated accurately. However, the
proposed algorithm is better than HPF 1, and even outperforms
HPF in low input SIR scenarios (0 dB and 5 dB). This may be
because the distribution of point interferers is more in line with
the assumptions of the proposed algorithm when the number of
point interferers increases.

Figure 2 shows an example of post-filtering with two point
interferers. Compared Figure 2(c) with Figure 2(d), especially
the red box, we can see that the signal processed by HPF will
have obvious residual interfering signal when the number of
point interferers is not estimated accurately. However, the pro-
posed algorithm can effectively suppress the point interferers
without estimating the number of point interferers.

Next, we used the mixed signals of SIR = 0 dB with only
one point interferer and considered a scenario where the direc-
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(c) SD + HPF_1
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(d) SD + Proposed
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Figure 2: An example of post-filtering for two point interferers
with SIR=0 dB. HPF 1 was used to simulate the case where the
number of point interferers is not accurately estimated.
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Figure 3: PESQ (left) and oSINR (right) as a function of the
interferer’s direction estimation error.

tion of the point interferer is not estimated accurately. We con-
trolled the direction estimation error of the point interferer be-
tween−20◦ and 20◦. As can be seen from Figure 3, the perfor-
mance of HPF begins to decline and even produces lower PESQ
than LPF when the estimation of the interferer’s direction is bi-
ased. Figure 2 and Figure 3 indicate that HPF is sensitive to
estimation errors of the number and directions of point interfer-
ers. However, the proposed algorithm can effectively suppress
interference while being independent of the number and direc-
tions of point interferers. This makes it show more potentialities
in real applications.

5. Conclusions
In this paper, we proposed a microphone array post-filter that
is independent of the number and directions of point interferers.
The spatial covariance matrix of the point interferers that are re-
quired to obtain the post-filter are calculated by using a proba-
bilistic model, which only demands the target signal’s direction.
The proposed post-filter shows more practical potentialities in
the scenarios where the number and directions of point interfer-
ers cannot be accurately estimated.
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