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Abstract

SpeakerBeam is a state-of-the-art method for extracting a
speech signal of target speaker from a mixture using an adap-
tion utterance. The existing multi-channel SpeakerBeam uti-
lizes the spectral features of the signals with the ignorance of
the spatial discriminability of the multi-channel processing. In
this paper, we tightly integrate spectral and spatial informa-
tion for target speaker extraction. In the proposed scheme,
a multi-channel mixture signal is firstly filtered into a set of
beamformed signals using fixed beam patterns. An attention
network is then designed to identify the direction of the tar-
get speaker and to combine the beamformed signals into an
enhanced signal dominated by the target speaker energy. Fur-
ther, SpeakerBeam inputs the enhanced signal and outputs the
mask of the target speaker. Finally, the attention network and
SpeakerBeam are jointly trained. Experimental results demon-
strate that the proposed scheme largely improves the existing
multi-channel SpeakerBeam in low signal-to-interference ratio
or same-gender scenarios.
Index Terms: speaker extraction, multi-channel signal process-
ing, fixed beamforming, jointly training

1. Introduction
Given a speech recording of multiple speakers talking at the
same time, extracting a speech signal of a target speaker is de-
sired for numerous applications such as meeting recognition
systems and home driven devices. Although humans can eas-
ily perform this task, it is still challenging to build an effective
system for the machine to model this process [1].

An effective solution is to use speech separation meth-
ods whose purpose is to recover all signals in the mixed sig-
nal. Traditional speech separation methods mainly include non-
negative matrix factorization (NMF) [2] , independent compo-
nent analysis (ICA) [3] and spatial clustering [4, 5]. In recent
years, the deep learning-based speech separation methods rep-
resented by permutation invariant training (PIT) [6, 7], deep
clustering (DC) [8, 9] and deep attractor network (DAN) [10]
also made significant progress. However, these speech separa-
tion methods require the number of speakers in advance, which
makes these methods difficult to apply in many real-world sce-
narios where the number of speakers cannot be accurately esti-
mated.

In contrast to speech separation, speaker extraction is inde-
pendent of the number of speakers. It only extracts the target
speaker from a mixed signal. One solution for speaker extrac-
tion is to use a traditional multi-channel beamforming technique
that extracts the target signal based on the direction of arrival
(DOA) of the target speaker. However, accurately estimating
the target DOA in the presence of multiple speakers is still a
challenging task.

With the booming of the deep learning, another speaker ex-
traction method is SpeakerBeam [11, 12, 13, 14], where the
deep neural network (DNN) is informed about the target speaker
from an adaption utterance — a speech segment only contain-
ing the target speaker. Thus, DNN can output the mask cor-
responding to the target speaker using the spectral cues. Al-
though a multi-channel based SpeakerBeam has been proposed
[11, 12, 14], DNN only estimates the target mask separately on
each channel and these masks are then combined using a median
operation to obtain an overall mask. The existing multi-channel
SpeakerBeam has not taken advantage of the spatial discrim-
inability of multi-channel signals, which can distinguish signals
from different directions. Therefore, multi-channel spatial dis-
criminability can be leveraged for better estimation of the target
mask, as speaker sources are directional and usually spatially
separated in actual environment.

In this paper, we combine the merits of beamforming and
SpeakerBeam so that the spatial and spectral information can
be tightly integrated to achieve better speaker extraction per-
formance. More specifically, we first apply fixed beamform-
ing on the observed signals to generate 12 fixed beams, equally
sampled in space. When speakers are fully separated in space,
there will be a target beam in which the target speaker’s energy
dominates. Except for the target beam, the remaining 11 beams
can be viewed as non-target beams, where the energy of the
non-target speaker or background is dominant. Furthermore,
we design an attention network, which selects the target beam
and non-target beams based on the adaption utterance. Based
on the weights of the attention network output, we weight-sum
these 12 beams. This weighted summation operation can further
eliminate the energy of the non-target speaker from the target
beam, and obtain an enhanced single-channel spectrum, which
is very similar to the traditional generalized sidelobe canceller
(GSC) [15] structure. The enhanced single-channel spectrum
is then sent to SpeakerBeam to estimate the target speaker’s
mask. Finally, the attention network and SpeakerBeam are
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Figure 1: Single-channel SpeakerBeam.

jointly trained. Since the enhanced spectrum obtained by the
attention network has a higher signal-to-interference ratio (SIR)
than the spectrum of the microphone signal, SpeakerBeam can
achieve a better mask estimation performance. It is worth not-
ing that the adaption utterance guides not only SpeakerBeam
to estimate the mask, but also the attention network to weight
12 fixed beams. Thanks to the attention network, the proposed
scheme does not require the DOA of the target speaker. We
evaluate the proposed scheme on a spatialized reverberant ver-
sion of the wsj0-2mix corpus [8]. Larger improvement has been
achieved compared to the existing multi-channel SpeakerBeam.

The remainder of the paper is organized as follows. In Sec-
tion 2, we summarize the structure of SpeakerBeam. Section
3 describes the proposed scheme. Section 4 discusses relations
with prior works. We then report experimental results in Section
5 and draw the conclusion in Section 6.

2. SpeakerBeam
In this section, we review the single-channel and multi-channel
based SpeakerBeam structures proposed in [11, 12, 13, 14].

2.1. Problem formulation

The mix signal Yi(t, f) received at the i-th microphone can
be modeled in the short-time Fourier transform (STFT) as,
Yi(t, f) = Si(t, f) + Ni(t, f), where i = 1 . . . I is the in-
dex of the microphone, Si(t, f) is the reverberant speech signal
corresponding to the target speaker, Ni(t, f) is the interference
signal containing non-target speakers and background noise and
t and f denote the time and frequency indices, respectively.
SpeakerBeam aims to estimate the target speaker mask from
y(t, f), where y(t, f) = [Y1(t, f), Y2(t, f), · · · , YI(t, f)]

T

and (·)T denotes the transposition operator.

2.2. Single-channel SpeakerBeam

When the number of microphones I = 1, we can use a single-
channel SpeakerBeam [13], whose structure is shown in Figure
1. The single-channel SpeakerBeam consists of two parts: one
main network and one auxiliary network.

The main network is used to estimate the target speaker’s
mask. In order to effectively inform the main network about
the target speaker, the k-th layer in the main network is fac-
torized into M sub-layers. The output of the k-th layer is ob-
tained by weighted combination of the outputs ofM sub-layers.
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Figure 2: Proposed multi-channel SpeakerBeam scheme.

The weight vector α = [α1, α2 . . . , αM ]T corresponding toM
sub-layers can also be considered as the identity feature of the
target speaker.

The weight vector α corresponding to the target speaker
is extracted from the auxiliary network which operates on
the adaption utterance A(t, f), α = 1

TA

∑TA
t=1G (|A(t, f)|),

where TA is the length of the adaption utterance and G(·) is
a DNN whose input is the amplitude spectrum of the adaption
utterance, |A(t, f)|.

The outputs of SpeakerBeam are a target speaker mask
M

(S)
i (t, f) and an interference mask M (N)

i (t, f). The main
and auxiliary networks are jointly trained using ideal binary
masks (IBM) as targets.

2.3. Multi-channel SpeakerBeam

Multi-channel SpeakerBeam [11, 12, 14] was proposed when
I > 1. It utilizes single-channel SpeakerBeam to esti-
mate masks on each channel separately, and the final mask
is obtained by a median operation, i.e., M (v)(t, f) =

median
i

(
M

(v)
i (t, f)

)
, where v ∈ {S,N}.

3. Proposed multi-channel scheme
In the actual environment, the signals of different speakers often
come from different directions. However, in estimating the final
mask, the multi-channel SpeakerBeam mentioned in Section 2.3
does not take advantage of the spatial discriminability of multi-
channel signals, which can distinguish signals from different
directions.

In this section, we introduce our proposed multi-channel
scheme (see Figure 2), which can identify the direction of the
target speaker to further enhance the performance of Speaker-
Beam. It consists of two parts, including a fixed beamforming
part and an attention network.

3.1. Fixed beamforming

Given a microphone array, we first design 12 fixed beamform-
ers whose beam patterns are targeted at 12 directions, which are
uniformly sampled in space. We use these 12 fixed beamform-
ers to spatially filter the observed multi-channel signals to ob-
tain 12 beams, which are 0◦ beam, 30◦ beam, and so on. Each
beam is represented by Bj(t, f), where j = 1, 2, . . . , 12.



3.2. Attention network

Suppose that each speaker is at least 30 degrees apart in space
(the more fixed beamformers are in Section 3.1, the smaller this
angle is). Among the 12 beams, there will be a target beam in
which the energy of the target speaker is dominant. Except for
the target beam, the remaining 11 beams are non-target beams,
where the energy of the interference is dominant.

We then design an attention network that uses the target
speaker’s adaption utterance A(t, f) to select the target beam
and the non-target beams from the 12 beams without the tar-
get DOA information. In the attention network, a DNN Z(·) is
used to extract speaker identity features in different beams and
the adaption utterance, respectively. It is worth noting that the
output of Z(·) and the output of G(·) in SpeakerBeam can both
characterize the speaker, but they guide the network in differ-
ent forms. Therefore, Z(·) andG(·) are two different networks.
We expect that the 12 beams can be mapped to the correspond-
ing frame-level identity features by Z(·) and the frame-level
identity features obtained by the transformation of the adaption
utterance through Z(·) will undergo a time-averaging operation
to obtain the utterance-level identity feature, i.e.,

βj(t) = Z(|Bj(t, f)|), j = 1, 2, . . . , 12, (1)

βA =
1

TA

∑TA

t=1
Z(|A(t, f)|), (2)

where βj(t) is the frame-level identity feature vector of the j-th
beam and βA is the utterance-level identity feature vector of the
adaption utterance.

Since the energy of the target speaker in the target beam
is dominant, we believe that the target beam and the adaption
utterance should be similar to the identity features extracted by
Z(·), and the identity features of the non-target beams are as
different as the identity feature of the adaption utterance. The
cosine distance φj(t) is used to score the similarity between
βj(t) and βA,

φj(t) =
βj(t)βA

|βj(t)||βA|
, j = 1, 2, . . . , 12. (3)

Inspired by the traditional GSC [15] structure, the 12 sim-
ilarity scores are input into a DNN D(·) to obtain the weight
corresponding to each beam, and then we weight the 12 beams
to obtain an enhanced amplitude spectrum |E(t, f)|, i.e.,

w(t) = D (φ1(t), φ2(t), . . . , φ12(t)) , (4)

|E(t, f)| = wT (t)B(t, f), (5)

where, w(t) = [w1(t), w2(t), . . . , w12(t)]
T is a vector

containing the weights of the 12 beams and B(t, f) =

[|B1(t, f)|, |B2(t, f)|, . . . , |B12(t, f)|]T is a vector containing
the amplitude spectrum of the 12 beams. Unlike GSC, the pro-
posed attention network will identify the target beam itself with-
out the need for DOA information.

The enhanced amplitude spectrum |E(t, f)| and the adap-
tion utterance’s amplitude spectrum |A(t, f)| are further input
to the single-channel SpeakerBeam mentioned in Section 2.2 to
get the final mask. During the training phase, the attention net-
work and SpeakerBeam are jointly trained using IBM of the first
channel as the training target (although it may be better to use
the target speaker’s spectrum as the training target [6, 7], we use
IBM to be consistent with [11, 12, 13, 14]). In the test phase, in
order to reduce spectral distortion, we use a mask-based min-
imum variance distortionless response (MVDR) beamformer
[16] to obtain the target speaker’s signal.

4. Relation to prior work
To the best of our knowledge, the proposed scheme is the first
to combine the spatial discriminability of multi-channel signals
with spectral features for speaker extraction.

There are some methods [17, 18, 19, 20] that combine spa-
tial features with spectral features in terms of speech separation
task different from speaker extraction task. In [17, 18], similar
to the part of the proposed scheme, a set of fixed beamformers
is used. [17] performs speech separation on each beam, which
suffers from high computational cost. In [18], the target beam is
selected for speech separation without combining all the beams
as in the attention network we proposed, and the network for se-
lecting the target beam and the speech separation network can-
not be jointly trained. [19, 20] add a directional feature to the
input of the speech separation network to improve performance,
but this directional feature relies on an accurate estimate of each
speaker’s mask, which is difficult to guarantee.

5. Experiments
5.1. Data

To evaluate the proposed scheme, we convolved the room im-
pulse responses (RIRs) with the utterances in the wsj0-2mix
data of 8 kHz [8], which contains 20,000 training, 5,000 valida-
tion and 3,000 test single-channel two-speaker mixtures. Image
method [21, 22] was used to create the RIRs with a circular mi-
crophone array with 8 microphones, 20 cm diameter and mod-
erate reverberation (about 0.2s). The speakers were randomly
located in angles from 0◦ to 360◦. For any two speakers, we
constrained them to be at least 90◦ apart. We mixed the images
of two speakers with SIR uniformly drawn from -5 dB to 5 dB
in the training and the validation sets, and we split the test set
into 5 subsets varying only the SIR between -15 dB to 5 dB. Be-
sides, the speakers in the test set did not appear in the training
and the validation sets. For each mixture, we randomly chose an
adaptation utterance from the target speaker (different from the
utterance in the mixture). The average length of the adaptation
utterance is 10 s.

5.2. Settings

We utilized a superdirective beamformer [23] as the fixed beam-
former we mentioned in Section 3.1, because compared to other
beamformers, such as delay-and-sum beamformer, the superdi-
rective beamformer achieves a higher directivity [24].

The STFT frame size was 64 ms with 75 % overlap. The
structure of the single-channel SpeakerBeam in the proposed
scheme was the same as that of [13] with M = 30. Z(·) in
the attention network consisted of three fully connected layers,
i.e., two layers with a ReLU [25] activation and one layer with a
linear activation. The number of neurons in the three layers was
256-128-64, respectively. D(·) in the attention network had two
fully connected layers of neurons 24 and 12 respectively. The
first layer used a ReLU activation function and the second layer
used a linear activation function.

Before jointly training the attention network and Speaker-
Beam, we first pre-trained the attention network to minimize the
mean-square error (MSE) w.r.t the true target amplitude spec-
trum. We found experimentally that the pre-training is essential
to the network convergence. All the models were trained using
the ADAM optimizer [26].

We used signal-to-distortion ratio (SDR) [27] and cepstral
distance (CD) [28] as our performance measures for the exper-
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Figure 3: SDR (left) and CD (right) as a function of the input
SIRs for the test set.

Table 1: Results for the test set in different mixing conditions

Different gender Same gender All
SDR / CD SDR / CD SDR / CD

Mixture -4.42 / 4.55 -4.58 / 4.58 -4.50 / 4.57
OMVDR 4.58 / 1.97 4.89 / 1.98 4.73 / 1.97
MC-SB 1.04 / 3.40 -5.77 / 4.55 -2.09 / 3.93
Proposed 3.52 / 2.58 3.47 / 2.68 3.50 / 2.63

iments. The larger SDR, the better the performance, but CD is
the opposite.

5.3. Results and discussions

We compared the proposed scheme with the multi-channel
SpeakerBeam (MC-SB) mentioned in Section 2.3 instead of
the speech separation method, because our task is to perform
speaker extraction when the number of speakers is unknown.
Figure 3 shows the SDR and CD for the test set as a function of
the input SIRs. We can see from Figure 3 that the lower the SIR
is, the more advantageous the proposed scheme is. In the low
SIR scenario, the interference masks the target speaker. Thus, it
is difficult for MC-SB to capture the spectral cues of the target
speaker in the mixture. However, the proposed scheme over-
comes this problem by first using the attention network to en-
hance the signal from the target direction. With the increase of
SIR, the proposed scheme is still superior to MC-SB on CD, but
close to the mixture on SDR, which may be due to the inaccu-
rate mask estimation which causes great damage to the target
signal.

Table 1 summarizes the results for the test set in the same-
gender and different-gender scenarios. In this experiment, we
added an oracle MVDR beamformer (OMVDR) deriving from
IBM. It can be seen from Table 1 that MC-SB almost fail in
the case of the same-gender scenario, which was also reported
in the experiment of [12]. However, the proposed scheme is
not sensitive to the gender of the speakers in the mixture, be-
cause it does not rely entirely on the spectral cues. Besides, in
each scenario, the proposed scheme performs better than MC-
SB, which again confirms that spatial information is an impor-
tant cue in speaker extraction. OMVDR leads to around 1.2 dB
improvement to the proposed scheme on SDR, owing to using
the oracle data, which indicates that the proposed scheme still
has room for improvement.

Figure 4 shows an example of speaker extraction. The
mixture contains two female speakers. It can be seen from
Figure 4(c) and Figure 4(d) that MC-SB fail at this time, but
the proposed scheme can still obtain a more accurate target
speaker’s mask. Figure 4(e) and Figure 4(f) show the interme-
diate output of the proposed network. From Figure 4(b) and
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Figure 4: An example of speaker extraction. The mixture con-
tains two female speakers with SIR = 0 dB. The target speaker
is at 0◦ and the interference is at 120◦. (a)-(b) Spectrograms.
(c)-(d) Estimated masks. (e)-(f) Intermediate outputs of the pro-
posed network.

Figure 4(e), especially in the red box, we see that the attention
network allows |E(t, f)| in Eq. (5) to obtain more suppression
of interference energy than the spectrum of the mixture. This
is also confirmed in Figure 4(f), where the weight w1(t) of the
target beam (0◦ beam) is positive for almost all frames and the
weight w5(t) of the non-target beam (120◦ beam), where the
interference energy dominates, is the opposite. According to
Eq. (5), this will further suppress the interference energy in the
target beam, which helps SpeakerBeam to more accurately uti-
lize spectral features when estimating the target mask.

6. Conclusions
In this paper, we combined complementary spectral and spatial
information for multi-channel speaker extraction. The attention
network in the proposed scheme can identify the direction of the
target speaker according to an adaption utterance and enhance
the signal of the target direction, thereby helping SpeakerBeam
to estimate the target mask from the spectral cues. The perfor-
mance of the proposed scheme is particularly prominent in low
SIR or same-gender scenarios. In the future, we plan to utilize
the more accurate speaker representation to guide the attention
network and SpeakerBeam to track the target speaker.
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