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Abstract: The power transmission mainly depends on overhead transmission infrastructures, such as towers and lines. Automatic 

inspection by robots or UAVs for the power transmission infrastructures is an essential way to ensure the safety of power 

transmission. Automatic detection and classification of the power towers is the prerequisite for automatic inspection. This paper 

compares two state-of-art deep learning methods to realize the high-voltage power transmission tower detection. We build the 

dedicated dataset of the power towers for multi-object detection, including data collection, preprocessing and annotation. After 

that, the models of YOLO-v3 and Faster R-CNN are used to solve multi-object detection on our dataset. The performances of the 

two models are evaluated under different indicators. It is verified that Faster R-CNN has a better detection performance in 

accuracy. However, the detection speed of YOLO-V3 model is faster and can be used in real-time detection. 
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1 Introduction 

Nowadays, reliable electricity supply is related to the 

normal social economy and peoples’ life. Restricted by 

geographical and environmental factors, the electric power 

production site is far away from the high consumption area. 

The overhead transmission line becomes the main means of 

power transmission. However, high-voltage power 

transmission tower as an important part of transmission lines, 

long-term exposure to the field environment, by the wind and 

snow erosion, coupled with continuous mechanical tension 

and material aging effects, there will be a variety of damage. 

Such as tower rust, cracking and other conditions. If these 

dangerous situations can’t be dealt with in a timely manner, 

small damages may also expand and cause electric power 

transmission disruption, resulting in huge economic losses. 

So it is necessary for the overhead transmission line of the 

power tower to maintain and inspect regularly. 

At present, the main ways of inspection of high-voltage 

transmission infrastructures are manual inspection, helicopter 

inspection and UAV inspection[1]. However, some of the 

high-voltage power transmission towers standing on top of 

the hill, it leads to workers need to reach the mountains, the 

efficiency of manual inspection is very low. Some lines pass 

through inaccessible wilderness areas, adding more security 

risks to the inspection. For particularly important power 

towers and lines, helicopters are used to cooperate with 

manual inspection. The helicopter is equipped with multiple 

camera sensors. The airborne platform includes a wide range 

of testing equipment such as thermal imaging and ultraviolet 

imaging. The technicians can check the test results at any 

time to determine the parts that need to be repaired, so that 
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the workers can carry out subsequent repairs. The overall 

efficiency of the inspection is improved, but the driving 

technique is required to be close to the flight and the 

inspection operation cost is very high. It is difficult to apply 

it widely in the ordinary line inspection. Although the UAV 

inspection can reduce the inspection cost and safety risk, its 

inspection accuracy is low and the anti-interference is poor. 

The electric power industry is actively looking for automatic 

inspection solutions to solve the above problems[2]. At 

present, the detection and localization of the power towers 

is the prerequisite for automatic inspection. This has 

important guiding significance for the late maintenance of 

automatic inspection. Therefore, this paper uses the deep 

learning methods to realize the high-voltage power 

transmission tower detection and classification. 
Most of the high-voltage power transmission towers are 

located in the mountains and forests. Uneven illumination 

conditions, complex background, camera shooting angle and 

distance and other factors can have a certain impact on the 

object detection. Whitworth et al. used template-matching 

method to extract features from power towers by establishing 

a visual tracking system to locate and track the power 

towers[3]. Sun et al. reconstructed the environment of 

transmission line through three-dimensional reconstruction, 

stereo vision and stereo matching, and found the position of 

the power tower in the image by classifying the power 

tower[4]. Golightly et al. use corner detection and matching 

algorithms to detect and locate power towers. At the same 

time, in the experiment of different illumination changes, the 

corner tracking algorithm can adapt to the contrast loss in a 

short time[5]. Cheng et al. proposed an approach to detect 

the power towers object from images. Using graph cut which 

is a developing graph based images segmentation technique, 

the prior knowledge and graph cut are combined to realize 

automatic image detection and localization[6]. Tragulunch 
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et al. used the Canny edge detector to detect the edge features 

of the power towers and used the Hough transformation to 

detect the straight-line features of sub-images to locate the 

power towers[7]. Sampedro et al. applied a sliding window 

function to locate the power towers in the image and extract 

the HOG feature from image, which was passed as an input 

to the MLP classifier for training to separate the power tower 

from the background in the image[8]. Although different 

power tower detection and segmentation algorithms 

produced objective results, most of the results show only one 

type of power tower and simplify the complexity of the color, 

appearance and shape of the power tower. However, in 

actual situations, the color and materials used in the 

high-voltage power transmission towers are not the same, 

and the appearance and shape are also extremely diverse. 

With the continuous development of machine learning, the 

application of deep learning technology in the automatic 

inspection of transmission lines is becoming more and more 

extensive. Therefore, this paper uses supervised deep 

learning methods to detect and classify four different types of 

high-voltage power transmission towers. First of all, we 

collect the multi-angle, all-round images of the power towers 

as our dataset. Secondly, we use Matlab for data 

preprocessing and data augmentation, using Labelimg 

software for data labeling. Then we build two state-of-the-art 

object detection frameworks, Faster R-CNN and YOLO. We 

apply the constructed high-voltage power transmission tower 

dataset for training and testing, analyzing and evaluating the 

performance of the model through experimental results. 

Finally, we summarize and point out the future research 

directions. 

2 Establishment of Our Dataset 

2.1 Data Collecting  

Most of the high-voltage transmission infrastructures are 

installed in areas such as mountains and in the wild where 

there are few people and the terrain is complicated. In order 

to ensure the normal operation of the transmission 

infrastructures, this not only brings the difficulty of 

inspection and maintenance, but also causes great difficulty 

in collecting the images. Most of the visual information is 

captured and collected by manned helicopters, but this 

increases the cost of inspections and operations. Based on 

the above situation, our images data is mainly composed of 

two parts: the ground shooting and the DJI M200 UAV 

equipped with the Pan-Tilt camera of Zemuse X4S. Fig.1 

shows our data collection UAV system. 

 

 
 

Fig. 1: UAV data acquisition system 

Since power towers play an extremely important role in 

overhead transmission lines, different types of towers can be 

classified according to their use, shape, material and 

structure. In this paper, four common power towers with 

different shapes are collected as the research object. As 

shown in Fig.2, there are drum-shape tower, umbrella-shape 

tower, wineglass-shape tower and cathead-shape tower. 

 

 
 

Fig. 2: Four different types of towers 

2.2 Data preprocessing 

2.2.1 Data Augmentation 

In the process of using the UAV to collect experimental 

data, since the angle and intensity of different sunlight are 

different during the day, whether the neural network model 

can detect and identify the image collected at different times 

of the day depends on the integrity of the dataset. At the same 

time, the UAV performs data acquisition during flight. 

Different shooting angles and shooting distances also affect 

the detection of the high-voltage power transmission tower. 

Therefore, in order to enhance the richness of the 

experimental dataset, we process the collected images from 

the aspects of brightness and angle to expand our dataset. 

In this paper, we use Matlab to expand and enhance the 

dataset. Randomly select two values from 0.65 to 1.3 to 

adjust the brightness of original images, and save the two 

new results to the training set. This method can make up for 

the shortcoming of the neural network which is not robust to 

different illumination intensity caused by the concentration 

of image acquisition time. Then, we adopt three methods of 

rotating images 90, 180 degrees and mirroring to further 

augment the image dataset. The robustness of the neural 

network under different shooting angles can be enhanced by 

image data augmentation in angle aspect. 

2.2.2 Dataset Annotation  

In order to meet the needs of subsequent experiments, 

images in the training set is made into Pascal VOC format. 

First, we rescale the long side of training set images to 500 

pixels, adjusting the short side according to the same scaling 

ratio. The adjusted images are numbered uniformly. 

Then we use Labelimg software to label our data manually. 

No labeling is done for positive samples whose pixel area is 

too small or very unclear to prevent neural network 

over-fitting caused by these samples. In the case of occlusion, 

the target whose occlusion area is greater than 70% and the 

target at the edge of the picture whose area is less than 30% 



  

are not labeled. After each image is labeled, a corresponding 

XML file is generated, which contains the category of the 

object, the coordinates of the bounding box, and the size and 

depth of the image. Labeling images is a prerequisite for 

supervised learning. However, due to the time-consuming 

and laborious process of manual labeling, it may bring 

corresponding matching errors. This tool allows us to check 

the labeled images and related labels, and correct them in 

case there is a labeling mistake. 

3 Model Construction 

We hope that the model can detect and classify multiple 

objects at the same time. At present, the object detection 

networks with best performance and wide application 

include R-CNN, SPP-NET, Fast R-CNN, Faster R-CNN and 

YOLO. Therefore, we use two state-of-the-art deep learning 

networks, Faster R-CNN and YOLO-V3 in our experiment. 

Below, we briefly introduce two kinds of networks. 

3.1 Faster R-CNN 

The Faster R-CNN detection model is shown in Fig. 3. 

Faster R-CNN can be divided into the following four 

contents: The first content is the convolution layer. As an 

object detection method of convolutional neural networks, 

Faster R-CNN first uses a set of basic convolutional layers, 

relu layer and pooling layer to extract feature map in an input 

image. The feature map is shared for subsequent RPN layers 

and fully connected layers. The second content is the RPN 

(Region Proposal Networks).  The RPN is used to generate 

the region proposals. This layer uses Softmax to determine 

whether the anchors belong to the foreground or the 

background, and then uses the bounding box regression to 

rectify the anchors to obtain accurate objects. The third 

content is the RoI (Region of Interest) Pooling layer. This 

layer collects the feature map and proposals, synthesizing the 

information and extracting the proposal feature maps. Then 

the proposal feature maps are sent to the subsequent fully 

connected layer to determine the classes of object. The last 

content is classification. The proposal feature maps are used 

to calculate the classes of proposals, and the final precise 

position of the target box is obtained by the bounding box 

regression. 

 

 
 

Fig. 3: The structure of Faster R-CNN 

 

This model uses alternating training. It gets initial 

parameters from pre-trained VGG16. After obtaining 

parameters, we train RPN firstly and then send the result to 

Fast R-CNN. We adjust the weights of convolution layer. 

Finally, RPN get data from convolution layer. 

3.2 YOLO 

One feature of the deep learning approach is the 

end-to-end detection. Different from other methods of object 

detection, dividing the tasks of object detection into multiple 

processes such as region-proposal prediction and classified 

prediction. YOLO integrates region-proposal prediction and 

classified prediction into a neural network model. It realizes 

fast object detection and recognition with high accuracy. 

This method is more suitable for field application 

environments. In Faster R-CNN, although RPN and Fast 

R-CNN share convolution layer, in the process of training 

model, it needs to train RPN and Fast R-CNN repeatedly. 

 Different from “look twice” process of the series of 

R-CNN, YOLO only has to look once. R-CNN separates the 

detecting process into two: object detection, which is a 

classification problem, and the position of bounding box, 

which is a regression problem. In contrast, YOLO combines 

them into a regression problem. 

 The YOLO detection model is shown in Fig. 4. The 

network divides the input image of training set which has the 

object of high-voltage power transmission tower into S×S 

grids. If the center of the object ground truth falls in a grid, 

the grid is responsible for detecting the object. Each grid 

predicts B bounding boxes and their confidence scores, as 

well as C class conditional probabilities. Confidence score is 

defined as follows. 

( ) *  ,  ( ) (0,1)
truth

pred
Confidence Pr Object IOU Pr Object               (1) 

When the target is in the grid, ( ) 1Pr Object  , otherwise 0. 

truth

predIOU  is used to denote the coincidence between the real 

ground truth and the predicted bounding box. The 

confidence reflects whether the grid contains objects and the 

accuracy of the predicted bounding box when it contains 

objects. When multiple bounding boxes detect the same 

target, YOLO uses the non-maximum suppression (NMS) 

method to select the best bounding box as the final one. 

 

 
 

Fig. 4: The method of YOLO detection 

 

3.3 Model comparison 

Faster R-CNN and YOLO are good object detection 

methods. Faster R-CNN constructively proposed the RPN 

structure. After the convolutional neural network, RPN was 
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added as the branch network to realize the extraction of the 

anchor box and merged into the deep network. Faster 

R-CNN proposed RPN as a regional selection network, 

which realizes the function of the neural network to select the 

detection region. However, it still stays in the thought of 

“two-stage”, and still reflects the process of region proposal 

concretely. 

For YOLO, through the continuous improvement of 

defects, the current YOLO-V3[11] network, which is 

evolved from YOLO-V1[9] and YOLO-V2[10] networks. 

YOLO-V1 directly regresses the position and class of the 

bounding box in the output layer, making the detection speed 

very fast. However, the accuracy of identifying the position 

of the object is not high. Although each grid can predict B 

bounding boxes, only the highest bounding box of IOU is 

selected as the output of object detection, that is, each grid 

predicts at most one object. When each grid contains 

multiple objects, only one of them can be detected. In order 

to improve the accuracy of object localization, YOLO-V2 

introduces the idea of “anchor box” in Faster R-CNN, and 

uses k-means clustering algorithm to generate suitable prior 

bounding boxes. At the same time, the IOU is involved in 

distance calculations, resulting in better IOU values through 

these anchor boxes. In addition, YOLO-V2 improves the 

design of the network structure and uses convolution layer to 

replace the fully connected layer of YOLO-V1 in the output 

layer. YOLO-V3 uses multi-scale prediction to detect the 

final object based on YOLO-V2, and the network structure is 

more complex and the detection performance is stronger. 

Therefore, this paper uses YOLO-V3 to detect and classify 

high-voltage power transmission towers. 

4 Experiment and Results 

This paper uses the two best frameworks, Faster R-CNN 

and YOLO-V3, to implement the detection and classification 

of power towers. The detection models are trained and tested 

on an NVIDIA Tesla V100 server. 

4.1 Indicators of Evaluation model 

The related indicators for evaluating the effectiveness of 

the two models are as follows: 

A. Loss Function 

Loss function is one criterion for evaluating the 

performance of a model. In Faster R-CNN, the loss function 

for an image is defined as: 

 

        * * *1 1
, , ,i i cls i i i reg i i

i icls cls

L p t L p p p L t t
N N

 =       (2) 

Where i is the index of an anchor in a mini-batch and
ip is 

the predicted probability of anchor i being an object. The 

ground-truth label *

ip is 1 if the anchor is positive, and is 0 if 

the anchor is negative. 
it is a vector representing the 4 

parameterized coordinates of the predicted bounding box, 

and *

it is that of the ground-truth box associated with a 

positive anchor. The classification loss 
clsL is log loss over 

two classes (object vs. not object). For regression loss, we 

use: 

      
 

 
1

* *

, , ,

,reg i i L i i

u x y w h

L t t smooth t t


 
                 (3) 
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                 (4) 

The term  *

i regp L  means the regression loss is activated 

only for positive anchors * =1ip and is disabled otherwise 

*=0ip . 

The loss function of YOLO is defined as follows: 
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Where 
coord  is the weight of the coordinate error, 

2
S is 

the number of grids in the input image, and B is the number 

of bounding boxes generated by each grid. Referring to the 

original parameters in the YOLO-V3 model, =5coord ，

=7S ，B=9  were selected in this study. 1 =1obj

ij  denotes that 

the object falls into the 
thj  bounding box in grid i ，

otherwise 1 =0obj

ij . 
^ ^ ^ ^

, , ,i i ii
x y w h

 
 
 

 are values of the center 

coordinate, height, and width of the predicted bounding box. 

 , , ,i i i ix y w h  are true values. The parameter noobj is the 

weight of the IoU error. Referring to the original parameters 

of the YOLO-V3 model, =0.5noobj  was selected in this 

paper. 
^

iC is the predicted confidence, and 
iC is the true 

confidence. The c refers to the class to which the detected 

target belongs.  ip c  refers to the true probability that the 

object belonging to class c  is in grid i .  
^

ip c  is the 

predicted value. The
clsError for grid i  is the sum of 

classification errors for all the objects in the grid. 

B. Intersection over Union(IoU) 

IoU is a standard for defining the detection accuracy of 

target objects. IoU evaluates the performance of the model 

by calculating the overlap ratio between the predicted 

bounding box and the true bounding box as follows: 

                   
overlap

union

S
IoU

S
                                     (6) 

where 
overlapS  is the area of intersection of the predicted 

bounding box and the true bounding box. 
unionS  is the area 

of the union of the two bounding boxes. 

C. Detection Time 



  

The average detection times for two deep learning models 

were compared in this paper, and the real-time performance 

of these models was analyzed. 

D. Confusion Matrix 

For the four-classification problem of this paper, we 

construct the confusion matrix to evaluate the accuracy of the 

classification of models according to the combinations of the 

actual class and predicted class. 

4.2 Analysis of Experimental Results 

In order to verify the feasibility of the two models used in 

this paper, the loss curves of YOLO-V3 and Faster R-CNN 

are shown in Fig. 5 in the training stage. 

 

 
 

Fig. 5: The Loss curves of two models 

 

In the training stage, we can see that the loss of the two 

models are convergent. The loss curve of the YOLO-V3 

model begins to flatten after 5000 training steps, and the loss 

no longer decreases after 55000 steps. The final loss of 

YOLO-V3 is around 0.017. Although there are some 

oscillations in the convergence process of the loss of the 

Faster R-CNN model, it begins to flatten at around 3000 

steps, and the convergence speed is very fast. The final loss 

is around 0.0031. Therefore, the two models used in this 

paper can be used to train and detect the images of 

high-voltage power transmission tower. 

The IoU and average detection time of the two models are 

shown in Table 1. 

The detection results of the two models for different types 

of towers are shown in the figures. The results of the Faster 

R-CNN model are shown in Fig. 6, and the results of the 

YOLO-V3 model are shown in Fig. 7. 

The confusion matrixes of the two models in the 

classification stage are shown in Table 2 and Table 3. 

In the detection indicators, we can see that the IoU of the 

Faster R-CNN model is 0.882, which is higher than 0.874 of 

the YOLO-V3 model. This indicates that Faster R-CNN is 

better than YOLO-V3 in terms of detection accuracy. 

However, the average detection speed of the YOLO-V3 

model is faster than that of the Faster R-CNN model, so it has 

a greater advantage in the real-time detection. 

For the confusion matrix, we can see that the Faster 

R-CNN model has a better classification result with the same 

test samples. Specifically, the Faster R-CNN model has 

100% accuracy for the drum-shape tower and the 

umbrella-shape tower. This is relatively easy understanding, 

for the features of these two types are very obvious and 

distinguishable. For the wineglass-shape tower and the 

cathead-shape tower, the characteristics of these structures 

are more complicated. In addition, the changes of the 

environment condition, shooting parameters and the clarity 

of the test samples will all affect the classification accuracy. 

Table 1: Detection Indicators of Two Models 

 

Average IoU 

Average 

time

（s） 

Faster R-CNN 0.882 2.136 

YOLO-V3 0.874 0.0215 

 

 
 

Fig. 6: Tower detection results of the Faster R-CNN model 

 

 
 

 

Fig. 7: Tower detection results of the YOLO-V3 model 
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Despite of those adverse conditions, the classification 

results are quite satisfactory, with above 94% accuracy for 

Faster R-CNN model. From the confusion matrix of the 

YOLO-V3 model classification results, it can be seen that 

there is no better classification accuracy, which is caused by 

the difference in feature detection method between the two 

models. YOLO model combines the classification and 

location of the target into a regression problem. Although the 

detection speed is fast, the detection accuracy is 

correspondingly reduced.  

From the above comparisons, we can see that both Faster 

R-CNN and YOLO-V3 can be used to detect and classify the 

high-voltage power transmission tower. Faster R-CNN has 

better performance in detection accuracy, and YOLO-V3 is 

better in real-time performance. 

Table 2: Confusion matrix of Faster R-CNN model 

 
Drum 

shape 

Umbrella 

shape 

Wineglass 

shape 

Cathead 

shape 

Drum 

shape(%) 
100 0 0 0 

Umbrella 

shape(%) 
0 100 0 0 

Wineglass 

shape(%) 
0 0 94 4 

Cathead 

shape(%) 
0 0 6 96 

Table 3: Confusion matrix of YOLO-V3 model 

 
Drum 

shape 

Umbrella 

shape 

Wineglass 

shape 

Cathead 

shape 

Drum 

shape(%) 
96 2 2 2 

Umbrella 

shape(%) 
4 98 2 0 

Wineglass 

shape(%) 
0 0 88 6 

Cathead 

shape(%) 
0 0 8 92 

 

5 Conclusion 

For the automatic inspection of high-voltage transmission 

line, the detection and classification of high-voltage power 

transmission towers are the preliminary problems. We use 

two deep learning methods, Faster R-CNN and YOLO-V3, 

to verify the performances of power tower detection with 

different types in high-voltage power transmission 

environment. In this paper, the images of various forms of 

power towers are collected in the field environment of 

high-voltage power transmission firstly. All the images are 

enhanced by transforming the angles and brightness in the 

training set. Then, the two deep learning models are used to 

solve the multi-object detection and classification problems 

of the power tower. From the experiment results, we can see 

that the loss of the two models are convergent in the training 

stage. The final loss of YOLO-V3 is around 0.017, and the 

final loss of Faster R-CNN is around 0.0031. The average 

IoU of the Faster R-CNN is 0.882, which has better 

performance for localization of the high-voltage power 

tower. In addition, for the four-classification problem of this 

paper, we gave the confusion matrix of the two models. In 

the test set, Faster R-CNN has a better performance in 

detection accuracy. However, the detection speed of 

YOLO-V3 model is faster, and the average detection time is 

0.0215s, which can be realized in real-time detection. 

In the future, the detection method of power tower verified 

in this paper can be used to realize the real-time localization 

and tracking of automatic inspection by UAV. At the same 

time, we will also develop and expand the defect detection 

and analysis system to realize the automatic inspection. 
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