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Abstract— In this paper, we present a partial sparsification
scheme for the marginalization of visual inertial odometry
(VIO) systems. Sliding window optimization is widely used in
VIO systems to guarantee constant complexity by optimizing
over a set of recent states and marginalizing out past ones.
The marginalization step introduces fill-in between variables
incident to the marginalized ones, and most VIO systems
discard measurements targeted at active landmark points to
maintain sparsity of the marginalized information matrix, at
the expense of potential information loss. The scheme is to
first retain the dense prior from the marginalization excluding
visual measurements, followed by a dense marginalization step
that connects landmarks. The dense marginalization prior
is then partially sparsified to extract pseudo factors that
maintain the overall sparsity while minimizing the information
loss. The proposed scheme is tested on public datasets and
achieves appreciable results compared with several state-of-the-
art approaches. The test also demonstrates that our scheme is
applicable to real-time operations.

I. INTRODUCTION

State estimation is a crucial module of autonomous robots.
Both the robustness and accuracy of a state estimator are
essential for the motion planning and control of robots in
challenging scenarios. Due to the often limited computation
resources on board, designing and implementing a real-time
whilst optimal state estimator remains a key research focus
in the field of robotics.

Vision-only systems have been widely used for the lo-
calization of autonomous robots in indoor and GPS-denied
environments [1]–[5]. The robustness of vision-only sys-
tems, however, may often be compromised by illumination
change, motion blur or textureless area. The lack of an
accurate motion model further deteriorates the performance
of the visual tracking, resulting in suboptimal state esti-
mation accuracy. To tackle the aforementioned problems,
much attention has recently been given to assisting the
vision system with a low-cost inertial measurement unit
(IMU) due to their complementary nature [6]. Vision systems
provide exteroceptive information for long-term navigation,
while IMUs provide interoceptive information for short-term
motion update. The combined system is typically termed as
a Visual Inertial Odometry (VIO) system. VIO systems are
either based on filtering [7]–[9] or graph optimization [6],
[10]–[13]. The filtering-based approach achieves higher effi-
ciency at the expense of less accuracy compared with graph
optimization. Sliding window optimization [6], [12], [13] is
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Fig. 1. The VIO estimates with our proposed scheme are aligned with the
ground-truth trajectories of the (a)MH 02 and (b)V1 01 sequences in the
EuRoC datasets.

proposed to make a tradeoff between efficiency and accuracy
by only optimizing over a fixed-sized set of recent states
and marginalizing out past observations and states. There
are, however, several known drawbacks of such approach.
Marginalization of past states fixes the linearization points,
thus the results no longer represent the original nonlinear
optimization. Marginalization typically causes fill-in between
the variables related to the marginalized states, which turns
the sparse information matrix into a dense marginalization
prior and thus increasing the computation burden of the VIO
system.

To address the issues listed above, we propose a partial
sparsification scheme for the marginalization of sliding win-
dow VIO. The proposed scheme retains the dense marginal-
ization prior by first marginalizing out the host landmarks
and the keyframe pose excluding visual measurements, then
carries another marginalization step including the visual
cues and implements a partial sparsification step extracting
nonlinear factors from the resultant information matrix, thus
preserving the sparse nature of the VIO optimization. Our
main contributions are:
• We propose a novel sparsification scheme that re-

tains the dense prior connecting only keyframe poses
and frame states in the sliding window and extracts
landmark-to-pose factors from a full-sized marginaliza-
tion prior which also includes landmarks.

• We compare our proposed scheme with the current
state-of-the-art VIO systems on the EuRoC visual in-
ertial datasets [14] to prove its effectiveness (see Fig.
1).

• We perform a run-time analysis of our proposed method
to demonstrate that it is applicable to real-time opera-
tions.

II. RELATED WORK

VIO systems can be generally categorized into two types.
The first type is loosely coupled sensor fusion [15], [16],



where an independent visual odometry system is aided by
the IMU. The second type is tightly coupled sensor fusion
[6], [12], [13], [17], where the IMU and visual measurements
are jointly optimized. The tightly coupled VIO can be further
categorized by their backend algorithms. They are either
filtering-based [9] or optimization-based [6], [10]–[13]. The
filtering-based approach is computationally efficient, yet suf-
fers from linearization errors as the linearization points of
the state transition model and measurement model cannot
be changed. The graph optimization approach formulates
VIO as a nonlinear optimization problem and the optimal
states can be iteratively solved by standard nonlinear op-
timization techniques. The graph optimization approach is
more computationally demanding, yet the sparse nature of
the accumulated information matrix reduces the size of the
matrix to be inverted to that of only those frame states’. The
scale of the graph optimization, however, may go unbounded
with time as more frame states and landmark positions are
included. To attain real-time performance the problem can
be reduced to a sliding window optimization over a compu-
tationally manageable size of variables by marginalizing past
states and only optimizing over a set of most recent states.
Efficient open-source solvers such as g2o [18] and Ceres [19]
can be applied to implement real-time VIO.

Marginalization of past states may cause inaccuracy as the
linearization points of past states are fixed and the prior can
no longer represent the original nonlinear optimization prob-
lem. Moreover, marginalization causes fill-in among all the
variables related to the marginalized states, which turns the
sparse information matrix into a dense marginalization prior
and thus significantly increasing the computation burden of
the VIO system. The common approach to avoid fill-in is
discarding all the keypoints and observations observed in
marginalized keyframes. This approach inevitably reduces
the information content of the sliding window since the
observations targeted at marginalized keyframes are directly
dropped, and the solution to the sliding window optimiza-
tion is therefore no longer optimal. On the contrary, our
sparsification scheme allows the inclusion of observations
targeting at marginalized keyframes in marginalization and
retains both the dense prior connecting frame states and the
sparse pattern of the overall information matrix to minimize
the information loss in marginalization without any decrease
in efficiency.

Given the popularity of graph-based optimization, numer-
ous efforts have been made towards reducing the number of
nodes in the graph, while minimizing the approximation error
and maintaining the sparse pattern of the information matrix.
Most of the existing literature on information sparsification
focus on pose-graph node removal. Kretzschmar et al. [20]
employed the Chow-Liu Tree Approximation [21] to sparsify
the Markov blanket of the marginalized nodes. Calevaris-
Bianco et al. introduced Generic Linear Constraint (GLC)
factors [22] to approximate the information matrix of the
Markov blanket. Maruzan et al. introduced Nonlinear Factor
Recovery (NFR) [23] to use specified nonlinear factors to
approximate the dense prior by minimizing Kullback-Leibler

divergence (KLD). Hsiung et al. [24] utilizes NFR to achieve
a sparse marginalization prior, yet their experimental results
on datasets are all generated offline, which fails to demon-
strate the claimed accuracy in real time. Our sparsification
scheme follows a greedy selection method to extract nonlin-
ear landmark-to-pose factors in terms of mutual information,
after retaining the dense prior connecting keyframe poses
and frame states. We show that our partial sparsification
scheme achieves appreciable performance on the EuRoC
visual inertial datasets [14] and is applicable to real-time
operations.

III. PROBLEM FORMULATION

The sliding window VIO optimizes over a set of keyframe
poses, frame states and landmark positions

X = {xk, xf , xl}, (1)

where xk consist of poses for m consecutive keyframes, xf
consist of IMU states for n most recent frames and xl consist
of landmark positions. The IMU state fi is defined as:

fi = {ξT
i ,v

T
i ,b

T
i }T, (2)

where ξi ∈ R6 is the pose, vi ∈ R3 the velocity and bi ∈ R6

the IMU biases. The landmark position li is parameterized
as follows:

li = {u, v, λi}T, (3)

where {u, v}T is the unit unit-length direction vector of
the landmark point in the keyframe where it was observed
for the first time[13] and λi the inverse distance[4]. The
sliding window VIO is formulated as a bundle adjustment
problem and it minimizes the sum of the weighted norm of
all measurement residuals and the prior:

min
X
{rM +

∑
(i,j)∈I

rT
ijΣ
−1
ij rij

+
∑

l∈L,t∈mea(l)

ρ(rT
ltΣ
−1
lt rlt)}, (4)

where rM is the marginalization prior, I the set of pairs
of frames connected by IMU factors, rij the corresponding
factors, L the set of all landmark points, mea(l) the set of
targeting frames of point l, rlt the reprojection errors and
Σ the corresponding covariances. The Huber norm [25] is
defined as

ρ(r) =

{
r r 6 1

2
√
r − 1 r > 1

. (5)

The reprojection error rlt is defined as:

rlt = zlt − π(T−1
t Th

1

λl
π−1(u, v)), (6)

where π is the camera projection model, Tt the pose of the
target frame, Th the pose of the host frame and zlt the camera
measurement.

The second type of residual is the IMU factor. To avoid
repeated IMU reintegration in the iterative optimization, we
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Fig. 2. The proposed marginalization scheme for sliding window VIO. The blue dots represent the IMU factors, the yellow dots represent the marginalization
prior connecting all the keyframe poses and the last frame state, the camera reprojection errors are represented by black straight lines, among them the bold
lines indicate that the points are host by the connected keyframes. The variables to be marginalized are in red circle, while the red straight lines denote the
factors to be included in the marginalization, and the red dotted lines denote those to be excluded. Two possible scenarios are: (a) the last frame Fj−1

is a regular frame and we simply discard the reprojection errors targeting at Fj−1 before marginalizing out the frame state, (b) the last frame Fj−1 is a
keyframe and we first marginalize the velocity and biases of this frame then marginalize out one older keyframe Kk in the prior.

follow [26] and preintegrate a number of consecutive IMU
measurements into one IMU factor ∆f = (∆R,∆v,∆p).
∆f is initialized as (I, 0, 0)T and for each IMU measurement
(ωt, at) at time t in [ti, tj ] updated as follows:

∆Rt+1 = ∆RtExp(ωt∆t), (7)
∆vt+1 = ∆vt + ∆Rtat∆t, (8)

∆pt+1 = ∆pt + ∆vt∆t+
1

2
∆Rtat∆t

2. (9)

Exp is the composition of the hat operator (R3 → so(3)) and
the matrix exponential (so(3) → SO(3)) and maps rotation
vectors to their corresponding rotation matrices.

After introducing the preintegration technique, the IMU
factor given the measurement ∆f̃ = (∆R̃,∆ṽ,∆p̃) is then
defined as:

r∆R = Log(∆R̃TRT
i Rj), (10)

r∆v = RT
i (vj − vi − g∆tij)−∆ṽ, (11)

r∆p = RT
i (pj − pi − vi∆tij −

1

2
g∆t2ij)−∆p̃, (12)

where Log is the inverse of Exp and maps rotation
matrices to their corresponding rotation vectors, g is the
gravity vector and ∆tij = tj − ti.

The covariance matrices of IMU factors can be recursively
calculated by the error dynamics and the readers can refer
to [26] for more detailed derivation of IMU preintegration.

The overall minimizing function can be rearranged as
f(X) = r(X)TΣ−1r(X), and the optimization step first
calculates the Jacobian of r(X):

Jr(X) = lim
δX→0

r(X ⊕ δX)	 r(X)

δX
, (13)

and the Gauss-Newton update is calculated as:

δX = −(Jr(X)TΣ−1Jr(X))−1Jr(X)TΣ−1r(X), (14)

after which the state is updated as:

X = X ⊕ δX. (15)

The calculation of Jacobian and state update is carried
iteratively to solve for the optimal estimate.

IV. MARGINALIZATION WITH PARTIAL SPASIFICATION

Marginalization of past states is necessary as the sliding
window VIO only optimizes over a window of recent states
to ensure constant complexity. We first define the Markov
blanket as the collection of state variables that are incident
to the marginalized variables. The marginalization is imple-
mented using Schur complement and only on the Markov
blanket of the variables to be marginalized. Define H as
the information matrix of the Markov blanket and b the
information vector, x the variables in the Markov blanket
and can be further split into x = [xT

m, x
T
r ]T, where xm

corresponds to the variables to be marginalized and xr the
remaining variables in the Markov blanket. H and b can be
split as:

H =

[
Hmm Hmr

Hrm Hrr

]
, b =

[
bm
br

]
, (16)

The Schur complement on H and b is implemented as
follows:

HM = Hrr −HrmH
−1
mmHmr, (17)

bM = br −HrmH
−1
mmbm. (18)

HM and bM now represent the marginalization prior and
describe the distribution of the remaining variables in the
Markov blanket.

It is important to note that the original information matrix
of the nonlinear optimization (the matrix to be inverted on
the right hand side of (14)) is derived from the IMU factors,
reprojection errors and the prior from last marginalization.
The IMU factors introduce nonzero entries between the
frame states they connect and the reprojection errors intro-
duce nonzero entries between landmarks and target frames.
The nonlinear optimization needs to invert the information
matrix to solve for the increments of optimizing variables,
and the inversion can be carried out in an efficient way
by using Schur complement and solving first for the states
and poses variables then the landmarks. The speedup in the
optimization is due to the sparse pattern of the information
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Fig. 3. The proposed partial sparsification scheme for sliding window VIO. The upper subgraphs for each subfigure represent the factor graph, while the
lower ones are the visualization of the corresponding information matrices from the marginalization prior and selective factors. (a): The marginalization
prior before partial sparsification (represented by the yellow dot) is densely connected by keyframe poses, the last frame state and landmark points targeted
at the marginalized keyframe. (b): The marginalization prior after partial sparsification is only connected by keyframe poses and the last frame state. The
extracted pseudo factors are represented by the black dotted lines. Note that the information matrix in (b) is constructed by both the new prior and the
pseudo factors, and only the dense submatrix in the upper left of it corresponds to the new marginalization prior.

matrix and if the marginalization prior somehow destroys the
overall sparsity of the information matrix, the compuation
complexity of the optimization will significantly increase.

A. Marginalization

It is worthwhile noting that marginalization causes fill-
in between variables in the Markov blanket, therefore the
marginalization strategy needs to be carefully designed to
maintain the sparsity pattern of the information matrix.

When a new frame enters the sliding window, our
marginalization step first inspects the last frame in the win-
dow. If it is not a keyframe as shown in Fig. 2a, we discard all
its visual measurements and marginalize out the frame, such
marginalization only causes fill-in between poses and states
and does not destroy the overall sparsity. If it is a keyframe as
shown in Fig. 2b, we first marginalize the velocity and biases
of this frame and then marginalize out one older keyframe
in the prior. We first discard the visual measurements from
the points host by the keyframe to active frames in the
window, as the linearization points of those active frames
would be fixed otherwise, then marginalize out the landmark
points host by the keyframe. The Markov blanket now only
contains other keyframe poses connected by the previous
marginalization prior and the points host by other keyframes
targeting at the to-be-marginalized keyframe. Current state-
of-the-art VIO systems like VINS-MONO [13] and OKVIS
[6] directly discard those visual measurements to maintain
sparsity at the expense of possible information loss. We
follow this strategy to obtain a dense prior Hd constraining
only the keyframe poses and the last frame state in the sliding
window. To further minimize information loss, we implement

another marginalization including those visual measurements
which results in a full-sized dense marginalization prior
Ho connecting also landmarks, the full-sized prior is then
partially sparsified to guarantee optimization efficiency.

B. Partial Sparsification

The inclusion of visual measurements in the marginaliza-
tion results in a dense prior Ho (see Fig. 3a) represented by
a Gaussian po(X) ∼ N(µo,Σo), µo the current estimate and
Σo = H−1

o the covariance matrix of the variables in Markov
blanket. We implement partial sparsification to sparsify the
information matrix Ht while minimizing information loss.

We first define our pseudo Gaussian distribution as
pp(Xt) ∼ N(µp,Σp) and minimize the Kullback-Leibler
divergence (KLD) between the pseudo distribution and the
original distribution:

DKL(po(X)|pp(X)) =
1

2
(
〈
Σ−1
p ,Σo

〉
− logdet(Σ−1

p Σo)

+
∥∥∥Σ
− 1

2
p (µp − µo)

∥∥∥2

− d), (19)

where d is a constant that can be neglected in the following
optimization.
pp(X) is termed as pseudo distribution as it represents

pseudo factors that we will now define to enforce sparsity.
By inspection of the information matrix structure excluding
the prior we notice that the submatrix corresponding to the
keyframe poses and frame states is dense, thus we need not
actually design sparse factors for them. Somehow we still
define a pseudo factor rp connecting all the keyframe poses
and the last state and do not explicitly specify its structure
for now. To enforce the general sparsity of the information



matrix we define the following pseudo factor between poses
and landmarks:

rl = h(T−1
t Th

1

λl
π−1(u, v)), (20)

where h transforms the homogenous coordinate into the
three-dimensional Euclidean coordinate.

The pseudo factor rl can be interpreted as a three-
dimensional measurement of landmark points in the target
frames, while the reprojection error defined in (6) can be
interpreted as a two-dimensional measurement of such. It
follows that the pseudo distribution pp(X) induced by rp
and rl maintains the sparse pattern of the overall information
matrix, as the accumulated information matrix from those
factors is similar to that from the reprojection factors in
terms of sparsity pattern (see Fig. 3b), and the efficiency
of the optimization is not compromised.

We then follow NFR [23] to recover the measurement
zi and information matrix Hi for the ith pseudo factor ri.
Choose zi = ri(µo) induces µp = µo and the third term in
(19) vanishes. The Jacobians and information matrices of the
pseudo factors are stacked as:

J =


...
Ji
...

 , H =


. . .

Hi

. . .

 , (21)

where Ji and Hi are respectively the Jacobian and infor-
mation matrix of the ith pseudo factor ri. It follows that
Hp = Σ−1

p can be written as Hp = JTHJ , and can be
substituted into (19) as:

DKL(po(X)|pp(X)) =
1

2
(
〈
JTHJ,Σo

〉
− logdet(JTHJ). (22)

Note that (22) is a convex MAXDET problem [27] and a
closed form solution exists if J is full-rank and invertible
[23] from which Hi can be solved as:

Hi = ({JΣoJ
T }i)−1, (23)

where {}i denotes the ith diagonal submatrix. The optimality
can be proved as in [23] by calculating the gradient of the
objective function (22) with respect to each block Hi on the
diagonal of H:

∂DKL

∂Hi
= {J(Σo − (JTHJ)−1)JT }i

= {JΣoJ
T −H−1}i. (24)

Note that by now the structure of rp is not defined, yet we
can still safely recover the measurements and information
matrices of rl, as rp is constrained to only connect keyframe
poses and frame states, and the corresponding Jacobian
does not have any non-zero entries related to landmarks.
As shown in Fig. 2a the marginalization prior connects all
the keyframe poses and the last active frame state in the
sliding window, which suggests that the information matrix

before marginalization has a fixed-size dense submatrix cor-
responding to those variables. It is obvious then that there is
actually no need to construct the pseudo factor rp to sparsify
the subbmatrix related to keyframe poses and frame state
variables in Ho, as the accumulation of a sparse matrix and
a dense one is still dense.

We thus propose to construct the new marginalization
prior by first marginalizing out the landmark points host by
the keyframe, then the keyframe pose itself excluding all
the visual measurements. The resultant prior Hd is a dense
matrix constraining all the keyframe poses and the last frame
state. This way we can avoid designing the topology of rp
and calculating the new information matrix of the pseudo
factor, which is optimal only in the sense of the particularly
assigned topology.

The whole process is thus termed as partial sparsification
as we only extract sparse pseudo factors between robot
poses and landmark points (see the sparse subblock in the
upper right and lower left part of the information matrix in
Fig. 3b) by processing the full-sized marginalization prior
including visual cues (see the dense information matrix
in Fig. 3a), while constructing the dense prior Hd con-
necting the keyframe poses and the last frame state from
the marginalization not considering any reprojection errors.
The marginalization prior after partial sparsification (see the
dense subblock in the upper left part of the information
matrix in Fig. 3b), albeit a still dense matrix, remains fix-
sized and thus the optimization complexity thereafter is not
increased.

C. Greedy selection of pseudo factors

The sliding window includes several keyframes and for
each landmark point in the marginalization prior we need
to designate which keyframe to be connected by its respec-
tive pseudo factor. For this we propose a greedy selection
criteria to maximize the overall mutual information between
variables.

Given the overall covariance matrix Σ which can be calcu-
lated as the inverse of the information matrix of the Markov
blanket before partial sparsification, the mutual information
between two variables xi and xj can be directly calculated
as in [23]:

I(xi, xj) =
1

2
log

detΣiidetΣjj

det

[
Σii Σij
Σji Σjj

] , (25)

we then choose the target keyframe ki of the pseudo factor
connecting landmark li as:

ki = arg max
kj∈xk

I(kj , li), (26)

this way the sum of mutual information between the variables
connected by the pseudo factors rl is maximized, and the
selection method is implemented in combination with NFR
to minimize the information loss of the partial sparsification.



TABLE I
RMS ATE (METER) OF THE ESTIMATES ON THE EUROC DATASET FOR SEVERAL DIFFERENT METHODS

Sequence MH 01 MH 02 MH 03 MH 04 MH 05 V1 01 V1 02 V1 03 V2 01 V2 02
Proposed 0.09 0.05 0.073 0.13 0.10 0.05 0.056 0.082 0.040 0.066
OKVIS 0.33 0.37 0.25 0.27 0.39 0.09 0.14 0.21 0.09 0.17

VINS-MONO 0.15 0.15 0.22 0.32 0.30 0.08 0.11 0.18 0.08 0.16
BASALT 0.09 0.06 0.076 0.11 0.12 0.04 0.055 0.084 0.037 0.072
ROVIO 0.35 0.36 0.45 0.92 1.11 0.13 0.16 0.17 0.22 0.39

VIO with full information
sparsification in [24] 0.06 0.06 0.10 0.24 0.19 0.06 0.09 0.26 0.08 0.21

V. EXPERIMENTAL RESULTS

To validate our partial sparsification scheme, we imple-
ment our method using the same visual frontend as in
BASALT [28], and evaluate it on the EuRoC [14] visual
inertial datasets. The EuRoC datasets are collected by sensors
on a micro aerial vehicle (MAV), including synchronized
20Hz stereo images and 200Hz IMU measurements and
ground truth. We first align the estimates with the ground-
truth trajectories and calculate the root mean square (RMS)
of the absolute trajectory error (ATE). All experiments are
run on an Ubuntu desktop with 2.2GHz 4-core Intel i7.

We compare our results with several state-of-the-art VIO
systems utilizing two different backend methods: OKVIS
[6], VINS-MONO [13] without loop closure, and BASALT
[28] which are based on sliding window optimization and
ROVIO [29] which implements iterated extended Kalman
filter (IEKF). For comparison we also include the VIO
system proposed by Hsiung et al. [24] which implements
full information sparsification.

The evaluation results as shown in Table. I demonstrate
that our proposed method achieves competitive accuracy
compared with the existing methods mentioned above. Fur-
ther comparison with the VIO system in [24] shows that
our method achieves inferior results only in one out of ten
sequences and outperforms it in the rest. The visualization of
the VIO estimates aligned with the ground-truth trajectories
of the EuRoC datasets is shown in Fig .1, and Fig. 4 shows
the absolute pose error (APE) with respect to the translation
part of our estimate generated by evo [30].

Fig. 4. The APE with respect to the translation part of our estimate of
the V1 01 sequence, the RMSE is around 0.46m and the maximum below
0.08m.

TABLE II
RUN-TIME ANALYSIS ON THE EUROC DATASET

Sequence Optimization
(unit: s)

Proposed
Marginalization

(unit: s)

Marginalization
in [24]

(unit: s)
MH 01 0.013 0.003 0.248
MH 02 0.013 0.003 0.230
MH 03 0.011 0.003 0.151
MH 04 0.010 0.002 0.088
MH 05 0.009 0.003 0.115
V1 01 0.010 0.004 0.018
V1 02 0.006 0.003 0.020
V1 03 0.006 0.001 0.015
V2 01 0.012 0.003 0.039
V2 02 0.010 0.002 0.039

To ensure that our scheme can be applied for real-time
VIO, we next conduct a run-time analysis on the experiments
of the EuRoC datasets. As shown by the results in Table. II
the time spent on per optimization step varies across different
sequences from a minimum of 0.006s to a maximum of
0.013s, while the time consumed by marginalization and
partial sparsification for one step is less variable (around
0.001 to 0.004s). The worst case scenario (MH 01) suggests
an average of 0.016s for a single backend step and given the
update frequency of the stereo camera which is 20 frames
per second, it is safe to claim that our scheme can be applied
to real-time operations without introducing any unwanted
lag. For comparison, we also include in Table. II the time
spent on the marginalization step of the VIO system in
[24] that implements full information sparsification, which
has a maximum of 0.248s per step. The reason for our
improvement in the marginalization and sparsification effi-
ciency is twofold. Firstly, our partial sparsification scheme
retains the dense prior from the marginalization without
visual measurements, and need not recover the pseudo factor
connecting the keyframe poses and the last frame state. Sec-
ondly, in our implementation the recovery of pseudo factors
together with the greedy selection is done in parallelization,
since the information matrices of the pseudo factors can be
indepedently solved by (23).

VI. CONCLUSIONS

In this paper we present a partial sparsification scheme
for the marginalization of sliding window VIO. Our method



recovers pseudo factors from the dense full-sized marginal-
ization prior to maintain the overall sparsity of the infor-
mation matrix while minimizing the information loss, and
retains the dense prior connecting keyframe poses and the
last frame state in the sliding window. Furthermore, we
propose a greedy selection method to assign optimal pseudo
factors in order to maximize the mutual information sum.
Experimental results illustrate the efficacy of our method and
that it is applicable to real-time operations.

Future work includes the fusion of other sensors to achieve
higher odometry accuracy and the design and implementation
of the corresponding marginalization scheme.
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