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A B S T R A C T

Event is a common but non-negligible knowledge type. How to identify events from texts, extract their arguments,
even analyze the relations between different events are important for many applications. This paper summaries
some constructed event-centric knowledge graphs and the recent typical approaches for event and event relation
extraction, besides task description, widely used evaluation datasets, and challenges. Specifically, in the event
extraction task, we mainly focus on three recent important research problems: 1) how to learn the textual se-
mantic representations for events in sentence-level event extraction; 2) how to extract relations across sentences
or in a document level; 3) how to acquire or augment labeled instances for model training. In event relation
extraction, we focus on the extraction approaches for three typical event relation types, including coreference,
causal and temporal relations, respectively. Finally, we give out our conclusion and potential research issues in
the future.
1. Introduction

Knowledge Graph (KG), a recent well-known knowledge form, de-
scribes and stores the facts in the world with a graph structure. Since
knowledge graph could provide the behind and additional semantic in-
formation besides the input data, it has shown its power and necessity in
many applications, such as textual meaning understanding and logical
reasoning. Therefore, starting from the first large-scale industrial
knowledge graph, i.e. Google’s knowledge graph, it has attracted more
and more widespread attention.

Basically, most existing KGs were entity-centric, which described
factual knowledge through relational triplets with nodes (entities) and
edges (the relations between entities or concepts). As shown in Fig. 1(a),
Donald Trump and United States are two entities, named as a head entity
and a tail entity, respectively. President_of is their relation. Therefore,
such KGs could be regarded as an amount of structured data with linked
entities and concepts. However, only storing entities and their relations
in KGs is insufficient. There are several other knowledge types in the
world, including events, scenarios, frames, rules, etc. Especially for
events, it is a common, important, and non-negligible element for
analyzing textual meaning in many fields. Therefore, several researchers
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try to construct event-centric KGs, where they organize knowledge
centering on events, like EventKG (Gottschalk and Demidova, 2018),
Event Logic Graph (Ding et al., 1907), ASER (Zhang et al., 2020), etc. In an
expected event-centric KG, the nodes denote events (including all event
arguments) and the edges/links between any two nodes represent their
semantical relationships. Fig. 1(b) gives an event-centric KG example.
USA_Attacked_Syrian and Trump_Assigned_Executive_Order are two events
with different types, where both of them are denoted as nodes in an
event-centric knowledge graph. And there is a causal relation between
them as an edge in this graph.

Actually, constructing such event-centric KGs is not an easy task.
Plenty of events usually are mentioned in plain texts. Different from the
entity textual expression that an entity is expressed by one word or
phrase, an event is usually mentioned in the whole sentence or across
multiple sentences. Therefore, identifying and extracting events, espe-
cially for those structured event information (“Person”, “Time”, “Loca-
tion”, etc. in Trump_Assigned_Executive_Order), needs a more deep
understanding on the sentence meanings. Currently, because of the un-
satisfactory current extraction methods, the events in most existing
event-centric KG are still represented by unstructured phrases/sentences,
such as Event2Mind (Rashkin et al., 2018) and ATOMIC (Sap et al.,
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Fig. 1. Entity-centric vs. Event-centric Knowledge Graph.
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1811a). As a result, much more fine-grained event information is
under-investigated. Moreover, how many relation types between events
there are is still a controversial problem, and the relationship textual
expressions are diverse and implicit. Identifying event relations with
different types from texts are challenging and needs deep reasoning.

Therefore, this survey mainly summarizes the recent research prog-
ress on event extraction and event relation extraction. The following
second section presents the task description of event extraction and event
relation identification. Then the third and fourth sections mainly present
the main challenges, current evaluation datasets, and corresponding
recent research progress for two tasks, respectively. The fifth section
introduces the existing event-centric KGs shortly. At last, the conclusion
is summarized and the future research issues are discussed.

2. Task description of event extraction and event relation
extraction

2.1. Event definition

Before giving a clear-cut description of the event extraction task, we
must first make sure what is an event in the texts. However, there is still
so far no common agreement on the event definition, which usually
1 https://catalog.ldc.upenn.edu/LDC2006T06.
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varies in different applications and tasks. In this survey, we refer to the
definition in Automatic Content Extraction (ACE) 20051 evaluation, i.e.,
an event is “a specific occurrence involving participants”. Actually, an
event in ACE 2005 was defined as a structure containing several argu-
ments with different roles. The related terminologies are defined as
follows:

� Event Mention: An event mention is an entire sentence within which
an event is described.

� Event Trigger: An event trigger is a word that most clearly expresses
an event that happens.

� Event Argument(s): Event arguments are taggable entities that are
involved in the event. Most often, there is a specific set of participant
roles that can be filled for each type and subtype of event.

For example, the following sentence A number of demonstrators threw
stones and empty bottles at Israeli soldiers positioned near a Jewish holy site
at the town’s entrance.describes an ATTACK event. The entire sentence
could be regarded as an event mention. Moreover, this event is triggered
by the word threw. So threw is an event trigger. Additionally, four event
arguments are included: the ATTACK-Attacker (demonstrators), the
ATTACK-Target (Israeli soldiers), the ATTACK-Instrument (stones and
empty bottles), and the ATTACK-Place (a Jewish holy site at the town’s
entrance). And the structured event information is represented in Table 1.

https://catalog.ldc.upenn.edu/LDC2006T06


Table 1
An example of event structured information in ACE definition.

Event Trigger

threw (event type¼ATTACK)
Event Arguments

Roles Values

ATTACK-Attacker demonstrators
ATTACK-Target Israeli soldiers
ATTACK-Instrument stones and empty bottles
ATTACK-Place a Jewish holy site at the town’s entrance
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2.2. Event extraction task

Accordingly, event extraction is to extract such structured informa-
tion from texts. In ACE 2005, there are two subtasks for event extraction:
1) event detection, which focuses on detecting the events and deter-
mining the corresponding event types; and 2) event argument extrac-
tion, which aims to extract words/phrases/entities playing different
roles in a target event. For the aforementioned sentence, the structured
extraction results are shown in Table 1.

2.3. Event relation extraction task

As aforementioned in the first section, extracting event relations is an
important task for event-centric knowledge graph construction, which
aims to identify the semantical relationships among different events. For
example,

Kimani Gray, a young man who likes football, was killedE1 in a police
attackE2 shortly after a tight match.

An event E1 (trigger by killed) is caused by another event E2 (trigger
by attack). Thus, there is a causal relation between them.

However, the number of event relation types is still an argumentative
question. Recently, the most concerning event relations in the research
area include three types: coreferential relation, causal relation, and temporal
relation. Accordingly, the current event relation task is to judge whether
there is a specific relation or not, by giving assigned two events and their
contexts. Thus, this task could be naturally regarded as a “0–1” classifi-
cation problem.

3. Recent research progresses in event extraction

In this section, we will introduce the recent typical event extraction
methods. Before that, we first present some widely used evaluation
datasets and recent investigated research issues.

3.1. Datasets for event extraction

A series of evaluations have been proposed to inspire the study of
event extraction. We here introduce two event datasets, i.e., ACE 2005
and TAC KBP, that are commonly used in the current event extraction
Table 2
Data statistics of ACE 2005 and TAC KBP 2016 (part of LDC2017E02), and TAC
KBP 2017 (LDC2017E55). In the TAC KBP datasets, NW and DF are two domains.
The newswire (NW) portion was selected from a collection of New York Times
and Xinhua articles, while the discussion forum (DF) part was selected from
online threads.

Datasets # Doc. # Sen. # Trigger # Argument

Train 529 16,473 4420 7945
ACE 2005 Dev 30 930 505 949

Test 40 714 424 899
TAC KBP 2016 NW 85 2601 2505 5085

DF 84 2501 1650 2834
TAC KBP 2017 NW 83 2541 2105 5861

DF 84 2653 2270 5068
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research. Table 2 compares the data statistics of the two datasets.
ACE 2005 Event Corpus. Automatic Content Extraction (ACE) 2005,2

focuses on developing information extraction (IE) techniques. The ACE
2005 (English) event corpus consists of 599 documents in 6 different
domains, including newswire, broadcast, conversation, weblog, usenet,
and telephone speech. Moreover, it defines 8 different event types and 33
different event subtypes, which are summarized in Fig. 2 (For each
subtype, a finite set of event arguments are defined). The current studies
often adopt the data split devised by Ji and Grishman (2008) for evalu-
ation and comparison. The details are shown in Table 2.

TAC KBP Corpus. TAC KBP3 is another evaluation that aims to develop
technologies for populating knowledge bases (KBs). In TAC KBP, the
event extraction task (from 2015 to 2018) aims to extract event infor-
mation from unstructured texts, and that the information would be
suitable for a structured KB. TAC KBP 2015 defines 9 different event
types and 38 event subtypes. And TAC KBP 2016 and 2017 reduce the
types to 8 event types and 18 event subtypes, for more efficient dataset
creation/evaluation. Fig. 3 shortly summarizes all the event types/sub-
types defined in the TAC KBP (2016 and 2017) event ontology.

Notably, TAC KBP event corpus shares many common aspects with
ACE 2005 event corpus. A major difference in TAC KBP is that a single
event spanmay be tagged with multiple event types which is referred as a
double tagging problem (Mitamura et al., 2017).

3.2. Recent focused research problems in event extraction

As the same as other natural language processing tasks, the current
event extraction models mainly depended on statistical machine
learning, where neural models were widely exploited in recent years.
Three explicit and common questions were mostly investigated:

1) How to learn the semantic representations for events from the given texts?
For event extraction, exploiting effective features are important for
statistical learning models. Early approaches designed exquisite fea-
tures, such as lexical, syntactic and kernel-based features (Ahn,
2006a). Recently, with the development of deep learning, researchers
have employed various neural networks, including CNNs (Chen et al.,
2015), RNNs (Nguyen et al., 2016) and Transformers Yang et al.
(2019) on this task. Moreover, since the event structure is intuitively
complex, recent researches work started to employ additional infor-
mation, like entities, document-level information and syntactic
structure, to boost semantic representation learning in the neural
models. Consequently, various neural variations and several strate-
gies are employed. We will introduce them in Section 3.3,

2) How to extract events across sentences or in a document-level? Most
recent approaches focused on this task only on the sentence-level,
where the basic assumption is that an event is represented in a sen-
tence. However, in most cases, writers usually use several even non-
continued sentences to express single or multiple events. In contrast
to sentence-level event extraction, document-level event extraction
needs to consider more complex problems: including arguments-
scattering, multi-events expression, etc. We will address these issues
in Section 3.4.

3) How to train event extraction models based on insufficient labeled in-
stances? Existing supervised learning based extraction models heavily
rely on the training data. However, the human annotation for all
event types is very costly. Therefore, researchers proposed several
data augmentation approaches for event extraction, including distant
supervision-based approaches, acquiring relevant labeled data from
different languages, and external knowledge. We will briefly present
them in Section 3.5.
2 https://catalog.ldc.upenn.edu/LDC2006T06.
3 https://tac.nist.gov/2017/KBP/data.html.

https://catalog.ldc.upenn.edu/LDC2006T06
https://tac.nist.gov/2017/KBP/data.html


Fig. 2. Event types/subtypes defined in the ACE event ontology.

Fig. 3. Event types/subtypes defined in the TAC KBP (2016–2017) event ontology.

K. Liu et al. AI Open 1 (2020) 22–39
3.3. Neural models for learning semantic representation in events
extraction

Most existing event extraction models are based on the supervised
setting which assumes that sufficient labeled examples are available for
training. Then the key problem is to learn semantic representations from
the texts for events (the first question in subsection 3.2). Besides learning
features from raw texts through some typical neural networks (CNNs,
RNNs, etc.) (subsection 3.3.1), some additional fine-grained information
is employed to improve the representation, such as entity-level features,
document-level features, and syntax-level features (subsection 3.3.2,
3.3.3 and 3.3.4). And many recent works have explored using pre-trained
language models for feature learning (subsection 3.3.5). Table 3 cate-
gories the existing neural models for event extraction, based on different
information that they employed.
25
3.3.1. Neural models exploring raw textual features
The majority of existing methods adopt CNNs, RNNs to model textual

features for event extraction.
CNNs Based Methods. Chen et al. (2015) proposed a CNN-based model

called Dynamic Multi-pooling Convolutional Neural Network (DMCNN).
The main framework contained two tunnels to learn semantical features
from raw texts, including lexical-level and sentence-level features. In
specific, as shown in Fig. 4, DMCNN introduced a word-representation
model to capture semantic regularities for words and adopt a frame-
work based on a CNN to capture sentence-level clues.

Instead of adopting the original CNN structure, Chen et al. (2015)
leveraged a dynamic multi-pooling layer to explore the information
missed by the CNN. Their model devised the following features: 1)
Context-word features, the embedding vectors of each word (Pennington
et al., 2014). 2) Position features, defined as the relative distance of the
current word to the predicted trigger or candidate arguments. Each dis-
tance value is represented by an embedding vector. 3) Event-type features.



Table 3
Current different Neural Models using different Features.

Feature Neural Models

Raw Texts Convolutional Neural Networks (CNNs) (Chen et al., 2015,
2016; Nguyen et al., 2016)
Recurrent Neural Networks (RNNs) (Nguyen and Grishman,
2015)
Hybrid Neural Networks (Feng et al., 2016)

Raw Texts Attention Mechanisms (Duan et al., 2017; Zhao et al., 2018;
Chen et al., 2018)

þ Document-level
features

Memory Networks (Liu et al., 2018a)

Raw Texts Attention Mechanisms (Liu et al., 1789)
þ Entity-level features Adversarial Networks (Hong et al., 2018; Liu et al., 2019a;

Hong et al., 2018; Zhang and Ji, 1804)
Hybrid Networks (Zhang et al., 2019)
Multi-task Learning (Nguyen and Nguyen, 1812; Wadden
et al., 2019)

Raw Texts Recurrent Neural Networks (RNNs) (Sha et al., 2018; Orr
et al., 2018)

þ Syntax-level
features

Graph Convolutional Networks (GCNs) (Nguyen and
Nguyen, 1812; Liu et al., 2018b; Yan et al., 2019; Cui et al.,
2020)

Pre-Trained Language
Models

BERT Architectures (Yang et al., 2019; Liu et al., 2020a,
2020b; Du and Cardie, 2020a)
ELMo Architectures (Zhang and Ji, 1804)
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The event type predicted in the trigger classification stage is also
considered as an important feature for event argument identification.

Assume xi 2 Rd is the d-dimensional vector representation of the i-th
word in the sentence (the concatenation of context-word feature, position
feature, and event-type feature). DMCNN represents a sentence of length
n as x1:n ¼ x1 � x2 �…� xn, where � refers to vector concatenation
computation. Then DMCNN employed a filter w 2 Rh�d, which was
applied to a window of hwords, to produce a new feature. For example, a
feature ci was generated from a window of words xi:iþh�1 by the following
operator:

ci ¼ f ðw � xi:iþh�1 þ bÞ (1)

Then, DMCNN employed multiple filters in a convolution process.
Assume there are m filters w1, w2, … wm, the convolution operation can
be expressed as:

cji ¼ f
�
wj � xi:iþh�1 þ bj

�
(2)

where j ranges from 1 to m. Next, DMCNN employs “dynamic multi-
pooling” to split each feature map into three parts according to the po-
sitions of argument and trigger. Here, “dynamic” means the split points
Fig. 4. The architecture of the dynamic multi-pooling convolution
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are not fixed because the positions of argument and trigger will vary in
different sentences. In each part, a max-pooling operation is conducted,
which means that there are totally three max-pooling operations in
DMCNN. Finally, DMCNN concatenated the automatically learned fea-
tures to feed them into a final classifier for event trigger prediction and
event argument identification.

Nguyen and Grishman (2016) further believed that the original CNNs
can only model continuous k-grams other than non-continuous ones that
are important for event detection. Therefore, they modified CNNs to
model skip-grams to enhance the performance.

RNNs Based Methods. Nguyen et al. (2016) proposed a Recurrent
Neural Networks (RNNs) to learn richer representations from contexts for
predicting event triggers and arguments. The overall approach involved
two RNNs in forward and reverse directions. As shown in Fig. 5, The
method contained three major steps as follows.

1) Sentence Embedding. It first transformed each wordwi into a real-
valued vector xi by concatenating: the word embedding vector of
wi; the embedding vector for the entity type of wi; the binary vector
corresponding to the dependency relation between words in the parse
tree (Li et al., 2013). Such concatenation operation is a simple and
effective way to integrate different kinds of features together. The
more sophisticated solutions will be discussed in subsection 3.3.2,
3.3.3 and 3.3.4.

2) RNN Encoding. It encoded each input vector xi to a hidden vector hi.
Assume the input sequence X ¼ (x1;x2;⋯;xn), then the model applied
RNN over X to generate the hidden vector sequence (α1;α2;⋯;αn) by

RNN
���!ðx1;x2;⋯;xnÞ ¼ ðα1;α2;⋯;αnÞ. A reverse RNNwas used to process

X by computing RNN
���!ðxn;xn�1;⋯;x1Þ ¼ ðαn

0
;αn�1

0
;⋯;α1

0 Þ. Lastly, the
hidden representation for xi is hi ¼ [αi, αi

0].
3) Prediction. In order to jointly predict triggers and argument roles, the

model maintained a binary memory vector for triggers, and binary
memory matrices for arguments at each time. These memory com-
ponents were computed based on the previous matrices to enhance
reasoning.

Moreover, Feng et al. (2017) adopt a hybrid neural network combing
CNNs with LSTMs. They showed that the architecture was
language-independent and could achieve promising results in extraction
events in English, Chinese and Spanish. Chen et al. (2016) adopt a similar
architecture as that of Nguyen et al. (2016) for event detection and
showed improvement over CNNs based architecture. Hong et al. (2018)
adopt a different approach based on adversarial training, aiming to
exclude spurious features inherent in event detection. They also lever-
aged RNNs based event detection architecture similar to (Nguyen et al.,
al neural network (DMCNN) proposed in (Chen et al., 2015).



Fig. 5. The model architecture presented in (Nguyen et al., 2016).
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2016; Chen et al., 2016).
Besides, more advanced neural architectures, the variations of CNNs

and RNNs, are proposed to improve the sentence representations. Their
models mainly focus on incorporating fine-grained information into the
networks for event extraction. We will introduce them in the following
three subsections.

3.3.2. Exploring entity-level information
In some cases, entity information plays a crucial role in event

extraction. For example, Danny Baker fired by BBC.
If we have known that Danny Baker is a person entity and BBC is an

organization entity, this information could help to identify that “fired”
evokes an event of End-Of-Position rather than Attack type. Traditional
approaches usually designed fine-grained rules to exploit entity infor-
mation to enhance event extraction (Liao and Grishman, 2010; Hong
et al., 2011). In neural models, researchers usually exploited three
common means including attention mechanisms, adversarial training
and multi-task learning to capture entity-level information for event
extraction.

Liu et al. (1789) proposed to build a supervised attention mechanism
to force the model to focus more on entities than other parts for identi-
fying event triggers. And the results showed that supervised attention
leads to improved performance.

Liu et al. (2019a), Zhang and Ji (1804) investigated adversarial
training to exploit entity-level information. The difference is that Liu
et al. (2019a) adopt knowledge distillation for feature learning, using
entity-information as a supervision signal to enhance learning, while
Zhang and Ji (1804) investigated a reverse imitation learning, in deep
reinforcement learning, to jointly identify entities and events.

Zhang et al. (2019), Nguyen and Nguyen (1812), Wadden et al.
(2019) investigated multi-task learning to exploit entity information for
event extraction. Zhang et al. (2019) adopt entity enhanced language
modeling with extraction. They showed that the two tasks are related to
each other, and jointly learning them can bring improvements. Nguyen
and Nguyen (1812) used one network to jointly learning entity recog-
nition and event extraction, and showed improvement over the
single-task learning approach. Wadden et al. (2019) proposed a joint
model including entity recognition, relation extraction and event
extraction. Their experimental results showed these three tasks could
improve each other.
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3.3.3. Exploring syntax-level information
More advanced neural approaches have exploited syntax-level infor-

mation for event extraction and have demonstrated encouraging results.
An important problem is how to encode syntactic structure into the
event-related distributional representations. According to recent
methods, RNNs and Graph Convolutional Networks (GCNs) are two
commonly used architectures.

Liu et al. (2018b) proposed a Jointly Multiple Events Extraction
(JMEE) framework, which could jointly extract multiple event triggers
and arguments. The methods introduced syntactic shortcut arcs to
enhance information flow, and an attention-based graph convolution
network was devised to enable information integration. Liu et al. (2019b)
further extended the method to model cross-lingual event detection, and
they found that syntax information had the property of multi-lingual
invariant, which could be used to effective multilingual transfer learning.

Orr et al. (2018), Sha et al. (2018) devised a similar approach as that
of (Liu et al., 2018b), but they modeled the syntax information via
BiLSTM networks instead of graph convolution networks. Comparedwith
graph network-based approaches, BiLSTM networks have a relatively fast
inference process.

3.3.4. Exploring document-level information
Sentence-level features may not always capture enough information

for event extraction. For example, it is difficult to identify that “leave” in
“I knew it was time to leave” triggers an End-of-Position event when not
given long contexts. A lot of existing works for event extraction also
incorporated document-level information that are based on human-
designed features (Ji and Grishman, 2008).

To incorporate document level information, Duan et al. (2017)
combined document embeddings with words embeddings. Therefore, the
representation of a word is:

hi ¼ d � xi (3)

where d is the global document vector learned by document modeling
methods (Le and Mikolov, 1405), and it is shared by each word; xi is the
word embedding of wi. Then Duan et al. (2017) leveraged a model based
on RNNs based architecture similar to (Nguyen et al., 2016) compute
feature vectors and conducted the final event type prediction.

To obtain better integration performance, hierarchical and multi-hop
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architectures are commonly adopted strategies. In detail, Chen et al.
(2018), Zhao et al. (2018) adopt hierarchical structures to capture
document-level information for event extraction. The difference is that
Zhao et al. (2018) also used supervised attention to force the model to
focus on entity information, while Chen et al. (2018) used unsupervised
attention to learn features. Liu et al. (2018a) used a memory network to
encode the document-level formation, where the process of event
detection is achieved vie multi-step inference. The results show that the
multi-hop mechanism of the memory network can enhance learning.

Moreover, Liu et al. (2016a) devised a probabilistic soft logic (PSL)
model, which considered event-event association and topic-event asso-
ciation into the reasoning process. The model can jointly consider local
predictions from multiple classifiers to generate final EE results.

Nevertheless, we note the improvement of integrating document-
level information is modest, and it still remains an open challenge how
to effectively incorporate document-level information for event
extraction.

3.3.5. Exploring pre-trained language models
Recently, more and more studies have investigated using pre-trained

language models (e.g., BERT (Devlin et al., 2019) and EMLo (Peters et al.,
2018)) for event extraction. Owing to that pre-trained language models
can learn universal language representations using a large amount of
unlabeled data, using them for feature learning often leads to consider-
able improvements over methods using traditional neural networks for
feature learning.

Yang et al. (2019) directly applied BERT representations for the event
extraction task, and their model has achieved state-of-the-art perfor-
mance without designing task-specific architectures or using external
resources. Wang et al. (2019a) combined BERT representation and
adversarial learning to explore weakly-supervised data for event trigger
extraction. Their method can cooperate to obtain more diverse and ac-
curate training data to enhance learning. Wang et al. (2019b) designed a
role-orientedmodular network for specifically event argument extraction
Table 4
Comparison of different methods for event extraction on ACE 2005 dataset. y indicat
adopting document-level feature; yy indicates adopting syntax-level feature; x indicates
is not given.

Model Trigger
Identification

Trigger
Classifi

P R F P

MaxEnt (Li et al., 2013) 76.2 60.5 67.4 74.5
Li et al. (Li et al., 2013) 76.9 65.0 70.4 73.7
Chen et al. (Chen et al., 2015)y 80.4 67.7 73.5 75.6
Nguyen et al. (Nguyen and Grishman, 2015)y 68.5 75.7 71.9 66.0
Nguyen et al. (Nguyen et al., 2016)y – – – –

Chen et al. (Chen et al., 2016)y – – 72.2 –

Feng et al. (Feng et al., 2017)y 80.8 71.5 75.9 84.6
Liu et al. (Liu et al., 2017)* – – 72.3 –

Liu et al. (Liu et al., 1789)z – – – 81.4
Duan et al. (Duan et al., 2017)* – – – 77.2
Sha et al. (Sha et al., 2018)yy – – – 74.1
Zhao et al. (Zhao et al., 2018)* – – – 72.3
Chen et al. (Chen et al., 2018)* – – – 77.9
Liu et al. (Liu et al., 2018b)yy 80.2 72.1 75.9 76.3
Hong et al. (Hong et al., 2018)y 75.3 78.8 77.0 71.3
Nguyen et al. (Nguyen and Nguyen, 1812)z 70.5 74.5 72.5 68.0
Zhang and Ji (Zhang and Ji, 1804)z 76.4 68.2 72.1 74.2
Zhang et al. (Zhang et al., 2019)z – – 72.9 –

Liu et al. (Liu et al., 2019a)z – – – 76.8
Yan et al. (Yan et al., 2019)z – – – 79.5
Cui et al. (Cui et al., 2020)yy – – – 76.7
Wadden et al. (Wadden et al., 2019)yy – – 76.5 –

Wang et al. (Wang et al., 2019b)x – – – –

Yang et al. (Yang et al., 2019)x 84.8 83.7 84.2 81.0
Liu et al. (Liu et al., 2020a)x – – – 75.2
Du et al. (Du and Cardie, 2020)x 74.3 77.4 75.8 71.1
Liu et al. (Liu et al., 2020b)x – – – 75.6
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task, and used both CNNs and BERT to learn features. Liu et al. (2020a)
used BERT architectures to explore context-specific information for
learning, which is shown to greatly enhance the generalization and
robustness of the event extraction model. Recently, Du and Cardie
(2020a), Liu et al. (2020b) formulated event extraction as a machine
reading comprehension (MRC) task, where the extraction of event in-
formation is seen as a question answering process.

3.3.6. Comparison of current neural methods for sentence-level event
extraction

Table 4 compares different event extraction methods introduced
above on the ACE 2005 dataset. We use a traditional feature-based
method designed by Li et al. (2013) as a baseline model. From the re-
sults, we could observe that all of the deep learning-based methods yield
better performance than traditional feature-based methods, owing to
their ability in automatic feature representation.

We further observe that the methods exploring document-level (e.g.
(Zhao et al., 2018),)) and entity-level (Hong et al., 2018) features
generally outperform methods exploring raw texts only. Moreover,
adopting syntax-level information can further boost performance. It im-
plies that syntax information is closely related to the event extraction
task, and fine-grained information including entities and document
contexts can generally benefit the event extraction task. Lastly, we note
the models achieving the best performance, i.e., the systems designed by
Yang et al. (Yang et al., 2019), Liu et al. (Liu et al., 2020b), adopt only
textual features which are however learned by pre-trained language
models. This suggests that learning universal language representations
from unlabeled sentences can usually benefit feature representation in
event extraction. Nevertheless, to date, there is less work discussing
combing pre-trained language models with entity-level or
document-level information.
es adopting textual feature; z indicates adopting entity-level feature; * indicates
methods adopting pre-trained language models; - indicates that the performance

cation
Argument
Identification

Argument
Classification

R F P R F P R F

59.1 65.9 74.1 37.4 49.7 65.4 33.1 43.9
62.3 67.5 69.8 47.9 56.8 64.7 44.4 52.7
63.6 69.1 68.8 51.9 59.1 62.2 46.9 53.5
73.0 69.3 61.4 64.2 62.8 54.2 56.7 55.4
– 71.3 – – – – – –

– 68.9 – – 60.0 – – 54.1
64.9 73.4 – – – – – –

– 69.6 – – – – – –

66.9 73.4 – – – – – –

64.9 70.5 – – – – – –

69.8 71.9 71.3 64.5 67.7 66.2 52.8 58.7
75.8 74.0 – – – – – –

69.1 73.3 – – – – – –

71.3 73.7 71.4 65.6 68.4 66.8 54.9 60.3
74.7 73.0 – – – – – –

71.8 69.8 59.9 59.8 59.9 52.1 52.1 52.1
65.3 69.5 66.2 51.4 57.8 65.6 48.7 55.9
– 71.6 – – – – – –

72.9 74.8 – – – – – –

72.3 75.7 – – – – – –

78.6 77.6 – – – – – –

– 73.6 – – 55.4 – – 52.5
– – – – – 62.2 56.6 59.3
80.4 80.7 71.4 60.1 65.3 62.3 54.2 58.0
74.4 74.8 – – – – – –

73.7 72.4 58.9 52.1 55.3 56.8 50.2 53.3
74.2 74.9 – – – 63.0 64.2 63.6
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3.4. Methods for document-level event extraction

The aforementioned approaches extract events in a single sentence.
However, writers usually use non-continued sentences to express an
event or several events. Thus, the system needs to extract events in a
wider scope, i.e. document-level event extraction (the second question in
subsection 3.2). As shown in Fig. 6, an Equity Freeze event (Event1) with
five arguments are described in two sentences S4 and S5. Moreover, Eq-
uity Freeze event (Event2) are described in S4 and S6 which have two
shared arguments with Event1. Thus, document-level event extraction
aims to extract and split such two events from the given document.

In contrast to sentence-level event extraction, document-level event
extraction has more challenges as follows. 1) Arguments-scattering: argu-
ments of one event may scatter across multiple sentences in one docu-
ment. Thus in contrast to extracting events in one sentence, document-
level event extraction needs to capture long-distance (even across sen-
tences) dependencies among event information. 2)Multi-events: there are
multiple events mixed in a document, that require document-level event
extraction systems to discriminate them and split the corresponding ar-
guments for different events. The intuitive illustration of these challenges
are shown in Fig. 6, the two events share the same entities Mr. LianWeife
and Shenzhen Intermediate People’s Court as event role Equity Holder and
Legal Institution, respectively, and these arguments are distributed in
different sentences (S4�S6) separately.

However, there are few works in the literature that have gone beyond
individual sentences to make the extraction. These works could be
roughly divided into two categories as follows. (1) The methods of
document-level event role filler extraction. These works focused on identi-
fying event-specific role fillers, i.e., arguments, in an article and were
mainly evaluated on the MUC-4 dataset. (2) The methods of document-level
pre-defined event extraction. These works focused on identity events of pre-
defined types with their event-specific arguments from the given whole
document in a specific domain, such as the financial domain. We will
introduce them specifically in the following subsections.

3.4.1. Methods for document-level event role filler extraction
The methods of document-level event role filler extraction mainly

followed the task setting in MUC evaluation (Sundheim, 1992). The full
event extraction task of MUC involved three parts: (1) role filler extraction,
which aimed to extract arguments of specific event types from the given
whole document. In this subtask, the systems needed to find all argument
mentions in a document; (2) role filler mention coreference resolution,
which aimed to find all mentions for one argument in a specific event; (3)
event tracking, which aimed to group the argument mentions into a
Fig. 6. A sample of document-level event extraction with two Equity Freeze events w
sentences (S4 - S6) are shown, Event 1 and Event 2 are targets to be extracted and w
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specific event.
Though the task definition in MUC covered the full process of the

document-level event extraction, it assumed that there was only one
event in a given document. Therefore, existing methods usually regarded
this task as a task of the slot filling or document-level relation extraction.
The corresponding problem is how to discriminate the extracted role
filler mentions in a document (arguments-scattering).

To solve the arguments-scattering problem, existing approaches usually
adopt a clue-selection strategy that selects event-related clues in the
document and filter the unrelated argument mentions. Patwardhan and
Riloff (2009) proposed GLACIER to model all event-related clues in a
probabilistic framework. Huang and Riloff (2011) proposed TIER to
extract role filler. In TIER, they first used a classifier to determine the
genre of the whole document, then they identified event-related sen-
tences based on the genre information and extracted the role fillers in
them. To filter more noises from multiple event instances, Huang and
Riloff (2012) proposed a model with a bottom-up framework. First, they
identified role filler candidates. Then, they used a cohesion classifier to
remove the candidates in the spurious sentences. Du and Cardie (2005)
proposed an end-to-end neural sequence model. In their model, they used
a multi-granularity reader to dynamically incorporate paragraph-level
and sentence-level contextualized representations. Evaluations on the
MUC-4 dataset proved that their model could achieve substantial
improvement over prior works.

3.4.2. Methods of document-level pre-defined event extraction
The methods of document-level pre-defined event extraction so far

mainly focused on identifying events with pre-defined types and
extracting the corresponding arguments from a given document. Existing
methods mainly conducted this task in the financial domain. Unlike the
proposed works on the MUC-4 dataset, these works usually assumed that
there are multiple events with different types in a document. Moreover,
an event is possibly expressed several times in multiple and even non-
continued sentences.

Yang et al. (2018) proposed a document-level Chinese financial event
extraction framework, shortly named DCFEE. DCFEE first used a
weak-supervised sentence-level event extractor to label event arguments
and triggers in each sentence. Note that, DCFEE employs distant super-
vision to generate sentence-level training data (event trigger and event
arguments) for different event types. Then, a key event detection model
was proposed to discover the major sentence that presents most of the
arguments for an individual event in the document. And an
arguments-completion strategy was used to automatically pad other
missing arguments from the surrounding sentences for a target
hose arguments scatter across multiple sentences. In this document, only three
ords in bold-faced are event arguments with specific roles.
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pre-defined event. Their basic assumption is that all arguments are not far
away and are mentioned surrounding the major sentence. In this way, the
arguments-scattering problem could be naturally handled. At the same
time, multi-events could be discriminated through discovering the major
sentence.

For gathering arguments for different events, Zheng et al. (1904)
proposed an end-to-end neural model named Doc2EDAG to capture the
global information of the same entity and predicted multiple events in
the document. The key behind the idea is to transform the structured
event table into an entity-based directed acyclic graph (EDAG). In this
way, the hard table-filling task could be transformed into several
sequential path-expanding and more tractable sub-tasks. Then, they
encoded candidate arguments with global document-level contexts and
used memory for path expanding.

For multi-events problem, Chen et al. (2020) believe that the target
event arguments tend to be mentioned in several groups of adjacent
sentences. They define those adjacent relevant sentences as different
event regions. They build a graph to directly model the multiple regions
in a document, where the nodes are candidate event arguments and the
edges between two nodes reflect their positional relation (in adjacent
sentences or within the same sentence) or the coreference relation. Then
a graph attention network (EE-GAT) was used to identify event regions in
a document and aggregate event information. In this way, redundant or
irrelevant extractions in the sentence-level could be effectively avoided.

3.4.3. Comparison of document-level event extraction methods
Table 5 and Table 6 compares different types of methods introduced

above on MUC-4 and CFEDD (Yang et al., 2018) datasets. From the re-
sults, we have the following observations. (1) The methods that capture
interaction and filter noises from multiple events (TIER, CohesionExt,
EE-GAT, EDAG) outperform the methods only considering one event
(GLACIER, DCFEE), which proves that considering the multi-event prob-
lem in one document is important for document-level event extraction.
(2) Document-level information, such as document structure (TIER,
DCFEE), entity coreference (EE-GAT, EDAG), entity co-occurrence
(CohesionExt), are important for solving the arguments-scattering prob-
lem. (3) The deep learning methods (MGReader, EE-GAT, DCFEE, EDAG)
gain higher performance than the feature-based methods (GLACIER,
TIER, CohesionExt), which proves the effectiveness of the deep learning
methods on capturing semantics and structures of the given document.
3.5. Data augmentation for event extraction

Most current event extraction models were often based on a super-
vised learning setting. However, hand-labeled training data is expensive
to produce, in low coverage of event types and limited in size, which
makes the supervised methods hard to extract large-scale events. There
are some works that try to solve the data labeling problem (the third
question in subsection 3.2).

Totally, these works can be roughly divided into three types: (1)
Distant Supervised Data Generation, which aims to automatically generate
large scale labeled data by distant supervision; (2) Cross-lingual Data
Augmentation, which aims to use cross-lingual information to augment
data; (3) Data Augmentation with External Knowledge, which aims use
Table 5
Experimental Results of the Current Approaches on the MUC-4. Here, GLACIER,
TIER, CohesionExt, MGReader and EE-GAT are all introduced in subsection 3.4.1.
P, R and F mean Precision, Recall and F1-value, respectively.

P R F

GLACIER (Patwardhan and Riloff, 2009) 47.8 57.2 52.8
TIER (Huang and Riloff, 2011) 50.8 61.4 55.6
CohesionExt (Huang and Riloff, 2011) 57.8 59.4 58.6
MGReader (Du and Cardie, 2005) 56.4 62.8 59.4
EE-GAT (Chen et al., 2020) 63.0 66.0 65.0
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external knowledge to alleviate the data sparsity problem. We will
introduce works in these three areas specified in the following
subsections.

3.5.1. Distant supervised data generation
Works on distant supervised data generation aim to generate large-

scale labeled data by distant supervision automatically. Chen et al.
(2017) firstly proposed to automatically label data for large-scale event
extraction via world knowledge and linguistic knowledge. Compared
with relation extraction, the main problem of distant supervised data
generation for event extraction is that an event may be expressed by
several sentences and it is hard to find all arguments of one event in-
stances in one sentence. Thus, they first proposed an tf-idf based approach
to figuring out key arguments of an event in Freebase. Then the events in
the sentence and corresponding trigger words could be extracted if the
sentence includes those key arguments. They further employed FrameNet
to filter noisy triggers and expand more useful trigger words. Finally,
they used a soft distant supervision to label events in sentences, which
assumed that any sentence containing all key arguments in Freebase and
a corresponding trigger word is likely to express that event in some ways.
Based on such simple rules, many labeled training examples are
generated.

Zeng et al. (1712) also developed a training data generation approach
for event extraction. Their approach can scale up event extraction
training instances from thousands to hundreds of thousands with a much
lower cost than a manual approach. Similar to (Chen et al., 2017), they
first extracted the key arguments for an event from existing structured
knowledge bases. Then, they used the key arguments to automatically
infer the occurrence of an event without explicit trigger identification.

Moreover, to avoid adapting sophisticated pre-defined rules and
heavy toolkits in the data generation process, Wang et al. (2019a) pro-
posed a simple trigger-based latent instance discovery strategy. Their
assumption is that if a given word serves as the trigger in a known event
instance, all instances mentioning this word may also express that event.
Therefore, they build a large event-related candidate set with good
coverage. And an adversarial training mechanism is employed to itera-
tively identify informative instances from the candidate set and filter out
those noisy ones.

As mentioned in subsection 3.4 (Yang et al., 2018; Zheng et al., 1904),
also used the strategies of distant supervision to generate large-scale
labeled data for event extraction in the financial domain. Yang et al.
(2018) used a sentence-level data generated model to label the event
trigger and event arguments in the sentences. And a document-level data
generated model is proposed to label the event mentions in a whole
document. Zheng et al. (1904) used a similar strategy, where they did not
label the trigger words for each event.

3.5.2. Cross-lingual data augmentation
In many cases, exploiting large-scale labeled data from different

languages could improve the event extraction performance on the target
language. Thus, cross-lingual event extraction aims to employ this benefit
by transferring knowledge across different languages. These work can be
roughly divided into two types: Translation-based methods and Corpora-
based methods.

Translation-based methods: These methods used the translation model
to generate more training data from other languages. Wei et al. (2017)
proposed radical features from automatic translation for event extrac-
tion. They derived meaningful subword features from automatic trans-
lations into the target language. Experimental results showed that their
method was particularly useful when using languages with writing sys-
tems that facilitate easy decomposition into subword features. Liu et al.
(2018c) proposed a framework to fulfill the cross-lingual event extraction
by using a gated neural network and machine translation engine. In
specific, they exploited the consistent information in multilingual data
via context attention mechanism to alleviate the data scarcity problem.
They also proposed gated cross-lingual attention to exploiting the



Table 6
Experimental Results of the Current Approaches on the CFEDD. Here, DCFEE and EDAG are all introduced in subsection 3.4.2. EF, EP, ER, EO are different event types in
the financial domain (EF: Equity Freeze; EP: Equity Pledge; ER: Equity Repurchase; EO: Equity Overweight). P, R and Fmean Precision, Recall and F1-value, respectively.

Model EF ER EU EP

P R F P R F P R F P R F

DCFEE (Yang et al., 2018) 66.0 41.6 51.1 84.5 81.8 83.1 62.7 35.4 45.3 64.3 63.6 63.9
EDAG (Zheng et al., 1904) 77.1 64.5 70.2 91.3 83.6 87.3 80.2 65.0 71.8 80.0 74.8 77.3
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complement information from multilingual data with different
confidence.

Corpora-based methods: These methods used cross-lingual parallel
corpora instead of the translations as the supervised information. Ji
(2009) proposed to use cross-lingual predicates to improve the perfor-
mance of the event extraction. Hsi et al. (2016) proposed an event
extraction approach that trained on a combination of both
language-dependent and language-independent features. Liu et al.
(2019c) proposed a cross-lingual event extraction method, demon-
strating a minimal dependency on parallel resources. Specifically, to
construct a lexical mapping between different languages, they devised a
context-dependent translation method. In details, they proposed a shared
syntactic order event detector to deal with the word order difference
problem in multilingual co-training.

3.5.3. Data augmentation with external knowledge
To alleviate the data sparsity problem, some works try to introduce

external knowledge bases with different structures, such as FrameNet 4

and Abstract Meaning Representation (AMR) .5

Liu et al. (2016b) proposed to use FrameNet to alleviate the data
sparsity problem in event extraction. In FrameNet, verbs are annotated
into different frames which they could trigger. These frames are naturally
related to some events in ACE. Then they proposed a global inference
approach to detect frame examples in FrameNet which could indicate
specific events. Further, they combined the detected examples from
FrameNet with labeled instances in ACE as the training set.

Huang et al. (2016) proposed to use AMR to alleviate the data sparsity
problem in event extraction. They incorporated AMR symbolic and
distributional semantics to detect and represent event structures. Then a
joint typing framework was proposed to simultaneously identify event
types, argument roles and discover an event schema.

4. Recent research progresses in event relation extraction

This section will introduce the recent typical methods for event
relation extraction which is less investigated compared with event
extraction. So far, existing methods usually focused on three relation
types, including event coreference, causal and temporal relations. For
each relation type, the following subsections will introduce the existing
extraction approaches, besides task description and used evaluation
datasets.

4.1. Event coreference resolution

Event coreference resolution (ECR) is to determine whether the
identified events refer to the same real-world event, where those events
may occur within a sentence/document and across multiple sentence/
documents. As shown in Fig. 7, the violence (E1) and disperse (E2) refer to
the same incident that violently dispersed the march.

4.1.1. Datasets
The current widely used evaluation datasets are as follows. (1) MUC:

MUC produces the earliest corpora for supporting the event coreference
4 https://framenet.icsi.berkeley.edu/fndrupal/.
5 https://github.com/amrisi/amr-guidelines/blob/master/amr.md.
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task (Sixth Message Understandi, 1995; Seventh Message Understan,
1998), where event coreference is performed as part of the scenario
template filling task. (2) ACE 2005: ACE 2005 is the most widely used
version of the ACE corpora for within-document event coreference
evaluations, includes both English and Chinese documents. (3) Onto-
Notes: OntoNotes is a large-scale corpus which provides both within and
cross-document entity and event coreference annotations (Pradhan et al.,
2007). (4) EventCorefBank: EventCorefBank (ECB) corpus (Lee et al.,
2012) and its extended version ECB þ corpus (Cybulska and Vossen,
2014) annotate within and cross-document event coreferential relations.
(5) TAC KBP: TAC Knowledge Base Population (KBP) includes
within-document multilingual event coreference-annotated corpora
started from 2015 to 2017, which is annotated with the RichERE anno-
tation style (Song et al., 2015). The statistics of commonly used datasets
for event coreference resolution are listed in Table 7.

4.1.2. Methods for event coreference resolution
Existing methods usually regarded ECR as a classification or ranking

problem. Thus, classical machine learning models are widely employed,
such as the decision trees classifier (Cybulska and Vossen, 2015), the
ensemble one-nearest-neighbor classifier (Lu and Ng, 2016), the
maximum entropy pairwise classifier (Ahn, 2006b), the information
propagationmodel (Liu et al., 2014), the hierarchical distance-dependent
bayesian model (Yang et al., 2015), the latent antecedent method (Liu
et al., 2016), the multi-loss neural model (Zuo et al., Zhao) and ranking
model (Lu and Ng, 2017a). There models mainly focused on under-
standing the contexts around two events. To fulfill this aim, existing
methods have several intuitive perspectives, such as event-related fea-
tures, syntactic features, event topic information, linguistic features, etc.
(Bejan and Harabagiu, 2010). However, identifying event coreferential
relation not only relies on the contextual features. Existing models have
considered more complex clues, including document-level or topical
structures (Choubey and Huang, 2018) and event argument information
(Chen et al., 2009; Chen and Ji, 2009; Choubey and Huang, 2017; Huang
et al., 2019), even other related tasks (Chen and Ng, 2016; Araki and
Mitamura, 2015; Barhom et al., 2019; Lu et al., 2016; Lu and Ng, 2017b)
etc.

Considering document-level or topical structure for ECR. Choubey and
Huang (2018) proposed a holistic approach for this task by considering
their correlations with document topic structures. The key observation is
that events make the backbone of a document and coreferent mentions of
the same event play a key role in achieving a coherent content structure.
This method modeled several aspects of correlations between event
coreference chains and document level topic structures, including cor-
relations between main event chains and topic transition sentences, correla-
tions across semantically associated event chains, etc. Then an integer linear
programming (ILP) joint inference framework was employed to combine
all aspects of correlations.

Considering event argument information for ECR. The straightforward
assumption is that if two events have incompatible arguments in any of
the argument roles, they cannot be coreferent. Therefore, some methods
utilized the event argument information (e.g., argument similarities,
argument compatibility, and others) of the arguments participating to
understand the coreference among different events (Chen et al., 2009;
Chen and Ji, 2009; Choubey and Huang, 2017). In particular, Huang
et al. (2019) employed an interactive inference network to iteratively
learn argument compatibility and event coreference resolution.

https://framenet.icsi.berkeley.edu/fndrupal/
https://github.com/amrisi/amr-guidelines/blob/master/amr.md


Fig. 7. Examples of event coreferential, causal and temporal relation. E denotes event and T denotes time expression in text.

Table 7
Statistics of the commonly used datasets for event coreference resolution. #Doc
denotes the number of documents, #Event denotes the number of events, Typed
denotes whether the event type is annotated, #Chain denotes the number of
event coreference chains, and Language denotes the language of the annotated
document.

Dataset #Doc #Event Typed #Chain Language

MUC6/7 (Sixth Message
Understandi, 1995;
Seventh Message
Understan, 1998)

60/
50

– Yes – EN

ACE2005 (E (Automatic
Content Ex, 2005)

639 5557 Yes 4268 EN,CN

OntoNotes (Pradhan et al.,
2007)

600 – No – EN

ECB/ECBþ (Cybulska and
Vossen, 2014)

982 7268 No 4953 EN

TAC KBP 2015 (Mitamura
et al., 2015)

360 12976 Yes 7460 EN

TAC KBP 2016 (Mitamura
et al., 2016)

505 9042 Yes 6799 EN,CN,ES

TAC KBP 2017 (Mitamura
et al., 2017)

500 8951 Yes 8022 EN,CN,ES
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Considering other related tasks for ECR. There are many works that
consider resolve ECR with other related tasks jointly, like event extrac-
tion, entity recognition, etc. They believe that the relatedness between
different tasks could be employed to enhance the performance. In spe-
cific, Araki and Mitamura (2015) jointly identified event trigger and
resolve event coreference with a structured perceptron training algo-
rithm. Chen and Ng (2016) performed joint inference via integer linear
programming (ILP) over the outputs of the models trained for entity
extraction, entity coreference, event extraction, and event coreference.
Additionally, Lu et al. (2016) performed joint inference using Markov
Logic Networks (MLNs) over trigger identification, argument extraction,
entity coreference, and event coreference. Barhom et al. (2019) proposed
a joint neural architecture for the cross-document entity and event cor-
eference resolution. Lu and Ng (2017b) proposed a joint structured CRFs
for event coreference resolution, trigger detection, and event anaphoric
determination. Lu and Ng (2017b) treated each of these extracted words
and phrases as a candidate event mention. And a structured conditional
random field is employed to make joint predictions of the aforemen-
tioned three tasks for each candidate event mention.
Table 8
Statistics of commonly used datasets for event causal relation extraction. #Doc
denotes the number of documents, #Event denotes the number of events,
#Causal-Link denotes the number of causal link between events, and #All-Link
denotes the number of the causal and non-causal link between events.

Dataset #Doc #Event #Causal-
Link

#All-
Link

Causal-TimeBank (Mirza and
Tonelli, 2014)

184 6813 318 7608

EventStoryLine (Mostafazadeh
et al., 2016)

258 5334 1770 7805

EventCausality (Do et al., 2011a) 25 1134 414 887
BECauSE 2.0 (Dunietz et al., 2017) 119 – 1803 2386
FinReason (Chen et al., 2021) 8794 – 12,861 11,006
4.2. Event causal relation extraction

An important part of text understanding arises from understanding if
and how two events are related to semantically (Mirza, 1604). The causal
relation is one important relation type among events. For example, as
shown in Fig. 7, the event killed (E4) is caused by the event attack (E5).
Actually, causality is not a linguistic notion. Although language can be
used to express causality, it exists as a psychological tool for under-
standing the world independently of language (Everaert et al., 2012).

4.2.1. Datasets
The current widely used evaluation datasets for event causal relation
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identification are as follows. (1) Causal-TimeBank: Mirza and Tonelli
(2014) annotated Causal-TimeBank of event-causal relations based on
the TempEval-3 corpus. (2) EventStoryLine: Caselli and Vossen (2017)
annotated the EventStoryLine for event causal relation identification
based on the 320 short stories released by Mostafazadeh et al. (2016). (3)
EventCausality: Do et al. (2011a) adopted a weakly-supervised method
to retrieve additional examples for training models and it is an extremely
tiny dataset. (4) BECauSE 2.0: Dunietz et al. (2017) presented BECauSE
2.0, a new version of the BECauSE corpus (Dunietz et al., 2015) of causal
relation and other seven relations between two spans. (5)
SemEval-2007: SemEval-2007 Task 4, classification of semantic re-
lations between nominals (Girju et al., 2007) gives access to a corpus
containing nominal causal relations among others, as causality is one of
the considered semantic relations. (6)Wall Street Journal: Bethard et al.
(2008) collected 1000 conjoined event pairs connected by from the Wall
Street Journal corpus. The event pairs are annotated manually with both
temporal and causal relations. (7) FinReason: Chen et al. (2021) pro-
posed a financial-domain Chinese corpus regarding extracting the causes
of major events in the announcements of listed companies. Each docu-
ment in this corpus contains one or more structural events, and each
event has none, one or more causes in the document. In total, there are 3
event types, including Pledge of shares, Overweighting/Underweighting
of shares, and Lawsuit. Existing canonical event extraction and machine
reading comprehension methods were performed on this task. The results
show a 7 percentage point F1 score gap between the best model and
human performance. The statistics of the aforementioned datasets are
listed in Table 8.

4.2.2. Methods for event causal relation extraction
Most existing methods usually regarded event causal relation

extraction (ECE) as a classification task. That is, given two events and
their contexts, to identify whether there is a causal relation between
them, even including the corresponding causal relation type. Similar to
other event relations identification, classical classifier andmodern neural
models are employed. Generally, the existing model dealt with it in a
supervised setting and the main focused problem is how to extract clues
or learn the semantical representations for indicating event causal re-
lations in the contexts. Basically, existing models could be classified into
two groups, including considering internal contextual information and
considering external casual related knowledge. Moreover, another important



Table 9
Statistics of commonly used datasets for event temporal relation extraction.
#Doc denotes the number of documents, #Event denotes the number of events,
#Timex denotes the number of time expressions, and #Link denotes the number
of the temporal and non-temporal link between events.

Dataset #Doc #Event #Timex #Link

TimeBank 1.1 (Pustejovsky et al., Lazo) 300 7571 1423 8242
TimeBank 1.26 183 7935 1414 9615
AQUAINT6 73 4432 605 6111
TimeBank-Dense (Chambers et al., 2014) 36 1729 289 12715
TempEval 20076 (Verhagen et al., 2007a) – 6832 1249 5790
TempEval 20106 (Verhagen et al., 2010) – 5688 2117 4907
TempEval, 2013 (UzZaman et al., 2013) – 11145 2078 11098

6 http://www.timeml.org/timebank/timebank.html.
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problem is how to acquire labeled examples for model training, while
there is little work on it.

Considering internal contextual information for ECE. To extract effective
clues for indicating event causal relations in the contexts, various textual
features are exploited, including syntactic features, lexical features,
explicit causal patterns (Hashimoto et al., 2014; Riaz and Girju, 2010,
2014a; Do et al., 2011b; Hidey and McKeown, 2016), statistical causal
association (Beamer and Girju, 2009; Hu et al., 1708; Hu and Walker,
1708; Mirza et al., 2014; Mirza and Tonelli, 2016) and etc.

In particular, Riaz and Girju (2013) proposed a set of novel metrics
(i.e., Explicit Causal Association (ECA), Implicit Causal Association (ICA),
and Boosted Causal Association (BCA)) to identify the likelihood of verb
pairs to encode causality. Riaz and Girju (2014b) proposed a set of lin-
guistic features to identify causal relations. For example, some semantic
classes of nouns could encode causal or non-causal relations, and a
verb-noun pair may not encode causality when a verb and a noun
represent the same events. Zuo et al. (2020a) designed a pyramid
salient-aware network (PSAN) to understand causal explanatory seman-
tics of context. Gao et al. (2019) modeled rich aspects of document-level
causal structures, including main event in a document, the first sentence as
the foreground events, syntactic relations between event pairs, discourse re-
lations between two text units, event coreference relations, for achieving
comprehensive causal relation identification in news articles.

Considering external causal related knowledge for ECE. To enhance
representation for causal relations, especially when the target texts are
short or noisy, some models introduce external causal-related knowledge
or data to understand causal semantics between events. Kadowaki et al.
(2019) identified causality between events with BERT (Devlin et al.,
2019) which is pre-trained with causality candidate documents as
background knowledge. Moreover, some methods try to establish
external resources of event causal-related commonsense (Rashkin et al.,
2018; Sap et al., 1811b; Mostafazadeh et al., 2020), which can be used as
event-related knowledge resources for ECE. In particular, Liu et al.
(2020c) proposed a knowledge enhanced mention masking generalized
model to learn event-agnostic, context-specific patterns for event cau-
sality identification. Given two events e1 and e2, the overall approach
consists of three major components. (1) Knowledge aware reasoner re-
trieves background knowledge of events in ConcepNet (Speer et al.,
2017), and then integrates the knowledge with the processed texts via
BERT based encoding. (2) Event masking reasoner masks event mentions
for reasoning, aiming to learn event-agnostic, context-specific patterns
for reasoning. (3) The attentive sentinel employs an attention mechanism
to balance the above two components for the final prediction.

Data augmentation for ECE. The lack of training examples is important
in ECE. Riaz and Girju (2014b) used the annotations of FrameNet to
generate a training corpus of verb-noun instances encoding cause and
non-cause relations. Zuo et al. (2020b) employed distant supervision
from the knowledge base for data augmentation. They argued that a
sentence that contains an event pair with a high probability of causality
and expresses its causal semantic can be simply labeled as a training
example. Obviously, such assumption may be weak and introduce many
noises.

4.3. Event temporal relation extraction

Event temporal relation extraction (ETE) aims to understand the
temporal order among events and time expressions in texts. As shown in
Fig. 7, the event paid (E6) happened on Sunday (T1), the event killed (E7)
is included in the event explosion (E8) and happened on month (T2), and
the event paid (E6) happened before the event killed and event explosion.
Temporal relations, or temporal links, are annotations that bring together
pieces of markable temporal information in texts, and make a formal
representation of temporally ordered events possible (Mirza, 1604).

4.3.1. Datasets
The current widely used evaluation datasets are as follows. (1) MUC:
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The named entity subtasks of MUC-6 and MUC-7 (Sixth Message
Understandi, 1995; Seventh Message Understan, 1998) require the
identification of absolute (MUC6) and relative (MUC7) time expressions.
(2) TimeBank 1.1: The annotations of TimeBank 1.1 (Pustejovsky et al.,
Lazo) follow the 1.1 version of TimeML specifications (Pustejovsky et al.,
2003). (3) TimeBank 1.2: Timebank 1.26 follows the newer TimeML
specifications version 1.2.1. The annotation process for Timebank 1.2 is
similar to Timebank 1.1, except that all annotations are performed by
expert annotators. (4) AQUAINT: AQUAINT6 contains 73 news report
documents and is very similar in content to and uses the same specifi-
cations as TimeBank 1.2. (5) TimeBank-Dense: TimeBank-Dense
(Chambers et al., 2014) forces annotators to examine all pairs of events
within the same or neighboring sentences to mitigate the sparsity issue.
(6) TempEval: a) TempEval Corpus6 (Verhagen et al., 2007a) is created
for the temporal relation extraction task at SemEval-2007 based on
TimeBank 1.2. b) TempEval-2 Corpus6 (Verhagen et al., 2010), a multi-
lingual corpus, is created for the Tempeval-2 task at the Semeval-2010
competition. It includes annotations in Chinese, English, French, Ital-
ian, Korean, and Spanish. c) TempEval-3 corpus (UzZaman et al., 2013)
includes the AQUAINT and a large automatically system annotated
â€œsilverâ€ temporal corpus. (7) MATRES: MATRES (Ning et al., 2018)
enhances the data quality by using a multi-axis annotation scheme and
adopting a start point of events to improve inter-annotator agreements.
(8) Dependency Structured Temporal (Zhang and Xue, 2018): A novel
corpus where events and time expressions in a document form a de-
pendency tree (Zhang and Xue, 1808). Specifically, each dependency
relation corresponds to an instance of temporal anaphora where the
antecedent is the parent and the anaphora is the child. The statistics of
commonly used datasets for event temporal relation extraction are listed
in Table 9.

4.3.2. Methods for event temporal relation extraction
In recent years, the mainstream researches of temporal relation

extraction are mainly based on TimeML format (Pustejovsky et al., 2003)
that is the most widely used markup language for events, time expres-
sions, and temporal relations. Similar to relation extraction, most of the
existingmethods modeled ETE as a classification task. In general, existing
approaches mainly contained three types, including rule-based, machine
learning-based and neural models.

Temporal rules-based methods for ETE. To understand the temporal
order among events, early ETE models usually relied on temporal rules,
such as the rule-based deep syntactic analyzers (Hag�ege and Tannier,
2007; Str€otgen and Gertz, 2010), the rule-based system using knowledge
databases (Llorens et al., 2010), the rule-based time expression tagger
based on regular expression patterns over tokens (Chang and Manning,
2013), the finite-state rule cascading recognizer and classifier (Zavarella
and Tanev, 2013), and the in-house rule-based systems for clinical tem-
poral modeling (Tissot et al., 2015). In particular, Chambers et al. (2014)
presented CAEVO, a cascading event ordering architecture, which
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included several rule-based classifiers based on linguistic theory. CAEVO
naturally integrates these machine-learned classifiers using the sieve
architecture.

Machine learning-based approaches for ETE. In addition to the temporal
rules, some statistical temporal contextual features are used to construct
machine learning-based models for ETE. For example, the maximum
entropy classifier trained on the data expanded with temporal reasoning
(Mani et al., 2006), the pair-wise classifier which avoided the pitfalls of
evaluating a graph of inter-related labels by defining three sub-tasks
(Verhagen et al., 2007b), the two-stage classifier (Chambers et al.,
2007), the automatic events and time expressions identifier (Verhagen
and Pustejovsky, 2008), the ClearTK, a pipeline machine-learning model
with a simple morpho-syntactic annotation (Bethard, 2013), the UTTime,
the logistic regression classifiers with a deep syntactic parser (Laokulrat
et al., 2013), the NavyTime, a split classifier approach that breaks the
ordering tasks into smaller decision points (Chambers, 2013), the Mar-
kov Logic model that jointly identifies relations of three relation types
(Yoshikawa et al., 2009), the structured learning approach (Ning et al.,
2017), and the scalable structured learning model (Moens and Leeu-
wenberg, 2017).

Neural models for ETE. Recently, a lot of neural models have been
proposed to capture temporal relations, such as the basic CNNs and
LSTMs approaches (Tourille et al., 2017a; Dligach et al., 2017), the de-
pendency paths based BiLSTM models (Cheng and Miyao, 2017; Meng
et al., 2017), the context-aware neural-based model (Meng and
Rumshisky, 2018), and the end-to-end neural models on the clinical
domain (Chikka, 2016; Li and Huang, 2016). Additionally, some
ensemble models which have been proposed, such as the recurrent neural
model combined with SVMs and rules on clinical domain (Tourille et al.,
2017b; Long et al., 2017). Moreover, other more refined neural models
have also been gradually proposed, like the relative time-line constructor
(Leeuwenberg and Moens, 2018), the joint event and temporal relation
extractor (Han et al., 2019), the improved neural models for temporal
relation extraction (Ning et al., 2019), the structured neural network
empowered by domain knowledge (Han et al., 2020), and the contex-
tualized neural language models for temporal dependency parsing (Ross
et al., 2020). And Han et al. (2019) proposed a neural structured pre-
diction model with joint representation learning to make predictions on
events and relations simultaneously. Specifically, a RNN-basedmulti-task
scoring module was exploited which included an event scorer and a
relation scorer for both event and relation prediction.

4.4. Comparison of methods for different event relation extraction

Since there is no consistent task formulation for different event
relation extraction, it is hard to make a summary for the existing ap-
proaches. Moreover, we try to take analysis and comparisons of the
aforementioned methods for three event relation extraction tasks. As
shown in Table 10, we could obtain the following briefly conclusions:

Sentence-level vs. Document-level Extraction. Coreferential events are
mainly distributed in the document, including within-document and
cross-document, and rarely distributed in the same sentence. Therefore,
most existing approaches handled ECR at the document level. On the
contrary, causal and temporal related events are distributed both within
Table 10
Comparisons of different methods on three event relation extraction tasks.

Methods on Different Tasks Coreference Causal
Relation

Temporal
Relation

Sentence/Document Level ✓/� ✓/✓ ✓/✓
Pipeline/Joint ✓/✓ ✓/� ✓/✓
Local/Global ✓/✓ ✓/✓ ✓/✓
Data Augmentation � ✓ �
Employing Event Argument ✓ � �
Employing External
Resources

� ✓ ✓
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one sentence and cross different sentences of one document. Thus, both
sentence-level and document-level proposed were proposed.

Pipline vs. Joint. To extract event relations, most methods are pipeline
models which extract events first and then identify the relations between
the events. To address the error propagation problem of the pipeline
model, the methods of jointly extracting events and identifying event
relations are proposed in the event coreference resolution and event
temporal relation extraction.

Local vs. Global. The relations of events is distributed among different
sentences in the document, and different events affect each other.
Therefore, based on the traditional local models, more global models are
gradually proposed to understand the event relations.

Data Augmentation. Most event relation extraction approaches were
based on the supervised setting, where sufficient labeled instances are
needed. To produce sufficient training data, data augmentation methods
are proposed, especially for the training of event causal extraction.
However, because event coreference and temporal relation are more
biased towards the document level, data augmentation is seldom
addressed for these relation types.

Employing Event Argument. The understanding of event coreference is
strongly dependent on event arguments. Relatively, event argument in-
formation has little influence on the identification of event causal rela-
tion and event temporal relation.

Employing External Resources. To date, external resources for event
causal relation extraction and event temporal relation extraction are
introduced. However, event coreference resolution lacks external
resources.

5. Recent research in event knowledge graph

Most aforementioned event/relation extraction approaches are under
investigated, and their performance are still not satisfied for event-
centric knowledge graph construction. Nevertheless, several event
knowledge graphs have been constructed for different aims. We intro-
duce them briefly as follows.

EventKG.Gottschalk and Demidova (2018) presented an EventKG to
take an important step to facilitate a global view on events and temporal
relations currently spread across entity-centric knowledge graphs and
manually curated semi-structured sources. EventKG currently includes
data sources in five languages - English, German, French, Russian, and
Portuguese.

ELG.Ding et al. (1907) presented an Event Logic Graph (ELG), a
directed cyclic graph, whose nodes are events, and edges stand for the
sequential, causal, conditional, or hypernym-hyponym relations between
events. Essentially, ELG is an event logic knowledge base, which reveals
evolutionary patterns and development logics of real-world events.

ASER.Zhang et al. (2020) proposed an ASER for discovering useful
real-world knowledge about Activities (or process, e.g., “I sleep”), States
(e.g., “I am hungry”), Events (e.g., “I make a call”), and their relations
(e.g., “I am hungry” may result in “I have lunch”). ASER defines a brand
new KG where the primitive units of semantics are eventualities. Each
eventuality instance is a hyperedge connecting several vertices (words).
A relation between two eventualities in ASER represents one of the 14
relation types defined in PDTB or a co-occurrence relation. ASER
designed several high-quality patterns based on dependency parsing re-
sults and extract all eventualities over large-scale corpora.

Events are important semantical units in commonsense knowledge,
like states, activities. Thus, several works try to build commonsense re-
sources surrounding events, such as Event2Mind (Rashkin et al., 2018),
GLUCOSE (Mostafazadeh et al., 2020), ATOMIC (Sap et al., 1811a),
(COMET-)ATOMIC2020 (Hwang et al., 2020). In these resources, an
event usually is represented as phrases or sentences instead of the defi-
nition in ACE.

Event2Mind.Rashkin et al. (2018) introduced a new task, corpus, and
model supporting commonsense inference on events. It specifically



Table 11
The statistics of different event knowledge graphs.

Event Knowledge Graphs Statistics

EventKG (Gottschalk and Demidova,
2018)

88,473,111 Triples, 609,247 Nodes (Events)

ELG (Ding et al., 1907) 2173 Relations (Logic Relations)
ASER (Zhang et al., 2020) 64,351,959 Triples, 194,000,677 Nodes

(Eventuality)
Event2Mind (Rashkin et al., 2018) 24,716 Unique Event Phrases
GLUCOSE (Mostafazadeh et al.,
2020)

670K Annotations, 335K Rules (Causal
Commonsense)

ATOMIC (Sap et al., 1811a) 877,108 Triples, 309,515 Nodes (Event
Phrases)

(COMET-)ATOMIC2020 (Hwang
et al., 2020)

1.33M Triples
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focused on modeling stereotypical intents and reactions of people,
described in short free-form text (event phrases). The goal of Event2Mind
is to probe whether it is feasible to build computational models that can
perform limited, but well-scoped commonsense inference on event
phrases.

GLUCOSE.Mostafazadeh et al. (2020) introduced the GeneraLized
and COntextualized Story Explanations (GLUCOSE) dataset. Given a
short story and a sentence X in the story, GLUCOSE captures ten di-
mensions of causal explanation related to X. These dimensions are
designed to focus on causal reasoning around events and states, eliciting
event causal chains, character motivations, emotions, naive psychology,
and change of attributes such as location and possessions to core story
entities.

ATOMIC.Sap et al. (1811a) introduced the ATOMIC, an atlas of ma-
chine commonsense, as a step toward addressing the rich spectrum of
inferential knowledge that is crucial for automated commonsense
reasoning. It mainly focuses on inferential if-then knowledge. They
employed crowdsourcing and proposed a new taxonomy of if-then
reasoning types. One way to categorize the types is based on the con-
tent being predicted: (1) If-Event-Then-Mental-State, (2) If-Event-Then-E-
vent, and (3) If-Event-Then-Persona. Another way to categorize is based on
their causal relations: (1) “causes”, (2) “effects”, and (3) “stative”. Using
this taxonomy, ATOMIC gathers over 877K instances of inferential
knowledge.

(COMET-)ATOMIC2020.Hwang et al. (2020) presented ATOMIC2020,
a commonsense knowledge graph with 1.33M everyday inferential
knowledge tuples about entities and events. ATOMIC2020 represents a
large-scale commonsense repository of textual descriptions that encode
both the social and the physical aspects of common human everyday
experiences, collected to be complementary to commonsense knowledge
encoded in current language models. ATOMIC2020 introduces 23
commonsense relations types. They can be broadly classified into three
categorical types: 9 commonsense relations of social-interaction, 7
physical-entity commonsense relations, and 7 event-centered common-
sense relations concerning situations surrounding a given event of
interest.

Table 11 presents the statistics of these event knowledge graphs. Most
of them have large scales and have been proved to be effective for
reasoning-driven applications.

6. Summary and challenges

This paper introduces a survey on the task of event and event relation
extraction. In event extraction, we focus on recent three research topics
and corresponding methods, including recent neural models for the
sentence level event extraction, methods for across sentences or
document-level event extraction and data augmentation approaches. In
event relation extraction, we mainly focus on extraction methods for
three relation types, such as event coreference, causal relation, and
temporal relation. We also give the widely used evaluation datasets and
current performances on each dataset. Nevertheless, there are several
challenges or problems to be focused on and investigated further.

How to represent event in the texts? Most current event extraction ap-
proaches are based on the event definition in ACE. In texts, an event is
defined to be triggered by a trigger word. As a result, the trigger word is
usually regarded as the attorney for the corresponding event in texts. The
event arguments extraction is regarded as judging the relations between
some words/phrases and the trigger word. And current event relation
extraction is also regarded as judging the relations among different given
trigger words. However, only representing an event as a single trigger
word or phrase is explicitly unreasonable. In many cases, an event is
usually triggered/described by multiple words or several sentences. For
example, “Kang Inc. declared its pledge of 40,000,000 shares to CRCB
bank since Jan 1st, 2016. … Kang’s pledge aimed at providing a guar-
antee for self-financing …”. The cause of a PLEDGE event (Kang Inc.’s
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pledgetion) is another event that is described in a textual span (providing
a guarantee for self-financing) other than a single trigger word. Thus,
how to represent events in texts rather than a trigger word is still an
unsolved problem.

Document-level event extraction needs deep analysis. Although we
introduce some works for extracting events at the document-level, the
researches in such a field is still scarce. Compared with sentence-level
event extraction, extracting events across sentences or in the whole
document needs to take a large view of texts. Arguments-scattering and
multi-events problems are still serious. Although some graph-based ap-
proaches (Zheng et al., 1904; Chen et al., 2020) were proposed to capture
the structure of the document and relations between sentences, the so-
lutions are still simple and opaque. It needs deep analysis in the future.

How to perform multi-modal event extraction? Only extracting events
from texts is limited. In the real world, an event may be described by
different modalities, including texts, speech, images, and videos. Jointly
using multi-modal information could be helpful for the event extraction
system to disambiguate and complement information mutually. How-
ever, there is little work focusing on this problem, where how to repre-
sent multi-modal information in a unified semantic space and compute
their alignments are challenging problems.

How to define events and perform extraction in open domains? Currently,
the event definitionmostly follows that in ACE, where an event is defined
as a structure. In Freebase, an event is defined as a compound value type
(CVT), which is also based on a structured format. Based on such defi-
nition, existing approaches perform extraction under the pre-defined
event frames. However, not all events could be formulated in such
structured formats. Moreover, enumerating all frames for each event type
is exhaustive and impractical. Therefore, in some event knowledge bases
(like ATOMIC), an event is represented as a sentence instead of a struc-
tured format. We believe the reason is that we could not know and pre-
define event types under many scenarios, such as commonsense
reasoning. Moreover, besides coreference, causal and temporal relations
mentioned in this paper, are there other event relation types that are still
under-investigated. Formulating event relation extraction as a classifi-
cation problem by given two trigger words or sentences is limited.
Therefore, how to define events/relations, especially for those unseen
ones, is an important problem for event extraction. In this way, open
event extraction like OpenIE may be needed.

In general, the current methods, whatever extracting events or event
relations, are still not satisfied for event-centric knowledge graph con-
struction and other downstream tasks. There are still many questions that
need to be resolved further. Nevertheless, extracting events and event
relations has taken a big step forward, which makes the knowledge
extraction not always limited to the entity level. We expect that it could
attract more and more attentions in the future.
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