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Abstract

Real-time streaming speech recognition is required by most ap-
plications for a nice interactive experience. To naturally sup-
port online recognition, a common strategy used in recently
proposed end-to-end models is to introduce a blank label to
the label set and instead output alignments. However, gen-
erating the alignment means decoding much longer than the
length of the linguistic sequence. Besides, there exist sev-
eral blank labels between two output units in the alignment,
which hinders models from learning the adjacent dependency
of units in the target sequence. In this work, we propose an
innovative encoder-decoder structure, called EcTC-DOCD, for
online speech recognition which directly predicts the linguis-
tic sequence without blank labels. Apart from the encoder and
decoder structures, ECTC-DOCD contains an additional shrink-
ing layer to drop the redundant acoustic information. This layer
serves as a bridge connecting acoustic representation and lin-
guistic modelling parts. Through experiments, we confirm that
EcTC-DOCD can obtain better performance than a strong CTC
model in online ASR tasks. We also show that ECTC-DOCD can
achieve promising results on both Mandarin and English ASR
datasets with first and second pass decoding.

Index Terms: end-to-end, streaming ASR, encoder-decoder,
OCD, CTC

1. Introduction

The speech recognition task involves transforming a long acous-
tic feature sequence to a short label sequence. Emerging end-to-
end models have better performance than traditional models in
ASR task over many datasets [1, 2, 3, 4]. Besides the competing
performance, a much simpler process and negligibly required
expert knowledge make the end-to-end modelling approach at-
tractive.

There are two mainstream branches to handle this trans-
formation applied in end-to-end models: 1) referring to the
whole acoustic information by attention mechanism [5] dur-
ing decoding, including Listen, Attend and Spell (LAS) [6] and
Joint CTC-Attention [1]; 2) adding an additional blank label
to the output label set, degenerating ASR task to sequence la-
beling task. Typical models contain Connectionist Temporal
Classification (CTC) [7, 2], Recurrent Neural Aligner (RNA)
[8] and Recurrent Neural Network Transducer (RNN-T) [9].
The former strategy requires the entire input sequence acces-
sible in advance at each decoding step, thus cannot be directly
used for real-time streaming speech recognition. The latter way
promotes the model to generate the alignment of the input se-
quence and subsequently map the alignment into the linguistic
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sequence. It is naturally suitable for the model to work in a
streaming way, and we focus on this approach.

However, generating an alignment requires the model to de-
code as long as the acoustic feature sequence, which is much
longer than the target sequence in most cases. Since the blank
and repeated labels in the alignment will be removed, it is a
waste of time decoding on these steps. Besides the redundant
computation, these labels also cause trouble for the model to
learn the dependency between the adjacent units in the target
sequence, which is the key to model the language [10].

In this work, we apply an encoder-decoder structure [11] to
process frames coming streamingly and generate the linguistic
sequence directly. The encoder is supervised to generate a hid-
den representation sequence for the input feature with CTC loss.
Then this representation sequence is shrunk to feed the decoder
by merging the repeated frames and removing the ones corre-
sponding to blank labels (called blank frames). The decoder
outputs the final posterior probability distributions which have
the same length as the shrunk hidden representation. Cross-
Entropy (CE) [12] loss is applied to the distributions according
to the target sequence. To solve the length mismatch between
distributions and target sequence when computing the CE loss,
Optimal Completion Distillation (OCD) [13] is used to select
the target label(s) at each step of decoding. Due to the supervi-
sions used in encoder and decoder, we call the structure ECTC-
Docb.

The key contributions of our model include:

* We fuse the pioneering shrinking layer in structure to
skip the blank frames in the encoded representation,
bridging the length gap of acoustic and linguistic parts.
This layer can relief the redundant computation on blank
and repeated frames, thus the model can directly output
linguistic sequences without blank labels.

* Two different tasks in ECTC-DOCD make it partly ex-
plainable: The CTC loss function forces the model to
learn which frames belong to the blank and repeated la-
bels; The CE loss augmented by the OCD pushes the
model to generate optimal labels by additionally refer-
ring to the partly decoded labels.

¢ We propose a matched learning paradigm for the
two-level supervision task in ECTC-DOCD, where the
model’s focus of learning gradually switches from one
to the other.

2. Related Works

Starting from the pioneer CTC work [14], the extension of the
output set with a blank label transforms the task of generat-
ing a linguistic sentence to generating an alignment, making
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it an end-to-end way to realise the streaming speech recogni-
tion. Unfortunately, traditional CTC models make a conditional
independence assumption for label predictions [8, 9], thus un-
able to learn an internal language model (LM) for the output
sequences.

To leverage additional language information for CTC,
RNN-T [9] introduces a transcription network trained with text
data and marginalizes all the legal alignments within an output
lattice. Different from RNN-T, EcTC-DOCD utilizes the de-
coder under the encoder-decoder structure, similar to the main-
stream seq2seq models. Moreover, the decoder in ECTC-DOCD
can learn the label dependency during training from scratch.

From the viewpoint of model structure, our model is much
like RNA, which can also process stream-coming frames. They
have the same working flow except for the shrinking layer be-
tween the encoder and decoder. As a result, RNA outputs align-
ment and is trained with a CTC-like loss. Without the inter-
ruption of blank labels, ECTC-DOCD has better language mod-
elling ability than RNA theoretically.

The shrinking idea is introduced in [15] for the first time
as we know. That work skips the search of blank-dominated
steps during CTC decoding, losing no accuracy but obtaining
2-3 times speedup. Our shrink layer is equivalent to omitting
the blank frames, condensing the decoding steps.

A previous work [16] also suggests using different level su-
pervisions for end-to-end models, which belongs to multitask
learning [17, 18]. In multitask learning, however, there is only
one primary task. The rests are auxiliary, and they are not neces-
sary for the primary one. In contrast, two tasks are cascaded in
EcTc-DOCD, breaking down the whole ASR task into acoustic
representation and linguistic generation.

3. Model Description

EcTtc-DOCD is a neural network within the encoder-decoder
framework that models the mapping between input and output
sequences in an end-to-end way. Given the acoustic feature se-
quence x = (x1,Z2,...,x7) with length T" and the alphabet
of labels ¢, ECTC-DOCD outputs the predicted label sequence
z = (z1, 22, ..., zu ) with length U, where z; € €.

3.1. Encoder with CTC loss

As demonstrated in Figure 1, the encoder outputs the hidden
representation sequence, which is then fed into a projection and
softmax layer to generate a distribution sequence over %' . Here
%" is the label set extended with a blank label €, 1. e. ¢ =
% U ¢, and CTC loss is applied to the distribution sequence.
The label sequence output by the encoder can be viewed as the
alignment. The computations in the encoder part are formally
described as:

h £ encoder(x) (1)
Pen = softmax(W x h) 2)
h = shrink(h, arg max(pen)) 3)

The shrinking function merges the repeated frames and fil-
ters out the blank frames. The detailed operations are shown in
Figure 2. Blank frames are not taken into account for the lin-
guistic results. We consider redundant or the transitory stage
between meaningful frames.

The loss for the encoder part is:

Lete = —logpete(y|x) “)
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Fig. 1: The framework of the ECTC-DOCD structure. The train-
ing and inferring share the same working flow demonstrated by
the solid lines. The dash lines indicate the operations to com-
pute the loss in the training phase.

3.2. Decoder with OCD Loss

Similar to RNA, the decoder concatenates the embedded vector
of the previously decoded label and current acoustic vector as
the input frame for each step. As mentioned above, the decoder
takes as input the shrunk hidden representation h and would
directly output the linguistic sequence:

P(2u|hu, zus1) = decoder([h,,; embed (2,5 1)]) 5)

During the training, however, the encoder could not guar-
antee the length of shrunk hidden representation equaling to the
target sequence, even at the end of the training. Due to this,
vanilla CE loss can not directly apply to the posterior distribu-
tion sequence pa.(z) and the target sequence y. Following the
work [13], we apply Optimal Completion Distillation (OCD) to
compute the CE loss (called OCD loss).

OCD takes the partly decoded result 2., into consider and
identifies the set of optimal suffixes that minimize the final
edit distance by dynamic programming. The target distribu-
tion for each position of the generated sequence is constructed
by putting equal probability to the tokens belong to the candi-
dates of the optimal suffixes. OCD calculates the CE loss of the
model’s output with the optimal distribution at each time:

U
Loca(z|h ) = > KL(p(zulhu, 2451)[|OCD(y, z1:u))  (6)

u=1

Moreover, the usage of OCD makes the ECTC-DOCD avoid
two mismatches: 1) the prefixes seen by the model during train-
ing and inference; 2) the training loss and the task evaluation
metric. These mismatches are criticized [19, 20, 7, 21, 22]



Fig. 2: The shrinking layer to remove the blank frames (gray
rectangles) in the acoustic representation. If there are repeated
frames (white rectangles where no blank frames in between), an
average operation will be applied to these frames and to obtain
a single frame. The length of T shrinks into U through the
shrinking layer.

but commonly exist in Seq2seq models trained with Maximum
Likelihood Estimation (MLE).

3.3. Systematic Learning

We propose a new learning paradigm called systematic learning
for ECTC-DOCD. We interpret the supervision of CTC as repre-
senting the acoustic input and OCD as spelling the words. This
design idea follows a previous work [6], making ECTC-DOCD
more interpretable among the end-to-end models. During the
training phase, the model needs to pay variational efforts on
learning the two abilities, listen and spell, over time: the model
focuses on learning a good representation for acoustic informa-
tion in the beginning and gradually switches its efforts to spell
what is heard. Following this opinion, systematic learning adds
two losses as a final one with a scheduled increasing trade-off
parameter A ranging from O to 1:

L =(1=MXLee(y|x) + ALoca(z|h) @)
Note that two supervisions share the same transcription, as in
[1]. We can also use additional transcriptions, which use acous-
tic units like phones or syllables, for the encoder’s supervision.

4. Experiments

We mainly conduct our experiments on the Chinese Mandarin
speech AISHELL-2 [23], which is by far the largest free speech
corpus available for Mandarin ASR research and contains 1000
hours for training. We extract 80-dimensional log-Melfilter-
bank features, operated with a 25ms window and shifted every
10ms. We compute the delta, delta-delta of the feature as the
other two feature maps.

We first conduct several experiments to verify the rational-
ity of the working flows designed in Section 3 for ECTC-DOCD.
Then we infer the model with the first and second pass decod-
ing [24] on several open source datasets, including LibriSpeech
[25] and HKUST [26]. We compare our results with other base-
lines and state-of-the-art methods. Finally, we try to localize the
limitation of ECTC-DOCD for further improvements.
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4.1. Working Flow Explorations

Table 1: Some explorations of the working flows for the ECTC-
DocD and comparison on the Aishell2 dev. As a baseline, CTC
model is ECTC-DOCD’s encoder. The criteria is CER(%).

Working Flows Models Settings dev

CTC baseline 12.75
hidden as input

Ecrtc-Docp + average shrink 12.00
+2=02—-038

decoder loss MLE 12.50 (4.2% 1)

acoustic input distribution 12.64 (5.3% 1)
bottleneck=100 12.56 (4.3% 1)

shrinking settings ~ weighted sum

add adjacent frames

12.13 (0.7% 1)
14.25 (18.3% 1)

A=0.8 12.16 (1.3% 1)
systematic learning A = 0.5 12.04 (0.3% 1)
A=0.2 12.15 (1.2% 1)
A=001-099  12.15(1.2% 1)

The base working flow of ECTC-DOCD follows the descrip-
tion in Section 3. We adopt the encoder designed in [27] for its
promising results in Chinese ASR task, which roughly contains
two CNN layers and four LSTM cells. CNN layers as the front-
end part of several LSTM layers in the encoder is widely used
in recent works [2, 1, 28]. The encoder downsamples the raw
feature sequence by a rate of § in the time dimension and rate of
2 in the feature dimension. The decoder is a single LSTM cell
with 800 hidden units. Confidence penalty [29] for the logits
scaled with 0.3 is added to each loss.

To investigate how much improvement ECTC-DOCD will
achieve from the decoder, we set a CTC baseline with the same
encoder and training settings. For all the models in Tabel 1, only
greedy search without language model is applied and LSTM
cells are unidirectional.

4.1.1. Decoder Loss

As mentioned in Section 3.2, We recommend OCD training for
the decoder because it can elegantly compute target(s) for each
step according to the ground-truth. To validate its effectiveness,
we alternatively use MLE without OCD. Contrary to the normal
MLE under teacher-forcing training, we apply it under the self-
dependent training [13]. It is actually scheduled sampling with
always sampling [19].

To apply MLE, we assume the output of the model is con-
sistent with target labels from left to right and ignore the mis-
match part (if any) at the end of the two sequences. As shown
in Table 1, OCD training can significantly outperform MLE.

4.1.2. Acoustic Input

Here we investigate the reasonability to use hidden represen-
tation h as the acoustic input. First, we make a comparison
between h and the distribution p.¢.. Second, a smaller hidden
size of acoustic representation h may force the encoder to learn
a more compressed and general representation. We adopt the
idea from transfer learning [30], the bottleneck, and addition-
ally map the original representation to a narrower one before
the final fully connected layer in the encoder.



As we can see from Table 1, using distribution as acoustic
input for the decoder achieves worse performance. On the other
hand, the performance is hindered rather than improved after
introducing the bottleneck. We consider that distribution and
bottleneck lose more information than the hidden representation
as acoustic input.

4.1.3. Shrinking Settings

Next, we verify the effectiveness of simply averaging over the
repeated frames to process the acoustic input. For comparison,
we unequally treat these frames through the model’s confidence
in them. Specifically, a weighted sum over the repeated frames
by the corresponding probabilities output p.¢. is computed. Ad-
ditionally, considering CNN models usually achieve better per-
formance with a wider horizon, we also let ECTC-DOCD see
broader features for one step decoding. To realize this, we con-
catenate two adjacent frames with current one.

The results in Table 1 indicate that neither the two changes
on shrinking setting can imrpove the results. We speculate that
the clearity of the acoutic information is more important than
capacity.

4.1.4. Systematic Learning

We investigate different schedules for A\ in Eq 7. We simply
apply a linear increase strategy as in [19] with two different set-
tings: 1) starting to linearly increase A at 10000-th step from
0.01 to 0.99 at 20000-th step during training. The baseline ap-
plies schedule: 0.2 — 0.8. For comparison, we apply three
fixed settings (A = 0.2,0.5,0.8).

According to Table 1, systematic learning with A from 0.2
to 0.8 achieves the best performance.

4.2. First and Second Pass Decode

To compete with the state-of-the-art models, we perform first
and second decoding by incorporating a neural language model
[10] in this section. It is unnecessary to consider the end of de-
coding since the decoding steps are constrained by the length of
shrunk acoustic representation h . We use self-attention struc-
ture as the language model [31] and trained with training text.

Besides, we use BLSTM with 800 hidden states for each di-
rection to replace the LSTM in the encoder for fair comparison
with other published results.

Table 2: Performances (WER%) on test sets of Aishell2, Lib-
rispeech and HKUST.

Model Aishell2 Libri HKUST
CTC 9.7 7.1 28.6
Ectc-Docp 9.6 6.5 28.3
+ 1,2-pass 8.5 6.2 28.3
Chain-TDNN [23] 8.81 - -
TDNN-hybrid+MMI [32] 19.78 4.28 28.2
DeepSpeech2 [2] - 5.83 -
Self-Attention Aligner [4] - - 25.88

Table 2 compares our model with state-of-the-art models on
three different datasets. As the end-to-end model, ECTC-DOCD
can achieve competing results without the help of global atten-
tion mechanism. Nevertheless, on some datasets, ECTC-DOCD
cannot significantly surpass our strong CTC baseline with the
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Table 3: Performance (CER%) comparison before and after
using flawless acoustic representation in ECTC-DOCD during
inferring.

Model Description train.dev  dev
. character transcriptions for
Baseline both encoder and decoder 33.83 3472
Model-A  [Oldout tran-dev transerip- 3y h5 3 45
tions from training
Model-B~ Us€ tran_dev syllable trans- 6.95 36.47

criptions for training

additional modelling ability for output labels. In Section 4.3,
we emphasize on figuring out the bottleneck of the performance
of ECTC-DOCD.

4.3. Limitation of acoustic representation

In this section, we investigate on the limitation of ECTC-DOCD
to improve the performance for further work. As demonstrated
in Figure 1, the decoder of ECTC-DOCD can only peek the
speech signal through the representations generated by the en-
coder, which are largely shaped by the CTC supervision. While
in traditional end-to-end models, the hidden representions pro-
duced from the encoder are totally decided by the final supervi-
sion. We speculate that the performance of the whole model is
restrained by the validity of the acoustic representation h or h .

To figure out how much potential improvement the model
will gain with a better encoder, we plan to feed flawless acoustic
representation to the decoder during testing. To ensure the en-
coder only delivers acoustic information rather the target labels
to the decoder, syllable as units [33] is instead used to supervise
the encoder, as explained in Section 3.3.

We construct experiments on HKUST dataset. The size of
characters for the decoder is 3673 and syllables for the encoder
is 1385. We first train the ECTC-DOCD, holding out train_dev
sets in the standard way, to get the first model (Model-A). Then
we obtain a second model (Model-B) by further training the
first model’s encoder with train_dev’s syllable transcriptions.
As shown in Table 3, it is noticeable that the second model’s
decoder has a dramatic improvement on the train_dev set.

‘We consider that the unnoticed differences among the vari-
ous working flows in Section 4.1 are attributed to the limitation
of the acoustic representation, which is mainly learned by the
CTC supervision. In further works, it is worth exploring how
to make the decoder robust to the fed acoustic representation or
additionally utilise the original speech features.

5. Conclusions

This work presents ECTC-DOCD, an innovative end-to-end
structure for the ASR task. ECTC-DOCD contains two level
supervisions: CTC loss in the encoder and OCD loss in the
decoder, which are respectively used for acoustic representa-
tion and linguistic generation. The shrinking layer used in
Ectc-DocCD provides a bran-new method to bridge acoustic
and linguistic parts in end-to-end models. ECTC-DOCD’s train-
ing phase takes the task evaluation metric into account and ex-
actly matches the inferring phase. Our model achieves promis-
ing results in Mandarin and English speech datasets. Further
investigation will focus on how to make the decoder robust to
the acoustic representation from the encoder.
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