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Abstract—Upper-limb rehabilitation robots are being increas-
ingly included in the rehabilitation after stroke. Clinical studies
suggest that the patient’s active participation can maximize
effectiveness of robot-assisted rehabilitation and result in fastest
possible recovery. In order to promote active involvement of
the patient, we develop a subject-adaptive controller within
the assist-as-needed (AAN) paradigm. The controller employs
Recursive Least Square (RLS) algorithm to identify human arm
impedance parameters, with aims to quantify the residual motor
capability of the patient. According to the upper-limb impedance
of the patient in the direction along movements, the reference
trajectory can be generated based on the motion patterns in
healthy humans. In addition, the fuzzy logic control strategy is
implemented in the direction perpendicular to movements, which
is capable of adjusting the robotic assistance level by considering
both upper-limb impedance of the patient and the variations of
deviation between the reference trajectory and actual trajectory.
Furthermore, the proposed subject-adaptive AAN controller was
validated in the simulation study, and the results demonstrated
the capability of the controller to modulate the assistance level in
accordance with the subject’s instantaneous requirements. Future
works will focus on the implementation of the control scheme with
post-stroke patients.

Keywords—Assist-as-needed; fuzzy logic control; rehabilitation
robotics; identification of human arm impedance.

I. INTRODUCTION

Stroke is induced by intracerebral haemorrhage or infarc-

tion, and is one of the main causes of non-traumatic disability

in humans [1]. According to statistical results from WHO

(World Health Organization), the absolute numbers of people

suffering from stroke annually exceed 15 million [2]. Most

post-stroke patients are left with severe upper-limb motor

disability, which affect the performances in ADLs (activities of

daily living) [3]. In order to help these patients restore the lost

motor functions, long-term and high-intensity rehabilitation

(i.e., physical therapy and occupational therapy) are considered
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essential. Compared with the traditional therapy accomplished

manually by therapists, robot-assisted rehabilitation is well

suited for rehabilitation training for the advantages in consis-

tent delivery of therapy, objective and quantitative assessment,

virtual reality interfaces, etc [4].

The effectiveness of robot-aided rehabilitation relies heavily

on control strategies, and the existing robotic therapy strate-

gies can be roughly divided into passive training and active

training. Hogan et al. [5] demonstrated that passive trajectory

tracking did not effectively promote the motor recovery in

stroke survivors, suggesting that active participation plays an

important role in motor relearning. Furthermore, there are

evidences that high-level active participation can induce neural

plasticity and hence result in fastest possible recovery [6]. In

order to maximize patients’ active participation, the assist-as-

needed (AAN) control paradigm [7] has been proposed, with

aims to minimize robotic assistance based on patients’ online

performance.

The implementation of AAN control, however, remains

an open-ended research area. By considering that excessive

assistance tends to increase the patient’s slackness and insuffi-

cient assistance may lead to patient’s depression, it is critical

to determine the optimal assistance that rehabilitation robots

should provide. Previous studies used electroencephalography

(EEG) and electromyography (EMG) signals to predict human

intended motion in rehabilitation robotic systems [8], [9].

These methods have limitations in decoding motion commands

with high precision because the state-of-the-art pattern recog-

nition techniques are limited in separating certain types of pre-

defined motions. Wolbrecht et al. [10] first utilized Gaussian

radial basis functions (RBFs) to model the motor functional

status of the patient, for the purposes of AAN rehabilitation.

Pehlivan et al. [11] similarly integrated directionally dependent

RBFs with adaptive control law to provide assistance only

when the patient has insufficient motor ability. A drawback

of such approaches is that the fixed error bounds can not

simultaneously satisfy the variable performance of post-stroke

patients during training tasks.

Addressing the above problems, the effectiveness of robot-
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assisted rehabilitation can be augmented by developing a con-

troller capable of faithfully reacting to temporal variabilities in

patients’ performance and optimizing the human-robot inter-

action. By considering that the dynamics of coupled human-

robot system are complicated and changeable during the

rehabilitation training, the formulation of a subject-adaptive

AAN controller consists of two vital tasks. The first task

is to generate the reference trajectory online according to

the residual motor capability of the patient, furthermore, the

common patterns of movements in healthy humans should be

emphasized. Then the robot provides the patient with only

necessary assistance by estimating the patient’s active effort.

To accomplish the above tasks, fuzzy logic control is suitable

to be integrated into the controller due to the capability of

unknown disturbances compensation. Many researches have

implemented fuzzy-based controllers in passive rehabilitation

training [12], [13], therefore, there is considerable interest in

the development of an subject-adaptive AAN controller based

on fuzzy-logic inference.

In this study, we propose a novel subject-adaptive AAN

controller, which utilizes Recursive Least Square (RLS) al-

gorithm to identify human arm impedance parameters and

reflect the movement intention, and then implement fuzzy-

logic inference to adjust the robotic assistance according to

patients’ instantaneous requirements in a timely manner. There

are two parts in the AAN control framework: in the advancing

direction, the optimal reference trajectory is generated by inte-

grating the upper-limb stiffness and minimum-jerk model [14],

which focuses on the patient’s instantaneous performance and

the motion patterns in healthy humans, and then impedance

control is applied to achieve online trajectory tracking; in the

perpendicular direction, the fuzzy logic control strategy is used

to optimize the robotic assistance by considering both the

variations of deviation errors and upper-limb impedance, with

the aim to adaptively maximize patients’ active participation.

This paper is organized as follows. Section II describes the

upper-limb rehabilitation robot and details the robot mecha-

nism design. Section III presents the subject-adaptive AAN

controller consisting of three novel parts, and the proposed

controller is validated in Section IV. Then the simulation

results are presented in Section V, and Section VI concludes

the study.

II. UPPER-LIMB REHABILITATION ROBOT DESCRIPTION

We have developed an upper-limb rehabilitation robot,

which adopts the end-effector based structure (see Fig. 1). A

five-bar parallel mechanism is formed by five revolute joints

and four links, where two base joints are coaxial and actuated

by DC motors, respectively. By combining a highly backdriv-

able belt transmission, the robot has a compact structure and

is easy to maintain. The details of technical specifications are

shown in Table I .

In the the rehabilitation training, patients are seated in a

high back chair with hips and knees flexed 90◦, and couple

their affected arm with the end-effector of the robot. As the

robot is capable of assisting shoulder and elbow joints, patients

Training Task

Fig. 1: The upper-limb rehabilitation robot.

TABLE I: TECHNICAL SPECIFICATIONS

Items Characteristics

DOF 2

Actuation 2 DC motors

Sensors 2 rotary encoders

Range of Joint Motion -20◦∼80◦, 80◦∼190◦

Workspace 600 mm * 450 mm

can complete 2 degree-of-freedom (DOF) movements with the

residual motor capability. Further, a virtual reality environment

is developed to best promote the patient’s motivation.

III. FUZZY-BASED FRAMEWORK FOR AAN CONTROL

In this section, we present the subject-adaptive AAN con-

troller, which employs RLS algorithm to identify human arm

impedance parameters, and then utilizes fuzzy logic algorithm

to develop the AAN controller in the perpendicular direction.

Fig. 2 shows the key blocks of the proposed controller, in-

cluding the identification of human arm impedance, reference

trajectory planning, and controller regulation based on fuzzy-

logic inference. The framework of the fuzzy-based AAN

controller can be described as the three main aspects:

• As the reaching capability is considered as the basis for

most ADLs, this study focuses on the reaching tasks

along the Y axis. Based on the human-robot interaction

force and the robot end-effector position, the upper-

limb impedance parameters can be identified by RLS

algorithm, which reflects the instantaneous performance

and requirements of the subject.

• In the advancing direction, the real-time trajectory gen-

eration scheme is implemented based on the upper-limb

stiffness and minimum-jerk principle, which concentrates

on both the subjects movement intention and human nor-

mal motion patterns. In addition, a feedback impedance

controller is developed to regulate the tracking error.

• In the perpendicular direction, the upper-limb impedance

and the variations of deviation between the actual trajec-

tory and reference trajectory are served as the inputs of

a fuzzy-based controller, which is capable of maximizing

active involvement of the subject.
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x, y

xr, yr

Fig. 2: Overview of the subject-adaptive AAN control. The key parts of the control scheme consist of the identification of

human arm impedance, trajectory planning in the advancing direction, and fuzzy logic control in the perpendicular direction.

The following subsections introduce the details of these key

methods.

A. Identification of Upper-Limb Impedance

The dynamic behavior of human movements can be de-

scribed by the mechanical impedance (i.e., stiffness, damping

and inertia) [15]. This study estimates the impedance charac-

teristics of upper extremity in order to delineate the residual

motor capability of the patient. To begin with, the human

upper-limb dynamics can be expressed in the form of spring-

damp impedance model:

Fh = KhΔX +BhΔẊ, (1)

where Fh is the human-robot interaction force, X = [x, y]T

is displacement of the arm, and Kh, Bh are stiffness and

damping matrices, which defined respectively by:

Kh =

[
Khx 0
0 Khy

]
, Bh =

[
Bhx 0
0 Bhy

]
.

In order to simplify the estimation of the unknown

impedance parameters, the model can be rearranged into a

linear form with respect to θ as below:

Φθ = Fh, (2)

where

Φ =

[
Δx Δẋ 0 0
0 0 Δy Δẏ

]

θ =
[
Kx Bx Ky By

]T
.

The impedance parameters can be estimated by discrete-

time adaptive identification method, and Fig. 2 illustrates the

parameter estimation system. According to the RLS algorithm

[16], the process of parameter adjustment can be described by

the following formulas:

R(k) =
Q(k − 1)φ(k − 1)

λ+ φT (k − 1)Q(k − 1)φ(k − 1)
(3)

Q(k) =
(Q(k − 1)−R(k)φT (k − 1)Q(k − 1))

λ
(4)

θ̂(k) = θ̂(k − 1)+

R(k)(Fh(k)− φT (k − 1)θ̂(k − 1))
(5)

where θ̂(k) denotes the vector containing the unknown param-

eters, with k the number of sampling points; R(k) and Q(k)
are covariance matrix and gain vector, respectively; 0 < λ ≤ 1
is the forgetting factor.

B. Trajectory Planning in the Advancing Direction

Point-to-point reaching movements are the most com-

monly used training task in upper-limb rehabilitation after

stroke. Numerous observations have demonstrated that uncon-

strained point-to-point reaching movements in healthy humans

have similar characteristics, and the minimum-jerk model is

most prominent among these invariant characteristics [14].

In essence, this model aims to maximize the smoothness

of the reaching movements, which can be expressed as the

minimization of a cost function C:

C =
1

2

∫ t2

t1

[(
d3x

dt3

)2

+

(
d3y

dt3

)2
]
dt, (6)

where (x, y) is the end-effector position’s Cartesian coordi-

nates.
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Fig. 3: Fuzzy logic controller deployed into the system.

Therefore, the actual trajectory between (xi, yi) and (xd, yd)
can be simplified to:

x(t)−xi

xd−xi
= y(t)−yi

yd−yi

= 10(t/T d)
3 − 15(t/T d)

4
+ 6(t/T d)

5
, (7)

where Td denotes the total movement time. It can be verified

that the minimum-jerk trajectory is a straight line connecting

the two points with a bell-shaped speed profile.

For repetitive point-to-point reaching movements along the

Y axis, the reference trajectory from (xi, yi) to (xd, yd) is

simplified as:

xr = 0

yr = yi + (yd − yi)
[
10( t

Td
)
3 − 15( t

Td
)
4
+ 6( t

Td
)
5
]
.

(8)

For the time being assume that the starting point and ending

point are defined beforehand, the optimal reference trajec-

tory can be determined by the movement time Td. As the

impedance characteristics are capable of reflecting the human

movement intention, Td is adjusted according to the stiffness

parameters of the subject in the advancing direction:

Td (t) = Td (t− 1)− γ (Khy (t)−Khy (t− 1)) , (9)

where γ is an adjustment factor, and the increase of human

stiffness Khy causes the decrease of Td.

The above reference trajectory is synchronous with the real-

time performance of the subject, and also compliant with the

motion patterns in healthy humans. Consequently, the robot

tends to decrease the training velocity for the more impaired

subject, and presents greater challenges for the less impaired

subject.

C. Fuzzy Logic Control in the Perpendicular Direction

The fuzzy logic controller has been developed to make

decisions on adjusting the robotic assistance according to the

temporal variabilities in patients’ performance and require-

ments. As shown in Fig. 3, the proposed controller has a multi-

input single-output (MISO) structure based on the Mamdani

fuzzy model [17].

The impedance controller used in the workspace can be

mathematically expressed as:

Frx (t) = −Krxx (t)−Brxẋ (t)

Fry (t) = Kry (yr (t)− y (t)) +Bry (ẏr (t)− ẏ (t))

τr (t) = JT [Frx (t) , Fry (t)]
T

(10)

where (Krx,Kry) is robot stiffness parameters in the x and

y directions, and (Brx, Bry) is the robot damping factors in

the x and y directions.

TABLE II: FUZZY RULES OF ΔKrx

Khx

Δe NB NS ZE PS PB

NB NS ZE ZE PS PB

NS NS ZE ZE PS PS

ZE NS NS ZE PS PS

PS NB NS ZE ZE PS

PB NB NB ZE ZE PS

The robot stiffness parameters in the x direction is ad-

justed by the fuzzy logic controller based on two inputs:

the variations of deviation errors (Δe) and the upper-limb

stiffness (Khx). For fuzzification, triangular and trapezoidal

membership functions are used for the inputs and output, and

the linguistic terms include Big Negative (NB), Small Negative

(NS), Zero (ZE), Small Positive (PS) and Big Positive (PB).

Then the fuzzy IF-THEN rules are defined to determine

the relationship between Δe, Khx, and ΔKrx, as illustrated

in Table II. For the defuzzification operation, center-of-area

method (COA) is employed, which can be expressed as:

z∗ =

∫
y

zμB(z)dz∫
y

μB(z)dz
, (11)

where z is the output of the fuzzy logic controller, and z∗

denotes the true value of the output; B is a fuzzy set, and

μB(z) represents the membership degrees of B at z.

Consequently, the amount of robotic assistance can be

increased (i.e., a larger Krx) when the patient’s performance

exacerbates the deviation error, which means that the patient

can hardly complete the reference trajectory by his/her own

ability. Conversely, once the patient demonstrates some de-

grees of self-adjustment ability, the robot would decrease the

assistance level with the aim to let the patient explore upper

extremity motor control.

IV. SIMULATION

The developed subject-adaptive AAN controller was vali-

dated by simulation in MATLAB (MathWorks Inc.). In order

to demonstrate the capability of the controller to optimize the

assistance force according to the subject’s performance, the

various conditions of human arm impedance was investigated

in the simulation study.

To begin with, we simplified the upper-limb rehabilitation

robot as a five-bar parallel mechanism (see Fig. 4). The

coordinates of the end-effector P (x, y) can be expressed as:[
x
y

]
=

[
l2 cos q2+l3 cos q1
l2 sin q2 + l3 sin q1

]
, (12)

The linear velocity of P is[
ẋ
ẏ

]
=

[ −l3 sin q1 −l2 sin q2
l3 cos q1 l2 cos q2

]
q̇, (13)

where q =
[
q1 q2

]T
.
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Fig. 4: Structure of the robot mechanism design.

Then the velocity Jacobian can be derived as:

J =

[ −l3 sin q1 −l2 sin q2
l3 cos q1 l2 cos q2

]
. (14)

By applying Lagrange-based dynamics modeling procedure,

we can obtain the the inertia matrix D:

D =

[
d11(q) d12(q)
d21(q) d22(q)

]
, (15)

where

d11(q) = m1l
2
c1 +m3l

2
c3 +m4l

2
1 + I1 + I3

d12(q) = d21(q) = (m3l2lc3 +m4l1lc4) cos(q2 − q1)

d22(q) = m2l
2
c2 +m3l

2
2 +m4l

2
c4 + I2 + I4.

In this case the centripetal and Coriolis matrix C is given as:

C =

[
0 hq̇2

−hq̇1 0

]
, (16)

where

h = −(m3l2lc3 +m4l1lc4) sin(q2 − q1).

Hence, the dynamic equations of the robot can be expressed

in the following form:

D(q)q̈ + C(q, q̇)q̇ = τ. (17)

As the upper-limb impedance is defined at the interaction

port in the workspace, its more convenient to transform the

above dynamic model into the workspace form:

D̂Ẍ + ĈẊ = Fr + Fh, (18)

where
D̂ = J−TDJ−1

Ĉ = J−T (−DJ−1J̇ + C)J−1 ,

and X = [x, y]T is the end-effector position, Fr = J−T τ and

Fh represent the robotic equivalent force and human active

Input variable

Input variable

Output variable

×10-3

Fig. 5: The membership functions of Khx, Δex and ΔKrx,

the units are N/m, mm and N/m respectively.

Fig. 6: Surface viewer of the fuzzy inference system.

force at the endpoint. The mathematical calculations used to

derive the robot dynamics can be found in our previous work

[18].

Based on the system dynamics (18), we implemented the

proposed controller in the point-to-point reaching movements

along the Y axis. Specifically, the membership functions of

the fuzzy logic controller are shown in Fig. 5, and the surface

viewer of the fuzzy logic inference system is presented in

Fig. 6.
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Fig. 7: The identification results of upper-limb impedance by

utilizing RLS algorithm

V. RESULTS

In this section, we present the results from the afore-

mentioned simulation, and further analyze the performance

of human arm impedance identification, trajectory planning

in the advancing direction, and fuzzy logic inference in the

perpendicular direction.

In order to validate the adaptation performance of the

subject-adaptive AAN controller, the upper-limb impedance

was set to abruptly increase at 2.5 seconds, and then reduce

at 5 seconds. The results of human impedance identification

employing RLS algorithm is shown in Fig. 7, where we can

see that the estimated impedance complied well with the actual

values.

Considering the training task was the reaching movements

along the Y axis, the reference trajectory was generated

according to the identification results and minimum-jerk model

(see Fig. 8(a)). The movement period was adjusted according

to the upper-limb stiffness, and a larger stiffness value reflected

the increase of motion motivation, thus the desired motion time

was shortened and the trajectory is regenerated online.

Once the reference trajectory was determined, the fuzzy-

based controller modulated the robot stiffness by integrating

the identification results and the variations of deviation errors

(see Fig. 8(b)). In the perpendicular direction, the increase

of upper-limb stiffness means that the subject has a better

self-adjustment ability, hence the robotic assistance can be

gradually reduced to some extent based on the deviation

between the actual trajectory and reference trajectory.

Furthermore, a comparison between the force imposed by

the subject and the robot is shown in Fig. 9. It can be seen

that the robot is capable of providing compliant human-robot

interaction to assist the subject to complete the training task.

For instance, when the subject has difficulty in completing

the desired movements, the robotic assistance level can be
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Fig. 8: Results from the subject-adaptive AAN controller. (a)

Illustration of the trajectory planning in the direction along the

movements, where the movement period varies with the upper-

limb stiffness. (b) Illustration of the fuzzy-based controller

in the direction perpendicular to the movements, where the

controller stiffness changes with the upper-limb stiffness and

the variations of deviation errors.
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Fig. 9: Robotic assistance force Fh and human active force

Fr in the directions perpendicular and advancing to the move-

ments.

adaptively adjusted by decreasing the desired velocity in the

advancing direction, and augmenting the controller stiffness

based on fuzzy logic inference in the perpendicular direction;

On the contrary, when the subject demonstrates proficiency, the

requirement of the reference movements would be increased

and the lower assistance level would be presented.

1138

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on May 07,2020 at 08:45:26 UTC from IEEE Xplore.  Restrictions apply. 



VI. CONCLUSION

This study presents a novel subject-adaptive AAN controller

for upper-limb rehabilitation after stroke. The contribution of

this control scheme is to optimize human-robot interaction

online in the directions perpendicular and advancing to the

movements. In order to faithfully delineate the residual motor

capability of the patient, we employed RLS algorithm to

identify human arm impedance parameters. Based on the

identification results and minimum-jerk principle, the optimal

reference trajectory was generated in the advancing direction,

which can be synchronized with the subject’s movement

intention and compliant with the motion patterns in healthy

humans. Furthermore, a fuzzy logic controller was developed

in the perpendicular direction, which can adjust the robotic

assistance level according to the upper-limb impedance and

variations of deviation errors. As the fuzzy logic inference was

capable of overcoming unknown disturbances, the proposed

controller can adaptively ensure active participation of the

patient, and thus complies well with the “assist-as-needed”

principle.
The obtained results demonstrated the efficacy of developed

subject-adaptive AAN controller, and validated the capability

of the controller to optimize the assistance level according

to the patient’s instantaneous requirements. The future re-

search will concentrate on demonstrating the control scheme

experimentally with post-stroke patients in our upper-limb

rehabilitation robot.
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