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IWSCR: An Intelligent Water Surface Cleaner
Robot for Collecting Floating Garbage
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Abstract—In this article, a robot system for intelligent water
surface cleaner named IWSCR is developed to collect float-
ing plastic garbage. It is able to accomplish three major tasks
autonomously, i.e., cruise and detection, tracking and steering,
and grasping and collection. The challenges behind these tasks
involve how to realize the accurate and real-time garbage detec-
tion, how to resist the disturbances while IWSCR conducts
vision-based steering, and how to grasp the floating garbage reli-
ably despite the turbulent conditions on the surface of the water.
To overcome these difficulties, three key techniques are proposed
for IWSCR. First, the YOLOv3 network, which is widely applied
in the high speed and accuracy object detection field, is trained on
the proposed floating garbage dataset to realize accurate and real-
time garbage detection. Next, to improve the ability of resisting
disturbances, a control law based on the sliding-mode controller
is proposed for vision-based steering. Furthermore, inspired by
the stability of floating bottles in fluid, a feasible grasping strategy
is utilized for IWSCR. Finally, the experimental results demon-
strate that IWSCR is competent to carry out the task of water
surface cleaning.

Index Terms—Deep learning, grasping strategy, intelligent
water surface cleaner, robot system, sliding-mode controller
(SMC).

I. INTRODUCTION

WATER is the source of life. The oceans and rivers
cover almost 71% of the earth’s surface and pro-

vide a suitable home for billions of aquatic organisms [1].
However, humanity does not treat the aquatic environment
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in a friendly manner. The water pollution resulting from
human negligence has been accumulating for decades. The
waste in water consists of dredge, industrial garbage, sewage,
radioactive materials, and plastic trash [2]. With expanding
applications for robots, many authors have reported their
attempts to develop robots designed to clean local environ-
ments [3]–[10]. Naturally, robots designed to clean bodies of
water merit development and study.

To collect plastic pollution, the semimanual refuse-removal
vessels are widely applied recently. However, the refuse-
removal vessel is large in size which is only appropriate to
rivers with huge acreage or much accumulated waste. In this
context, it is impracticable to clean small, low-density waste
in small waters by the refuse-removal vessel. Notably, this
method lacks the capacity to determine which floating objects
merit removal and which ones do not. Additionally, the exhaust
from the refuse-removal vessel may cause secondary pollution.
We aim to address these limitations by developing a zero-
emissions water-cleaning robot system that can collect objects
recognized as garbage.

Above all, the intelligent water surface cleaner robot is a
compositive robotic system with vision module, motion con-
trol module, and grasping module, which can sequentially
accomplish three tasks (TTs), i.e., cruise and detection, track-
ing and steering, and grasping and collection. In the first task,
the robot moves on the water surface following the preplanned
path and uses its vision module to detect garbage. When an
object is targeted for removal, the second task begins. The
vision module tracks the target and measures the relative posi-
tion between the robot and the target. In the meantime, the
motion control module utilizes the position information from
the vision module to correct the yaw angle error seamlessly
ensuring an accurate target-approach angle. In the final task,
the grasping module determines the grasp timing, and then it
commands the manipulator to grasp and collect the objects.
Notably, there are three major technical challenges standing
in front of accomplishing the aforementioned TTs.

1) Challenge for Cruise and Detection: To distinguish the
garbage despite the robot moving, the object detection
algorithm of the cleaner robot should be accurate and
real time.

2) Challenge for Tracking and Steering: There are unpre-
dictable dynamic factors in the aquatic environment, like
wind and waves, that make it necessary.

3) Challenge for Grasping and Collection: The dynamic
conditions on the surface of water means that objects
will move, including the robot itself. This poses a
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challenge for grasping an object that is likely to be
moving.

Related theories and methods, which are appropriate to
be employed in the cleaner robot to solve the aforemen-
tioned problems, have been widely studied in recent years.
For the aspect of object detection, deep neural networks have
been applied to object detection in images with great suc-
cess [11]. There are two major frameworks for detection,
i.e., the two-stage framework and the one-stage framework.
The two-stage framework is based on R-CNN with a region
proposal network [12]–[15]. With the advantage of high com-
puting speed, the one-stage framework converts the object
detection to a bounding box regression problem, such as
SSD [16], [17] and YOLO [18]–[20] networks. For techniques
of the motion control module, the sliding-mode controller
(SMC) has been successfully applied on autonomous under-
water vehicles (AUVs) owing to its insensitivity to model
parameters and external disturbances [21]–[26]. Additionally,
grasping strategies with grasping detection based on deep neu-
ral network are studied extensively nowadays [27]–[32], by
which the graspable position can be determined accurately.
However, these data-driven strategies take too much time to
execute in real time and, therefore, are not suitable for the
dynamic grasping process.

In this article, IWSCR, a prototype of intelligent water
surface cleaner robots, is designed, which can work in the
experimental tank environment and accomplish the TTs with
the purpose of collecting a plastic bottle, a plastic bag, and
styrofoam floating on the water surface. IWSCR is a small
underwater vehicle that is equipped with a binocular camera, a
manipulator, and a collection box. To tackle the challenges, the
object detection algorithm is based on the YOLOv3 network is
employed for improving the accuracy and speed of detection
by being trained on our proposed dataset; the SMC-based con-
trol law with a satisfactory capability of resisting disturbances
is designed for the vision-based steering to guide IWSCR
toward the target; based on the stability of objects in fluid,
a feasible grasping strategy for floating objects is proposed to
solve the problem of dynamic grasping. Here, we report our
experimental results, which demonstrate that IWSCR has the
ability to accomplish TTs and that it is competent to complete
the work of water surface cleaner. The primary contributions
of this article are twofold.

1) IWSCR is a novel design for floating garbage collection.
IWSCR accomplishes TTs autonomously due to our
integration of computational strategies for vision-based
detection, identification, motion control, and grasping.
To the best of our knowledge, there are few, if any, pub-
lished examples of autonomous water surface cleaning
robots. We suspect that IWSCR will attract interest from
researchers.

2) To overcome the related technical difficulties, the
YOLOv3 detection framework, SMC for the vision-
based steering, and a feasible grasping strategy based
on the stability of objects in the fluid are employed in
IWSCR. The experimental results indicate that the per-
formances of these technical methods are satisfactory.
Especially, the proposed grasping strategy inspired by

Fig. 1. Configuration of IWSCR.

the characteristic of floating objects provides a novel
implementation for the dynamic grasping in fluid. In
addition, IWSCR might serve as a platform to test
related techniques in the future.

The remainder of this article is organized as follows. In
Section II, the design of IWSCR is overviewed. The object
detection framework based on the YOLOv3 network, SMC
for vision-based steering, and grasping strategy are detailed in
Sections III–V, respectively. Next, the experimental results and
discussion are offered in Section VI. Finally, the conclusion
and future work are summarized in Section VII.

II. PROTOTYPE DESIGN OF IWSCR

A. Configuration of IWSCR

The configuration of IWSCR is illustrated in Fig. 1. The
system is based on an electrically powered underwater vehicle
that can sail on the water surface under the loading condition.
The underwater vehicle is about 63.5-cm long, 48.5-cm wide,
and 46.5-cm high and it weights approximately 25 kg. A cam-
era cabin is installed in the front of the top of the vehicle, in
which a binocular camera is fixed on the clapboard. A manipu-
lator with 3-DOF is placed on the vehicle, which is composed
of three servo motors. Note that the scope of joint angles is
270◦ to ensure that the tail end of manipulator can move to
the inner of the collection box. Thus, the size of IWSCR is
diminutive enough to be applied in the small waters, and its
source of energy is clean to avoid the secondary pollution.

B. Framework of Control System

As shown in Fig. 2, the personal computer (PC) processes
with the information from the binocular camera in order
to control IWSCR. There are three communication modes
between PC and IWSCR, i.e., USB video class (UVC),
TCP/IP, and Bluetooth. The image processor in PC obtains
images from IWSCR and estimates the object position. The
estimated position flows in two different ways. The first
way includes steering error generator, motion controller, and
thruster allocation. In this way, the computed error is fed into
the motion controller to obtain the relative force and moment.
According to the thruster allocation, the force and moment
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Fig. 2. Framework of control system.

are converted to motor speed, which can control the under-
water vehicle directly. The second way includes grasp judger
and inverse kinematics solver. In this way, grasping judger
determines the timing and graspable position, and the inverse
kinematics solver computes the joint angles to control the
manipulator. Notice that the control system for IWSCR is
inspired by human studies of grasping and object recogni-
tion. There is a considerable evidence to suggest that humans
(and nonhuman primates) possess different cortical networks
for recognizing objects and for planning movements to grasp
them [33], [34].

III. ACCURATE AND REAL-TIME GARBAGE DETECTION

Vision techniques are important for IWSCR to perceive the
environment, which provide the basic information for subse-
quent steering and grasping. The deep learning-based vision
techniques perform eminently well in object detection. In
this article, the YOLOv3 network is employed for garbage
detection, which is evolved from the YOLO and YOLOv2
networks [18]–[20]. Compared with R-CNN and its ramifica-
tion networks, the YOLO framework transforms the detection
problem into a regression problem, which does not require the
module of proposal region but generates both of the bounding
box coordinates and probabilities of each class directly through
regression. Therefore, the YOLO framework has greatly higher
detection speed compared to faster R-CNN [18], [19], which
meets the requirement of real timeness for IWSCR.

The framework of YOLOv3 based on Darknet-53, shown
in Fig. 3, is applied to detect three classes of objects floating
on the water surface, including plastic bottles, plastic bag, and
styrofoam. Different from the YOLO and YOLOv2 networks,
YOLOv3 uses multiscale prediction to detect targets and is
effective at detecting small objects. For each grid in different

scale, YOLOv3 will predict three bounding boxes. The output
in each scale is composed of: 1) {w, h, x, y, confidence} for
each bounding boxes and 2) probabilities of the three classes.
Therefore, the total channels of output is 3 × (5 + 3) = 24.
Among the predicted bounding boxes, the nonmaximum sup-
pression (NMS) method is used to select the best bounding
box. Besides, to ensure the garbage detection accuracy of
the trained network, we have established a floating garbage
data set including almost 1000 pieces of floating garbage
images under different background conditions and illumination
intensities. In this context, the total mean average precision
(mAP) reaches over 0.90 in the verification stage as shown in
Section VI.

After detection, an object is targeted for removal. Then,
KCF [36] and triangulation work to update the bounding
box continually and measure the position of the object,
respectively.

IV. SLIDING-MODE CONTROLLER FOR

VISION-BASED STEERING

In this section, based on the dynamic model of the under-
water vehicle, an SMC is designed for vision-based steering.
The proposed control law is robust for disturbance affecting
the input.

A. Dynamic Model of Underwater Vehicle

There are a body-fixed frame B = {XB,YB,ZB} attached
to the vehicle’s center of gravity and an inertial frame
I = {XE,YE,ZE} located at the predefined position, as
shown in Fig. 1. Following the standard modeling tech-
niques [35], [37], [38], the dynamic model of the underwater
vehicle in frame B will be derived according to the general
Newton–Euler motion equation in fluid as follows:

Mv̇ + C(v)v + D(v)v + g(η) = τE + τ

η̇ = J(η)v (1)

where:
1) η = [η1 η2]T ∈ R

6 denotes the pose vector expressed in
I, which involves the position vector η1 = [x y z] and
the orientation vector η2 = [φ θ ψ];

2) v = [v1 v2]T ∈ R
6 represents the velocity vector

expressed in B, which involves the linear velocity vector
[u v w] and the angular velocity vector v2 = [p q r];

3) τ = [τX τY τZ τK τM τN]T ∈ R
6 means the total propul-

sion vector, i.e., forces τX , τY , τZ and torques τK , τM ,
τN generated by thrusters and expressed in frame B;

4) τE ∈ R
6 is the total environmental force/torque vector

expressed in frame B, which can be regarded as the
external disturbance;

5) M = MRB + MA, where MRB ∈ R
6×6 and MA ∈ R

6×6

are the rigid body and added mass inertia matrices,
respectively;

6) C(v) = CRB(v) + CA(v), where CRB(v) ∈ R
6×6 and

CA(v) ∈ R
6×6 are the Coriolis and centripetal matrix

which are resulted by inertial mass and added mass,
respectively;

7) D(v) denotes the drag matrix;
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Fig. 3. Framework of YOLOv3 for garbage detection.

8) g(η) represents the hydrostatic force vector;
9) J(η) = diag{J1(η2), J2(η2)} is the Jacobian matrix trans-

forming velocities from frame B to frame I, where
J1(η2) denotes the rotation matrix and J2(η2) stands for
lumped transformation matrix.

Considering that the underwater vehicle has three symmetric
planes, and that the buoyancy center coincides with the gravity
center, the expanded expression of M, C(v), D(v), and g(η)
are separately described as follows:

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

m − Xu̇ 0 0
0 m − Yv̇ 0
0 0 m − Zẇ

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

Ix − Kṗ 0 0
0 Iy − Mq̇ 0
0 0 Iz − Nṙ

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

C(v) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
0 mw − Zẇw −mv + Yv̇v

−mw + Zẇw 0 mu − Xu̇u
mv − Yv̇v −mu + Xu̇u 0

0 mw + Zẇw −mv + Yv̇v
−mw + Zẇw 0 mu − Xu̇u

mv − Yv̇v −mu + Xu̇u 0
0 Izr − Nṙr −Iyq + Mq̇q

−Izr + Nṙr 0 Ixp − Kṗp
Iyq − Mq̇q −Ixp + Kṗp 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

D(v) = −diag
{
Xu − Xu|u||u|,Yv − Yv|v||v|

Zw − Zw|w||w|,Kp − Kp|p||p|,
Mq − Mq|q||q|,Nr − Nr|r||r|

}
(4)

g(η) =

⎡
⎢⎢⎢⎢⎢⎢⎣

(mg − B) sin θ
−(mg − B) cos θ sinφ
−(mg − B) cos θ cosφ

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

where
1) m, g, and B denote the mass, gravity, and buoyancy of

the underwater vehicle, respectively;
2) Xu̇, Yv̇, Zẇ, Kṗ, Mq̇, and Nṙ are the added mass terms,

respectively;
3) Ix, Iy, and Iz are the moments of inertia along the related

axes, respectively;
4) Xu, Yv, Zw, Kp, Mq, and Nr denote the first-order drag

parameters. Xu|u|, Yv|v|, Zw|w|, Kp|p|, Mq|q|, and Nr|r|
denote the second-order drag parameters, respectively.

In this article, the motion of IWSCR is only on the water
surface and [φ θ ] is negligible. Therefore, the motion equation
of the underwater vehicle is simplified to 3-DOF (i.e., u, v, and
r) as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇(m − Xu̇)− vr(m − Yv̇)− u(Xu + Xu|u||u|)
= τX + τEX

v̇(m − Yv̇)+ ur(m − Xu̇)− v(Yv + Yv|v||v|)
= τY + τEY

ṙ(Iz − Nṙ)+ uv(m − Yv̇)+ uv(−m + Xu̇)

−r(Nr + Nr|r||r|) = τN + τEN .

(6)

As for thrusters allocation, each thruster produces forces and
torques with respect to frame B as the following equation:

iτ =
[

iF
iQ

]
=

[
ie

(iL ×i e)

]
iT (7)

where ie denotes the orientation of the ith thruster with
respect to frame B, iL is the position of attack for iT with
respect to frame B, and iT denotes the thrust of the ith
thruster. For the prototype, the distribution of four horizontal
thrusters is shown in Fig. 4, where 1e = [ cosβ sinβ 0]T ,
2e = [ cosβ − sinβ 0]T , 3e = [− cosβ − sinβ 0]T ,
4e = [− cosβ sinβ 0]T , 1L = [l cosα − l sinα 0]T ,
2L = [l cosα l sinα 0]T , 3L = [−l cosα l sinα 0]T , and
4L = [−l cosα − l sinα 0]T . By substituting the aforemen-
tioned values, the total vector of propulsion forces and torques
on the water surface is as follows:

τX =

⎡
⎢⎢⎣

cosβ
cosβ

− cosβ
− cosβ

⎤
⎥⎥⎦

T⎡
⎢⎢⎣

1T
2T
3T
4T

⎤
⎥⎥⎦ (8)
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Fig. 4. Distribution of four horizontal thrusters in IWSCR.

TABLE I
RULES OF THRUSTER ALLOCATION

Fig. 5. Formulation of the control objective.

τY =

⎡
⎢⎢⎣

sinβ
− sinβ
− sinβ
sinβ

⎤
⎥⎥⎦

T⎡
⎢⎢⎣

1T
2T
3T
4T

⎤
⎥⎥⎦ (9)

τN =

⎡
⎢⎢⎣

l cosα sinβ + l cosβ sinα
−l cosα sinβ − l cosβ sinα
l cosα sinβ + l cosβ sinα

−l cosα sinβ − l cosβ sinα

⎤
⎥⎥⎦

T⎡
⎢⎢⎣

1T
2T
3T
4T

⎤
⎥⎥⎦. (10)

It is apparent that τX , τY , and τN can be applied to the under-
water vehicle independently with an appropriate combination
of thrusts. The rules of thruster allocation are shown in Table I.

B. Formulation of the Vision-Based Steering

As shown in Fig. 5, inspired by [39], the steering objective
on the water surface is expressed as follows:

limt→∞	ψ(t) → 0
	ψ(t) = ψd(t)− ψ(t)

where ψ(t) and ψd(t) denote the yaw angle of IWSCR and the
target yaw angle at time t, respectively. Based on the technique
of triangulation for binocular vision, the position of the object
CP(t) in the camera-fixed frame C can be obtained continually.
When CP(t) is transformed to frame B as BP(t), the difference
yaw angle 	ψ(t) is derived as follows:

	ψ(t) = arctan
BP(t)y
BP(t)x

. (11)

The estimated values of velocity u, v, and r are described as
follows:

⎡
⎣

u
v
r

⎤
⎦ =

⎡
⎢⎣

− ˙BP(t)x
− ˙BP(t)y
− ˙	ψ(t)

⎤
⎥⎦. (12)

C. Design and Stability Analysis of the Sliding-Mode
Controller

There are numerous disturbances, which are difficult to
identify, against robot system in aquatic environment. Besides,
the inaccurate measurement of vision system will lead distur-
bance to the input of the system. The SMC has the advantages
of insensitivity about both of the variance of parameters and
disturbance, which is appropriate for IWSCR. First, the sliding
surface S is chosen as follows:

S = λ0	ψ(t)+ ˙	ψ(t) (13)

where λ0 is a positive constant. For succinct expression, we
define M1 = Iz − Nṙ, M2 = m − Yv̇, M3 = m − Xu̇, and
M4 = Nr +Nr|r||r|. From the third equation of (6), the control
law is constructed as follows:

τN = M1

[
(M2 − M3)

M1
uv − M4

M1
− λ0r

]
+ C0sat(S) (14)

where C0 is a positive value meeting C0 ≥ |τEN |, and sat(S)
is a saturation function to remove the chattering effect. The
expression of saturation function is shown as follows:

sat(S) =
⎧⎨
⎩

1 S > σ
S
σ

|S| < σ

−1 S < −σ
(15)

where σ ≤ C0, a positive value, denotes the boundary layer
thickness.

Next, the Lyapunov function V = (1/2)S2 is employed to
analyze the stability of the designed controller. The derivative
Lyapunov candidate function is derived as follows:

V̇ = SṠ. (16)

Then, by substituting the expanded expression of Ṡ, V̇ can be
written as follows:

V̇ = S
[
λ0 ˙	ψ(t)+ ¨	ψ(t)

]

= − S

M1
[M1λ0r − (M2 − M3)uv

+ M4r + (τN + τEN)]. (17)

By substituting (14) into (17), V̇ can be derived as follows:

V̇ = S

M1
[−C0sat(S)− τEN]. (18)
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Fig. 6. Process of engineering realization.

Fig. 7. Simplified schematic of link frames.

Consider the saturation function (15):
1) when S > σ , V̇ = (S/M1)[ − C0 − τEN] ≤ 0;
2) when S < −σ , V̇ = (S/M1)[C0 − τEN] ≤ 0;
3) when |S| < σ , we suppose |τEN | ≤ γ and V̇ can be

derived as follows:

V̇ = − C0

M1σ
S2 − S

M1
τEN

≤ − C0

M1σ
S2 + |S|

M1
γ

≤ − C0

M1σ
S2 + 1

2M1
S2 + 1

2M1
γ 2

= −
(

C0

M1σ
− 1

2M1

)
S2 + 1

2M1
γ 2

= −
(

2C0

M1σ
− 1

M1

)
V + 1

2M1
γ 2

= −kV + 1

2M1
γ 2 (19)

where k > 0.
Above all, the proposed controller (14) is uniformly ulti-

mately bounded (UUB) [40], [41]. Therefore, the system is
robust for the bounded unknown disturbance.

In addition, the process of engineering realization for vision-
based steering is illustrated in Fig. 6. Here, ψT is the threshold
value for whether the SMC would be enabled. If |	ψ(t)| ≥
ψT , SMC is applied to generate τN in order to reduce |	ψ(t)|.
If |	ψ(t)| < ψT , the force τX is set to a constant τT to drive
the underwater vehicle forward.

V. DYNAMIC GRASPING STRATEGY FOR

FLOATING BOTTLES

A. Kinematics and Inverse Kinematics of Manipulator

The manipulator of IWSCR is 3-DOF which can move on
a longitudinal vertical plain parallel to the XBOBZB plain in
frame B. The simplified schematic is shown in Fig. 7. The
position of the end effector 0PE(px, py, 1) in the frame O0X0Z0

Fig. 8. Process of the proposed grasping strategy. (a) IWSCR navigates
toward the bottle. (b) Manipulator prepares to grasp, when the distance equals
Dd . (c) IWSCR continues moving and grasps the bottle.

can be obtained by

0PE = A1(μ1, d1) · A2(μ2, d2)
2PE (20)

where

Ai(μi, di) =
⎡
⎣

cosμi sinμi di

− sinμi cosμi 0
0 0 1

⎤
⎦

2PE =
⎡
⎣

d3 cosμ3
−d3 sinμ3

1

⎤
⎦.

In practice, μ1 and μ3 are set to constants, so the inverse
kinetic equation is as follows:

A−1
1 (μ1, d1)

0PE = A2(μ2, d2)
2PE. (21)

According to the derivation of (21), μ2 can be determined by
an equation in the following form:

Q2×2

[
sinμ2
cosμ2

]
= V2×1. (22)

Additionally, the range of μ2 is [−π, π ], which ensures the
unique solution of (22). In the process of grasp, when we
obtain the position of object, the position and orientation of
the manipulator are determined by (22) simultaneously.

B. Description of the Feasible Grasping Strategy

In the grasp task, plastic bag and styrofoam are easy to grasp
due to their light weight and soft material. Therefore, the bag
and styrofoam have many graspable positions. However, plas-
tic bottle is difficult to grasp due to its cylindrical shape, which
means the feasible graspable position of plastic bottle locates
near the middle of the long axis of the bottle. In order to solve
this problem, we proposed a pragmatic grasping strategy for
plastic bottles based on the analysis of objects’ stability in the
fluid. When the vehicle moves toward the bottle, the direction
of fluid velocity is from the vehicle to the bottle. In this sit-
uation, the bottle will rotate to a stable orientation, which is
vertical to the direction of fluid velocity. Therefore, as shown
in Fig. 8, IWSCR should prepare to grasp in advance, when
the distance between IWSCR and the object equals decision
distance Dd. Note that Dd is an empirical value related to the
present surge speed u and the preparation time Tp, which can
be obtained as follows:

Dd = uTp. (23)

Then, IWSCR continues moving and grasps the bottle
eventually.
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Fig. 9. Stability of the two equilibrium states. (a) αp = 0. (b) αp = (1/2)π .

Next, the proposed strategy is expounded in theory. Suppose
that the plastic bottle is abstracted as a prolate ellipse on the
water surface, that the water velocity vf is constant, and that
the fluid is incompressible. Given the included angle between
the long axis of ellipse and the direction of water velocity αp,
refer to [42], the total torque applied on the ellipse is derived
as follows:

ME = 1

2
πρ

(
a2 − b2

)
v2

f sin 2αp (24)

where ρ denotes the fluid density, and a and b are the semi-
major axis and the semiminor axis, respectively. Note that
ME = 0 when αp = 0 and αp = π/2, which represents that
the bottle locates at the equilibrium position. However, the
stabilities of the two equilibrium states are different.

As to αp = 0, when a disturbance results into an infinites-
imal angle δαp adding to the included angle αp, as shown in
Fig. 9(a), the torque applied on the ellipse is as follows:

δME|αp=0 = πρ
(

a2 − b2
)

v2
f δαp cos 2αp|αp=0

= πρ
(

a2 − b2
)

v2
f δαp (25)

where δME · δαp > 0. It means that αp will increase, so the
equilibrium is not stable. Similarly, as αp = π/2, shown in
Fig. 9(b), the torque applied on the ellipse is as follows:

δME|
αp= 1

2π
= πρ

(
a2 − b2

)
v2

f δαp cos 2αp|αp= 1
2π

= −πρ
(

a2 − b2
)

v2
f δαp (26)

where δME · δαp < 0. It means that αp will decrease, so the
equilibrium is stable.

Above all, the long axis of plastic bottle will be vertical
to the direction of the water velocity, which demonstrates the
feasibility of the proposed grasping strategy.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, experiments of garbage detection and SMC
for vision-based steering are concretely introduced. The whole
experimental results of IWSCR to accomplish TTs are exhib-
ited here.

TABLE II
RESULTS OF GARBAGE DETECTION

TABLE III
MODEL PARAMETERS FOR SIMULATION

A. Experimental Results of Garbage Detection

To realize the garbage detection, a floating garbage dataset
(FGD) is established, which includes 1000 images covering
various plastic bottles, plastic bags, and styrofoam under dif-
ferent illumination. FGD is divided into a train dataset (TD)
and a verification dataset (VD). The GPU in this experiment
is NVDIA-1080. YOLOv3 is trained on TD, and the results
on VD are shown in Table II. The accuracy is described with
the mAP, and the computing speed is evaluated by frames per
second (fps). Note that the detection accuracy is commend-
able and the speed meets the requirement of real-timeness.
However, the detection accuracy of the plastic bottle is bit
lower than accuracy of bag and styrofoam, for the packagings
of plastic bottles are various.

B. Experimental Results of SMC for Vision-Based Steering
and Achievement of TTs

The major advantage of SMC is that it is robust to distur-
bance led to input. Therefore, related simulation experiments
based on the underwater vehicle model for the process of
steering on the water surface are carried out. In the sim-
ulation experiments, the model parameters of IWSCR are
listed in Table III. Note that 	ψ(0) = 30◦ is set in the
series experiments, and that the disturbances τEN are sine
waves with different amplitudes led to the input. The com-
parison experimental results about the antijamming capability
between SMC and PI are shown in Fig. 10. When no dis-
turbance impacts the system, the proposed controller and PI
have good steady-state performance. However, the PI wastes
longer convergence time than the proposed controller. When
a sinusoidal disturbance occurs on the system, the proposed
controller is more robust than PI. To describe the antijamming
capability of the two controllers more intuitively, we use the
root-mean-square error (RMSE) to evaluate the steady-state
error. As shown in Fig. 10(c), with the disturbance intensities
increasing, the RMSEs of the two controllers increase. It is
apparent that the RMSE of the proposed controller increases
slowly, which demonstrates the SMC’s insensibility to distur-
bance. Additionally, it is difficult for the PI controller to avoid
overshoot, which is a fatal problem for vision-based steering,
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Fig. 10. Comparison experiments between SMC and PI. (a) Without dis-
turbance. (b) Amplitude of disturbance is 5 N·m. (c) Relationship between
RMSE and amplitudes of disturbance.

because the overshoot may cause the loss of targets in prac-
tice. Above all, the results from the simulation experiments
demonstrate the superiority of SMC applied on IWSCR.

Based on the prior simulations, three experiments of vision-
based steering of IWSCR in the real laboratory environment
are carried out as shown in Fig. 11. The target in each exper-
iment locates by different initial angles relative to IWSCR
as shown in Fig. 11(a), and the tendency of the yaw angle

Fig. 11. Experiments on vision-based steering in real environment. (a) Video
snaps of the vision-based steering with three different initial relative angles.
(b) Tendency curve of yaw angle error deviation of the third experiment.

error deviation obtained from the binocular vision sensor
for the third experiment is described in Fig. 11(b). Notice
that the overshoot exists in the experiment due to the vision
measurement errors and the imprecise model parameters. In
conclusion, the capability of IWSCR to approach the target
demonstrates the feasibility of the proposed control law.

By applying the detection framework, SMC, and the
feasible grasping strategy on IWSCR, the performance of
autonomously accomplishing TTs is shown in Fig. 12. For
a better comprehension, the video is captured by two cam-
eras, i.e., an external camera and IWSCR’s binocular camera.
For this experiment, the target garbage is a plastic bottle. As
shown in Fig. 12(a), IWSCR is cruising on the water surface
and detecting garbage by bounding boxes in real time. Due
to the objects are plastic bags and styrofoam, IWSCR does
not conduct the tracking and steering task. When the plastic
bottle is detected, the target is determined. Fig. 12(b) shows
that the vision-based steering starts after the target has been
locked. Finally, the process of grasp and collection is recorded
in Fig. 12(c). The video snapshots demonstrate the feasibility
of IWSCR to clean the water surface.

To further evaluate the adaptability of IWSCR, a field exper-
iment of autonomous garbage cleaning was conducted in a
reservoir. The performance of IWSCR is shown in Fig. 13,
where Fig. 13(a) records the video snapshots of the cleaning
process and Fig. 13(b) plots the tendency curves for yaw angle
error deviation and the distance deviation measured by the
binocular vision system. Notice that at t = 11 s, IWSCR got
into the grasping preparation stage, thus the visual feedback
data was interrupted. An interesting phenomenon happened
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Fig. 12. Performance of accomplishing TTs. (a) Cruise and detection.
(b) Tracking and steering. (c) Grasping and collection.

Fig. 13. Performance of the field experiment. (a) Video snaps of the whole
cleaning process. (b) Tendency curve of the yaw angle error and distance
deviations.

in the cleaning process, that the first grasping attempt failed
but IWSCR detected the target again soon at t = 18 s and
performed the second grasping successfully. Consequently,
the field environmental results demonstrate a good utilization
prospect of IWSCR for the aquatic environment protection.

C. Discussion

According to the aforementioned experimental results of
IWSCR, our prototype can successfully realize garbage

detection, vision-based steering, and water surface grasp in
the laboratory environment. During implementation, we over-
come three major problems. The first one is how to increase
the speed of detection, for which we employ the YOLOv3
network to achieve a high accurate and real-time detection
whose mAP and speed are up to 0.91 and 45.9 frames/s,
respectively. The second one is how to resist the disturbance
in vision-based steering, as to which a control law derived by
SMC is proposed. The third one is how to grasp plastic bottles
floating on the surface.

The development of an intelligent robot for cleaning water
surface is a sophisticated multidisciplinary integration sys-
tematic engineering project with numerous challenges. With
respect to the visual techniques, we employed here for detect-
ing and recognizing objects as garbage, which is the basis
of the cleaning, we established specific dataset for garbage
floating on the water surface. However, the generality of
this dataset is questionable. Furthermore, there are still many
aspects to be improved, such as tracking accuracy and match
accuracy for triangulation. With respect to controller design,
we only tested IWSCR in the laboratory and relatively calm
field environments. Whereas, the expanse water possesses
more noises and poses more physical disturbances and other
unpredictable influences. Therefore, designing a more robust
controller is necessary for achievement in more complicated
real-world settings. With respect to grasping, the proposed
strategy is just for specific floating objects. It is necessary to
investigate the dynamic grasping on the water surface further
to form a general method.

VII. CONCLUSION

In this article, IWSCR has been creatively designed to col-
lect plastic garbage on the water surface. To tackle the three
challenges declared in Section I, we proposed and imple-
mented feasible methodology on IWSCR. First, the YOLOv3
network is trained on the proposed FGD for garbage detec-
tion to ensure the high accuracy and high speed. Second, an
SMC-based control law is applied to improve the capacity
of resisting disturbance for IWSCR. Third, a feasible grasp-
ing strategy inspired from the stability of floating object in
fluid is proposed, which provides a novel pathway for dynamic
grasping on the water surface. With the aforementioned three
techniques, IWSCR possesses the capability to accomplish
TTs, and it becomes a pragmatic water surface cleaner.

In the future, IWSCR will be tested in larger scale and
more complicated field environments, which needs much more
robust and stable techniques for vision module, motion control
module, and grasping module.
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