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Abstract:

In this paper, a real-time underwater robotic visual tracking strategy (RUTS) based on underwater image

restoration and Kernelized Correlation Filters (KCF) is developed for underwater robots. A real-time and unsupervised
advancement scheme (RUAS), which is utilized in this strategy, performs robustly in restoring underwater images. The
KCEF, as a high-speed and accurate tracking method on land, is employed in this strategy. To handle the conflict be-
tween tracking speed and accuracy, we propose a tracking strategy based on KCF in video sequence restored by RUAS,
comparing Histogram of Oriented Gradient (HOG) descriptors and raw pixels gray (RPG) descriptors. We define an
index Ac to describe the tracking accuracy and regard the number of frames per second as computing speed. Results of
contrast experiments show that the RPG, a much simpler descriptor, can achieve tracking accuracy as precise as HOG,
accompanied by an increase of tracking speed up to 36%. Finally, experiments of the KCF-based tracker with RPG on
different underwater objects demonstrate the feasibility of the formed RUTS.
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1 INTRODUCTION

The ocean, with numerous resources such as minerals, fu-
els, biological resources and so on, is full of unknown for
mankind. Driven by this situation, an increasing number of
researches on underwater robots are conducted all over the
world. For example, Wu et al. proposed a novel robotic
dolphin, which can be controlled robustly to monitor the
water quality [1]. Underwater robotic vision allows under-
water robots to achieve automatic control and operation.
Particularly, technology of underwater visual tracking and
image restoration are highly valuable for underwater robots
to move towards destination and grab objects.

The underwater environment is greatly different from
the atmospheric environment, where natural lighting is
changed by refraction, abortion and scattering in the water
[2]. As a result, the underwater image is of degraded qual-
ity, low contrast and blurred shape, which hampers the de-
velopment of underwater visual object tracking. To resolve
these problems, some algorithms of underwater image en-
hancement based on dark channel prior (DCP) [3] were
provided. For instance, Mallik et al. introduced a method
to enhance underwater image by DCP and contrast limited
adaptive histogram equalization (CLAHE) [4], which has
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reliable results in non-real time process. Shortly before,
Chen et al. adopted a real-time and unsupervised advance-
ment scheme (RUAS) for underwater image restoration [5],
and obtained a wonderful online testing consequence. A
real-time tracker combined with methods of underwater
image restoration was studied in depth by [6], but their
underwater environment of experiments is widely different
from the real marine environment.

Recently, many algorithms have been presented for visual
object tracking on land. Bolme et al. employed an adaptive
correlation filter, a Minimum Output Sum of Squared Error
(MOSSE) filter, and a tracker based on MOSSE can op-
erate at 669 frames per second, which is robust in various
lighting and nonrigid deformation [7]. Based on correla-
tion filters, Henriques et al. provided a Kernelized Corre-
lation Filters (KCF) and demonstrated the high efficiency
of the tracking method through experiments [8]. Accord-
ing to Henriques’ work, the arithmetic speed and the track-
ing accuracy are connected with the feature description
method of a target area. Histogram of Oriented Gradient
(HOG) [9][10] descriptors are widely used in visual objec-
t tracking, which possess the characteristic of illumination
invariance compared to using raw pixels gray (RPG) fea-
ture descriptors. Nevertheless, it will consume more time
when HOG is used in a KCF based tracker [8].

Apparently, the primary problem of tracking object in re-
al marine environment is the conflict between tracking ac-
curacy and processing speed as is shown in Figure 1. To
pursuit tracking accuracy, we choose HOG descriptors,
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Figure 1: The conflict between HOG and RPG. The tracking object is a trepang, which is highlighted by a red dashed line in
every frame. The time consumed is related to the computer hardware, for different CPU or GPU have different operational
capabilities. From this figure, the conflict between HOG and RPG in tracking is noticeable.

by which the tracker performs precisely but consumes al-
most 1.2 times as much time as using RPG descriptors.
However, results of a tracker with RPG descriptors are un-
satisfactory and even preposterous sometimes. In practice,
the size of the patch for objects gradually grows larger be-
cause of the low accuracy resulted by RPG descriptors, and
affects the computing speed seriously. Our tracking strat-
egy can improve the accuracy of RPG descriptors and it
takes less time than using HOG. As a consequence, a com-
promise of tracking accuracy and processing speed is in
need.

In this paper, we propose a KCF based real-time under-
water robotic visual tracking strategy (RUTS). RUAS is
used for underwater image restoration. Meanwhile, we at-
tempt to compare RPG descriptors with HOG descriptors
in tracking accuracy and computing speed. Through ex-
periments on our underwater system in real marine envi-
ronment, results demonstrate the satisfactory efficiency of
RUTS with high computing speed and good enough track-
ing accuracy.

The rest of this paper is organized as follows. In Section II,
the overview of RUTS, including the flowchart, compar-
ison between HOG and RPG, the introduction of RUAS,
and KCF, is described. In Section III, experiments and re-
sults in real underwater marine environment are evaluated
and discussed. In Section IV, conclusions and future work
are presented.

2 OVERVIEW OF THE RUTS

To realize the function of RUTS, feature descriptors for ob-
jects, image restoration and KCF are three important theo-
retical bases. In this section, the first subsection introduces
the process of RUTS, and the last three subsections are or-
ganized to describe these theoretical basis and analyze the
feasibility of RUTS in depth.

Get the first frame

Get RUAS restoration parameters and
restore image

Detect the object box

position

Obtain the feature vector of object box
by HOG or RPG
IEWEI

A

Track based on KCF

Get new object box position in
next frame

Figure 2: The flowchart of RUTS.

2.1 Process of RUTS

The flowchart of RUTS is shown in Figure 2. The first
frame from a video sequence, is used to calculate the RUAS
restoration parameters, by which we restore the image in
every frame. At the same time, the computer obtains the
location of the object box by intelligent detect algorithm or
manual annotation. Then, the feature vector of the object
box can be described by HOG or RPG. A tracker based on
KCF is chosen to the position of new object box in the next
frame. The feature vector of object is obtained over and
over again after every image is restored, until the frame is
the end of this video sequence.
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Figure 3: The process of obtaining HOG. The relationship between Cell and Block is described; the schematic diagram of

the improved HOG used in this paper is visualized.

2.2 Comparison Between HOG and RPG

How to describe the object is a vital problem related to
the tracking accuracy and computing speed for a tracker.
HOG and RPG are two descriptors of different principle
and complexity but all widely used in visual object track-
ing field.

Histograms of Oriented Gradient (HOG) was first present-
ed by [9] for human detection. The window image is di-
vided into cells, and a local 1-D histogram of gradient ori-
entation, similar to a feature vector h’ixn, is accumulated
for every cell to represent its feature. Several cells consti-
tute a larger and spatial connected block. Then histograms
of cells regularly link, together forming a longer feature
vector {hi,,, h3.,,h3y,,...}. Contrast-normalization is
applied in every overlapping block. Finally, feature vectors
of overlapping blocks link together to form HOG feature.
The relationship between Cell and Block is described in
Figure 3. Briefly, HOG descriptors extract texture features
of image meticulously and overcome the problem of vari-
ant illumination.

To realize better tracking performance and fit the circulant
matrix used in KCF, a revised HOG put forward by [10]
is chosen to describe object features in [8]. For each cell
C(i, 7), the final feature has 31 channels, with 27 channel-
s including 9 contrast-insensitive orientation channels and
18 contrast-sensitive orientation channels, and 4 channel-
s capturing the overall gradient energy in square blocks of
four cells around C'(4, j), which is visualized in Figure 3.
On the other hand, the most basic characteristic of an image
is raw pixels gray (RPG), which can be converted from a
colorful RGB image by the following equation [11].

Gray = R x0.333+ G x 0.5+ B x 0.1666 (1)

where R, G, B represent the intensity of red channel, green
channel, blue channel over each pixel. Contrast to HOG,
RPG descriptor is quite simple sensitive to illumination,
shadow and blur.Therefore, unless the underwater image
is of great quality, RPG descriptor is accessible.

As for calculated amount, an 100 x 100 pixels object box
described by HOG with cell size 4 pixels, will generate a

Figure 4: The performance of RUAS. The left degraded im-
age is green and of poor quality due to underwater abortion
and scattering, where Box A and Box B are almost disap-
peared. The right image is restored by RUAS, where the
Box A is a trepang and the Box B is a scallop.

feature vector owning 25 x 25 x 31 = 19375 elements.
On the contrary, using RPG only produces a feature vector
with 100 x 100 = 10000 elements. Furthermore, it is no-
ticeable that RPG is much simpler than HOG when the size
of object is relatively large. Using RPG instead of HOG un-
der specific situation will improve tracking efficiency and
benefit automatic control of underwater robots.

2.3 Analysis for Restoration Results of RUAS

Chen et al. provided three parameters, which were related
to underwater image degradation and color correction, by
pre-searching in the the first frame of images sequences
through artificial fish school algorithm [5]. The core of
RUAS is a Wiener Filter in frequency domain as follows

H(u,v)

——— Ve , 2
Haof + 5 ety @

Vorig.c(u,v) = |
where V,,.;q c represents one channel of original image,
and Vq4,c represents one channel of degraded image due
to underwater scattering and abortion. R is the reciprocal
of signal to noise ratio and will be implemented to restrict
scattering. H (u,v) is originated as a general image degra-
dation model in turbulent media [12], expressed by

H(u7 1}) _ e—k(u2+v2)5/6 (3)
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where k is a crucial parameter related to the depth of water
and the distance from the camera.
After Wiener Filter, color correction is implemented to the
image by gamma factor as follows

Icorrected,C =17 (4)

At this point, R, K, and v have been introduced. To ob-
tain a reliable combination of these three parameters, we
employ a quality index of restored image expressed as

_ o8
Q=1 ®)

o is a haze indicator, describing the level of haze by gradi-
ent computed by modified Tenengrad evaluation.

M N 7

0= 35S (Gradient(Vi (i) D ©)

i=0 j=0 k=0

where M x N is the size of an input image; Vj is a gray-
scale map, and orientations of gradient are regulated as
k x 45°. This indictor takes the textural feature and edge
feature into consideration. Generally, the higher value of «
reflects a clearer restored image.

[ is a contrast indicator, which is calculated by histogram
distribution in RGB channels, representing the image con-
trast.

255

= S S tet) xi-ne2

Ce{R.G,B} \ i=0

where h¢(7) stands for the data of histogram curves at gray
level 4 for channel C; pc shows the average of histogram
curves of channel C'. Theoretically, objects can be distin-
guished more easily with a high value of .

7 is an imbalance indicator, which denotes the level of color
correction.

n=|pr — | + |tr — pg] + |6 — 11g] (®)

Clearly, the 1 diminishes along with a better color correc-
tion.

The performance of RUAS shown in Figure 4. In addition,
the amount of information in the restored image has been
retained to a great degree, such as color information, tex-
ture and edge information, illumination information, etc.,
which is available for this paper to test HOG and RPG
descriptors on underwater visual object tracking. In Sec-
tion III, experiments will exhibit the tracking performance
of HOG and RPG.

2.4 Kernelized Correlation Filters

Visual object tracking can be regarded as a non linear re-
gression, to classify the object and background in [8]. Hen-
riques et al. utilized the circulant matrix, the non linear re-
gion regression and the correlation filter to achieve a high
speed and accuracy tracker. In this paper, the principle will
not be elaborated in details, but the process of KCF is dis-
cussed as follows.

An m X n X c size training image patch ¢, an m X n size
Gaussian-shaped regression target 7, and an m X n X c¢ size
training image patch ¢ are given. First of all, the Gaussian
kernel is derived as

3 1 , 5 e
k“:ewp{—;(|\2|\2+llll\2—2f HOBEMCEAINE)

where the hat “denotes a DFT of a vector, the star * de-
notes a conjugated vector and the ® represents element-
wise product in this subsection from now on; the ¢ stands
for different channels. Next, the vector of ridge regression
coefficients A is estimated by

7
ki 4\
where \ is a regularization parameter in case of over fitting.

Similar to equation (9), k* and k' can be obtained. Finally,
the response is expressed by the equation below.

A= (10

f)=ktioA (11)
When f (t) is IDFT to spatial domain, the location of max
value of response is the new object location of the patch. In
our experiments, it is proven that employing KCF in RUTS
is feasible and dependable.

3 EXPERIMENTS AND RESULTS

In this section, contrast experiments on RUTS between
RPG and HOG are conducted, followed by experiments on
RUTS with RPG on different objects to verify the feasibili-
ty. After experiments, results are obtained and discussed in
the end.

3.1 Contrast Experiments on RUTS and Results

The video sequences of real marine environment were
captured by our underwater robot platform diving in the
sea area at Zhangzi Island, Dalian, China. Objects are
three kinds of marine organisms, i.e., trepang, scallop, and
urchin. We pre-processed the video sequences by marking
object patches manually every frame. HOG and RPG de-
scriptors are tested separately to evaluate their tracking per-
formance. OpenCV 3.0 in the programming environment
Microsoft Visual Studio 2012 is used for the experiment on
the computer with the Intel Core i7-6700 3.40 GHz CPU.
In the experiment, the size of tracking patch is variable to
fit the object more closely. The accuracy in every frame is
estimated by

Ac = \/HBI - F)tl,t’ruthl‘2 + HPb'r - Pbr,truth”2
HPtl,truth - Pbr,truth”

12)

where Py and Py 1y, are experimental and true top-left
coordinates of the object patch, and P, and Py, ¢yr¢h are
bottom-right coordinates analogously. Smaller value of Ac
represents a higher fitting degree between tracking box and
the actual object box, which denotes a better tracking per-
formance. In practice, Ac < 0.13 can be considered as an
acceptable tracking accuracy.
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Figure 5: The results of contrast experiment on trepang, the time consumed and tracking accuracy are displayed on.

We choose a video sequences with 150 frames, tracking
a trepang by RUTS and considering the tracking accuracy
and time consumed, with results shown in Figure 5. The
average Ac of the tracker with the simpler RPG descriptors
is 0.063, which is much smaller than the average Ac =
0.123 of the tracker with HOG descriptors, as distinctly
perceived. The processing speed of the tracker with RPG
is up to about 48.7 frames per second, and the speed of
the tracker with HOG is merely 35.7 frames per second. In
short, results of the contrast experiment show that the RPG,
amuch simpler descriptor, can achieve tracking accuracy as
precise as HOG, accompanied by an increase of tracking
speed up to 36%.

3.2 Experiments on RUTS with RPG

After the contrast experiments on RUTS, results show that
describing objects with RPG performs even better than de-
scribing with HOG in underwater object tracking. To veri-
fy the feasibility of RUTS further, we conducted three ex-
periments on tracking different objects in other underwater
videos captured from the real marine environment. The ob-
jects include sea urchin, scallop, and starfish, which have
different sizes and features. Results are expressed in the
Table 1, and the tracking process is visualized in Figure 6.
Experiments on tracking different underwater objects in-
dexes that the tracking accuracy and computing speed is
satisfactory, so RUTS can be a practical tracking method
for underwater visual tracking. However, the RPG is out of
rotation invariance, as exposed in the process of tracking
scallop, for which an improved descriptors must be pro-
posed in the future. Additionally, when the size of object
box becomes larger, the computing speed will be lower.
The stable tracking accuracy of RUTS is research motiva-
tion for us.

3.3 Discussion

Through these experiments on RUTS, the results indicate
that RUTS, a compromise strategy, is feasible and realize
the accurate and real-time visual object tracking. The im-
age is restored by RUAS. In this situation, the gray-scale

feature can contain enough information of objects, even
better than HOG. In brief, the quality of underwater im-
age is adequate, which is the core reason of succeeding in
precise tracking by RUTS. Note that on account of the com-
puting capability of our computer, the experimental results
can indicate the different tracking accuracy and speed be-
tween RPG and HOG descriptors, but cannot stand for the
best computing speed of the strategy.

Compared with other similar researches on underwater vi-
sual object tracking, we use a novel method of underwater
image restoration, and the experimental environment in this
paper is the real ocean. Images in the marine environment
is full of uncertain geometric deformation including rota-
tion, affine transformation, and so on. RPG based on gray-
level, is hardly able to describe these features of a object,
which reduces the tracking accuracy.

4 CONCLUSION AND FUTURE WORK

The fundamental purpose of this paper is to propose a real-
time visual tracking strategy for underwater objects, which
can track object using a simpler descriptors. HOG-based
tracking is better in terms of accuracy but time-consuming,
and using RPG can track at a high speed but with low accu-
racy. In this paper, we compare the tracking performance
of HOG and RPG descriptors with RUAS-processed un-
derwater video, proposing a compromise strategy to visu-
ally track objects underwater. According to the analysis
and discussion of HOG and RPG descriptors, the underwa-
ter image restoration method RUAS, and the experimental
results, the feasibility of RUTS is demonstrated.

In future research, the underwater tracking accuracy will
be further enhanced, since RUTS is only a compromise
method for tracking without strong stability. An improved
robust RUTS will be proposed in the future work. Mean-
while, the combination of underwater vision tracking and
autonomous underwater robot operation will be investigat-
ed. With such capabilities, the underwater robot can move
towards to the objects and grab them through underwater
vision tracking.
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Table 1: Results of Tests on RUTS with RPG

Object Original size of Object Box | Tracking accuracy Tracking speed
type (Pixels x Pixels) (Average of Ac) (Frames per second)
Sea urchin 120 x 90 0.116 27.34
Scallop 110 x 70 0.084 48.07
Starfish 100 x 75 0.120 43.71

Figure 6: The process of tests on sea urchin, scallop, and starfish.
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