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Abstract: Aquatic environment has been damaged by human activities for years. Trash on the water surface is the prominent
problem, e.g., dumped plastic bottles are ubiquitous. To clean water surface by aquatic robots, grasp detection is crucial task in
the process of collection. Owing to lack of labeled data for training and the limited computational capacity of aquatic robots,
supervised grasp detection method is intractable. In this context, an unsupervised grasp detection strategy is proposed in this
paper for bottle grasping. Firstly, the bottle is approximately abstracted as an elongated cylinder, then a grasping model is
constructed, in which a graspable position is described by the central point, long axis direction angle, and the maximum width.
Secondly, to extract location points of bottles on the water surface, a high speed background elimination method based on
RGB histogram is utilized in the gridding bounding box. Next, principal component analysis (PCA) with an outliers removing
algorithm is employed to estimate parameters of the graspable position. Finally, experimental results of grasp detection show
that estimated position is significant to grasp control. Especially, the accuracy of long axis direction angle is up to 3◦, and
computation speed of the background elimination method is 1.47 times the speed of Canny.
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1 Introduction

The oceans and rivers cover almost 71% of the earth’s sur-
face and provide a suitable home for billions of aquatic or-
ganism. Particularly, marine plants produce about 70% of
the oxygen in the earth’s atmosphere [1], and the abundan-
t resources in oceans have driven both human civilization
progress and social economic development throughout his-
tory. Despite the aquatic environmental necessity to both life
and society on the earth, humanity does not treat the aquatic
environment in a friendly manner.

The water pollution resulted from human negligence has
been accumulating for decades. The waste in water consists
of dredge, industrial garbage, sewage, and radiation [2], in
which plastic trash is the prominent problem. The United
Nations Joint Group of Experts on the Scientific Aspects of
Marine Pollution estimates that 60− 80% of the waste in the
oceans is made up of plastic debris [3, 4]. The dumped plas-
tic bottles, as the most common aquatic trash, are here and
there in rivers, lakes, and even oceans. For protecting aquat-
ic environment, an aquatic robot equipped with mechanical
arm is designed to autonomously collect the plastic bottles
on the water surface.

There are three key technical aspects of collecting plas-
tic bottles by grasping: 1) plastic bottles detection for locat-
ing objects; 2) grasp detection for estimating the best gras-
pable position; and 3) grasp control for control the motion
of mechanical arm based on grasp position information. The
grasp detection plays an important role in this task since it
bridges the preceding detection and the following grasp con-
trol. Therefore, it is imperative to improve the grasp detec-
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tion performance for real-world grasping.
Grasp detection is a visual task to detect graspable regions

in images [5]. In recent years, supervised learning based on
Convolutional Neural Network (CNN) is prevalently adopt-
ed in the research community, because of its efficient end-
to-end training and inferring manners [6, 7]. In this context,
Redmon et al. and Asif et al. focused on directly predicting
grasp rectangles (defined by its position, orientation, width
and height) in images, both of which obtained state-of-the-
art grasp detection accuracies on the Cornell grasp dataset
[8, 9]. One great challenge for these methodology is the fea-
sibility of gathering a large amount of labeled training data,
when the application scenarios are different from existing
datasets. Because it is very expensive and time consuming
to generate an available dataset in the real-world. To over-
come this problem, a physics simulation engine was utilized
to generate training data [10]. However, the training pro-
cess need several weeks on multiple GPUs in parallel work-
ing [11]. The good performance of deep learning on grasp
detection was demonstrated according to various attempts,
but the data-driven mode is not the most suitable method
of grasp detection for plastic bottles on the water surface.
There are two primary reasons for it. On the one hand, there
lacks labeled training data for a special scene. On the other
hand, the aquatic robot with a poor computation power can-
not fit within the considerable amount of computational cost.
In this situation, an unsupervised method of grasp detection
with high speed is necessary.

As a commonsense, the shape of plastic bottle can be ab-
stracted as an elongated cylinder. Therefore, the graspable
position of a bottle can be modeled by three parameters, i.e.,
the central point, the long axis direction angle, and the max-
imum width. After the object detection, bounding boxes of
plastic bottles are obtained. Each bounding box consists of
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the water surface background and the plastic bottle. To ex-
tract the locations of plastic bottle, the region of bottle should
be separated from the bounding box. The water surface in
the neighborhood of bottles has the characters of single color
and balanced illumination. The RGB histogram of water sur-
face is in accordance with normal distribution. Based on this
character, a high speed background elimination method is
proposed. After background elimination, the region of bottle
is reserved and its pixel-level locations are extracted. Final-
ly, the principal component analysis (PCA) is employed in
the location points to estimate the aforesaid three parameters
of graspable position.

The primary contributions of this paper are concluded into
three parts. Firstly, the graspable position of plastic bottles
on the water is modeled by the central point, the long axis
direction angle, and the maximum width. Secondly, a high
speed background elimination method based on RGB his-
togram is proposed to obtain pixel-level locations of plastic
bottles. Thirdly, PCA with an outliers removing algorithm
is employed to estimate the graspable position parameters,
and experimental results demonstrate the feasibility of the
proposed grasp detection method.

The rest of this paper is organized as follows. In Section 2,
the grasping model is presented to introduce the significance
of three graspable parameters. Section 3 deals with a high
speed background elimination method based on RGB his-
togram. The process of position estimation based on PCA
is detailed in Section 4. Experimental results and discussion
are shown in Section 5. Finally, the conclusion and future
work are given in Section 6.

2 Modeling Robotic Grasp
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Fig. 1: Illustration of the grasping model.

The shape of plastic bottles can be abstracted as an elon-
gated cylinder, and the grasping model of plastic bottles is
illustrated in Fig. 1. For an akin-cylinder plastic bottle, its
position in the world coordinate system can be described as

Pb
′ = {Cb

′, θb
′, wb

′} (1)

where Cb
′ denotes the central point, θb

′ is the long axis di-
rection, and wb

′ represents the maximum width of a plastic
bottle.

In the process of controlling a two-finger gripper to grasp
a plastic bottle on the water, the pose of the griper and the
distance between two fingers wg serve as the main control
variables, the former of which consists of the coordinates of
the gripper joint Cg and the direction between two fingers
θg. In practice, the direction between two fingers is parallel

to the water surface. The objective of grasp control can be
described as ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Cg = Cb
′ + �t

θg = θb
′ + π

2

wg = wb
′ +Δw

(2)

where �t denotes a translation transformation, and Δw is a
redundant parameter to guarantee grasp success.

Therefore it is feasible to describe the plastic bottle grasp
by the three parameters in the world coordinate system. Fur-
thermore the plastic bottle in the image coordinate system
can be presented as

Pb = {Cb, θb, wb} (3)

where Cb denotes pixel coordinate of the central point, θb
is the long axis direction angle, and wb represents the maxi-
mum pixel width of a plastic bottle in an image.

A RGB-D image can be obtained by the 3D-
reconstruction with a binocular camera. Then the mapping
relationship between Pb

′ and Pb can be determined. In the
context, the accurate estimation of graspable position Pb in
image is a crucial task.

3 High Speed Background Elimination Method

After the object detection, a bounding box of the plastic
bottle is located on the image. Nevertheless, each bounding
box consists of the water surface background and the plas-
tic bottle. To extract the pixel-level locations of the plastic
bottle accurately, the water background should be eliminat-
ed and the segment of the bottle should be reserved. To this
end, an high speed methodology for water background elim-
ination based on RGB histogram is proposed to extract the
region of bottles.

3.1 Normal Distribution of Water Background

In the same water area, the color of water is similar, and
the illumination is balanced and consistent. The RGB his-
tograms of water surface images in different water areas are
shown in Fig. 2. It is apparent that the distribution of RGB
histogram is accordant to normal distribution as

Pc(x) =
1√
2πσc

e
− (x−μc)2

2σc
2 (4)

where Pc(x) denotes the possibility at intensity x in channel
c, μc and σc denote mean value and standard deviation in
channel c respectively.

In this situation, μc and σc can describe the characteristic
of a water surface at a specific area. The different mean val-
ue and standard deviation between water surface and plastic
bottle are used as a basis to segment images.

3.2 Process of Background Elimination Method

To eliminate the background, there are four steps, i.e.,
background learning, image gridding, background elimina-
tion, and pixel-level object location. The process is illustrat-
ed in Fig. 3.

Background learning. At the beginning of grasping plas-
tic bottles, images of water surface should be collected to ob-
tain the μr and σr for reference. μr and σr are arithmetically
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Fig. 2: RGB histograms of water surface images.
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Fig. 3: Process of background elimination method.

derived as

μr =
1

3

∑
c∈{R,G,B}

μc (5)

σr =
1

3

∑
c∈{R,G,B}

σc. (6)

Image gridding. The bounding box is gridded into N×N

grids. Then mean value and standard deviation are computed
in each grid as

μ(i,j) =
1

3

∑
c∈{R,G,B}

μ(i,j)
c (7)

σ(i,j) =
1

3

∑
c∈{R,G,B}

σ(i,j)
c (8)

where i, j ∈ [1, N ]. This step decreases the computational
cost from by converting pixel-level computation to grid-level
estimation.

Background elimination. In this step, a binary state
G(i,j) of each grid is provided to label whether a grid be-
longs to background or not. G(i,j) = 1 means the grid be-
longs to background, and G(i,j) = 0 represents that the grid
belongs to region of bottles. The principle of judgement is
described as

G(i,j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 |μ(i,j) − μr| < λσr or

|σ(i,j) − σr| < βμr

0 else

(9)

where the factors of λ and β are determined empirically.
After the judgement, grids with G(i,j) = 1 are deleted to
achieve the background elimination. Then, a set of grids be-
longing to region of bottles Qbottle is obtained as

Qbottle = {(i, j)|G(i,j) = 0, ∀i, j ∈ [1, N ]} (10)

where (i, j) denotes the index of grids.
Pixel-level object location. For each grid in Qbottle, eight

location points are determined by a uniform pattern as

Point(i,j) = {(x(i,j)
c + pw(i,j), y(i,j)c + qh(i,j))

|p, q ∈ {±1

4
,±1

2
}}

(11)

where x(i,j)
c and y(i,j)c denote the central point coordinates of

the (i, j)th grid, w(i,j) and h(i,j) denote the width and height
of the (i, j)th grid respectively.

After aforesaid steps, a complete set of location points for
plastic bottles has been constructed. The set can be described
as

I = {(x, y)|(x, y) ∈ Pointk, ∀k ∈ Qbottle}. (12)

4 PCA-based Grasp Position Estimation

PCA has been widely used in dimension reduction. By
maximizing the variance in data, it captures the dominan-
t features in an N-dimensional data in descending order
through an orthogonal transformation [12, 13]. The cen-
tral point, the long axis direction, and the maximum width
are dominant one-dimension features which can be captured
from two-dimensional coordinates of location points. There-
fore, PCA is a feasible method to estimate the graspable po-
sition.
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4.1 Theory of PCA

A dataset is given as X = [x1,x2, ...,xn], where xn

is a N-dimensional vector. Then the mean value μ and the
covariance matrix S of this dataset is derived as

μ =
1

n

n∑
i=1

xi (13)

S =

n∑
i=1

(xi − μ)(xi − μ)T . (14)

With the purpose of reducing dimension from N to m, a
projection matrix P transforms each element in the X as

yi = P T (xi − μ). (15)

To keep the information of original data as much as pos-
sible, a least squares reconstruction error is in need. The
reconstruction data is derived by

x̂i = Pyi. (16)

Thus the squares reconstruction error is described as:

e =

n∑
i=1

||xi − μ− x̂i||2. (17)

In this context, to minimize the squares reconstruction er-
ror is equal to the optimization as follows:

P = argmax
P

|P TSP |. (18)

To solve the optimization, the covariance matrix S is de-
composed as:

S = QΣQ−1. (19)

After rearrangement of eigenvalues in a descending order,
the top m eigenvalues are determined, and then the corre-
sponding eigenvectors compose P .

4.2 PCA for Grasp Position Estimation

Location point set I of plastic bottle obtained in Section 3
serves as the feature in PCA process. The central point Cb,
the direction of long axis Dl, and the direction of short axis
Ds can be computed through PCA as shown in Fig. 4.

��
�� �
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Fig. 4: Parameters of grasp position.

Firstly, the central point of bottle is determined by

Cb =
1

M

M∑
pi∈I

pi (20)

where M denotes the number of points in I. The the covari-
ance matrix S′ is shown as

S′ =
∑
pi∈I

(pi − Cb)(pi − Cb)
T . (21)

Next, S′ is decomposed by

S′ = [Dl Ds]
T

[
λ1 0
0 λ2

]
[Dl Ds] (22)

where λ1 and λ2 (λ1 > λ2) are the eigenvalue of S′.
To estimate the maximum width of plastic bottle, location

points will be projected on the short axis as

I′

s = {Ds(pi − Cb)|∀pi ∈ I} (23)

where I′

s
denotes the set of points projected on the short axis.

Then the maximum width wb is derived as:

wb = max I′

s −min I′

s. (24)

So far the grasp position parameters are determined, i.e.,
the central point Cb, the long axis directionDl, and the max-
imum width wb. Note that the angle of long axis direction θb
indicated in Section 2 can be computed by Dl.

4.3 Outliers Removing Algorithm

As shown in Fig. 4, there are some outliers in location
point set, which affect the accuracy of wb tremendously. Ac-
cording to observation distribution of location points on bot-
tle, most of points assemble around the long axis. Inspired
by this characteristic of distribution, the set of points pro-
jected on short axis I′

s is divided into a valuable point subset
Vs and outlier subset Os. It is apparent that the distance
of two adjacent points in the same subset is shorter than two
points in different subsets. Based on this, the outliers remov-
ing algorithm is proposed as shown in Algorithm 1, which
compensates for the error resulted by background elimina-
tion method.

5 Experiments and Discussion

To demonstrate the feasibility of the proposed strategy,
evaluation criterion, performance of the proposed strategy,
and contrast experiments with other methods are specified
in this section. Note that images of various plastic bottles
in different orientations on the water surface are collected in
laboratory environment, and each of these images is labeled
with groundtruth grasp position parameters manually.

5.1 Evaluation Criterion

The groundtruth position parameters, i.e., the central
point, the long axis direction angle, and the maximum width,
are denoted with Ct

b , θtb, and wt
b, respectively. Relatively, the

estimated value of aforesaid three parameters are expressed
as Ĉb, θ̂b, and ŵb separately. Evaluation criterions of the
grasp position estimation performance include the relative
offset ratio of central point Δp, the absolute error angle of
long axis direction εangle, and the relative error ratio of max-
imum width dw. The definition of relative offset ratio of cen-
tral point Δp is shown as

Δp =
|Ĉb − Ct

b|
wt

b

. (25)
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Algorithm 1 Outliers removing algorithm
1: I

′

s
= Sort(I′

s
);

2: // Sort I′

s
in the ascending order

3: n = Size(I′

s
);

4: // Initialize the number of points in I
′

s

5: α;
6: m = 0;
7: Vs = ∅;
8: Os = ∅;
9: for i = 1; i < n; i++ do

10: Dis(i) = I
′

s
(i+ 1) − I

′

s
(i);

11: // Compute the distance of adjacent points of points
12: end for
13: dismean = Mean(Dis);
14: for i = 1; i < n; i++ do
15: Set(m) ∪ I

′

s
(i);

16: if (Dis(i) >= αdismean) then
17: m = m+ 1;
18: end if
19: end for
20: Index = argmax

m
Size(Set(m));

21: Vs = Set(Index);
22: for i = 1; i <= m; i++ do
23: if (i �= Index) then
24: Os = Os ∪ Set(i);
25: end if
26: end for
27: Delete(Os);

The absolute error angle of long axis direction εangle is
denoted by

εangle = |θ̂b − θtb|. (26)

The relative error ratio of maximum width dw is expressed
with

dw =
|ŵb − wt

b|
wt

b

. (27)

5.2 Performance of Grasp Position Estimation

After object detection, bounding boxes of bottles are ob-
tained. Note that bounding boxes are with different sizes.
For each bounding box, the groundtruth is labeled as shown
in Fig. 5: (a). The grasp position estimation strategy is exe-
cuted in Matlab, and the results are drawn on each bounding
box as shown in Fig. 5: (b). Note that the factor in back-
ground elimination λ and β are set as 2 and 3, respectively.
And the parameter α in outliers removing algorithm is set as
5. Qualitatively, the results of grasp position estimation are
satisfactory.

For quantitative analysis of the performance, the three e-
valuation criterions are computed in Table. 1. Because of
the redundant values in the practical grasp control process,
if the estimated results meet Δp < 0.15, εangle < 5◦, and
dw < 0.15 simultaneously, the estimation results are regard-
ed as feasible values.

Furthermore, in the process of practical grasp control, the
angle of long axis direction is more important than the other-
s, for two fingers of the griper can splay in a wider manner to
compensate for errors of the estimated central point and the
maximum width. Appropriately, the error of estimated long
axis direction with the proposed strategy is pretty slight, even
less than 3◦. Therefore, the proposed strategy is feasible to

��� ���

Fig. 5: Results of grasp position estimation. (a) Groundtruth.
(b) Estimated results. The yellow point denotes the central
point, the green straight line denotes the long axis direction,
the red line segment expresses the maximum width, and the
red scatter points in right figure are location points.

estimate grasp position and guide the grasp process.

Table 1: Evaluation criterion of each grasp position estima-
tion

Bottle order Δp εangle dw Feasibility
1 0.0928 0.9776◦ 0.0912 �

2 0.0581 2.7644◦ 0.0405 �

3 0.1309 2.9771◦ 0.1191 �

4 0.1220 1.2825◦ 0.0772 �

5 0.1423 2.8607◦ 0.0827 �

6 0.0232 1.4890◦ 0.1066 �

5.3 Contrast Experiments on Computation Speed

In this paper, a high speed background elimination method
is proposed to obtain location points of plastic bottles on the
water surface. On account of the gridding step, the computa-
tional complexity is simplified. To extract the feature points
and obtain the pixel-level locations, Canny and Prewitt are
available methodologies [14, 15]. The proposed method and
the two aforesaid methods are employed to extract the fea-
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ture points of plastic bottles, contrastively. Then respective
location points are used to estimate the grasp position by the
PCA-based strategy. With the Computation speed Sp of pro-
posed method as reference, results are shown in Table. 2. It is
noticeable that three methods with PCA obtain feasible esti-
mated parameters, but the proposed background elimination
method has a higher speed.

Table 2: Comparison on computation speed
Method Computation Speed Feasibility

Proposed + PCA Sp �

Canny + PCA 0.6779Sp �

Prewitt + PCA 0.9125Sp �

5.4 Discussion

The experimental results indicate that the PCA-based un-
supervised grasp detection framework is feasible and effi-
cient, and that background elimination method has higher
Computation speed. Therefore, the proposed grasp detec-
tion strategy is an appropriate choice for the real-time plastic
bottle collection on aquatic robots. The reasons for the sat-
isfactory performance on grasp detection accuracy and com-
putation speed lie in two aspects. The first reason is that
the majority of location points of bottle distribute along with
an elongated cylinder and the dominant information of 2-
dimensional data derived by PCA is the long axis direction.
The second reason is that the computation of extracting lo-
cation points is simplified by converting pixel-level compu-
tation to grid-level estimation. In practice, errors resulted by
the high speed background elimination method might cause
few outliers of location points. But the proposed outliers
removing algorithm compensates for the defect efficiently.
Furthermore, the unsupervised grasp detection strategy does
not requires training process, which avoids consuming much
time and labor for building a labeled dataset.

The major limitation of the proposed strategy is that pixel-
level location points are sparse to some extent. On the one
hand, the bounding box is divided into grids, whose size re-
stricts the number of location points. On the other hand,
some regions of plastic bottles could be semitransparent so
that the color could be similar to water background. In this
situation, the principle of judgment based on mean value and
standard deviation could be hard to describe the water sur-
face entirely. Therefore, the principle of judgment will be
improved in the future.

6 Conclusion and Future Work

As a crucial part of collecting plastic bottles for the aquat-
ic robot, an unsupervised grasp detection strategy is detailed
in this paper. Based on the approximation that the plastic
bottle can be regarded as an elongated cylinder, a grasping
model is constructed. To extract pixel-level locations of bot-
tles on the water surface, a high speed background elimina-
tion method is utilized in the gridding bounding box. PCA
with an outliers removing algorithm is employed to estimate
graspable position. Finally, experimental results of grasp de-
tection demonstrate the feasibility and the high-efficiency of
the proposed strategy. Especially, the accuracy of long ax-
is direction angle is up to 3◦, and computation speed of the

background elimination method is 1.47 times the speed of
Canny.

In the future, the background elimination method will be
improved to compensate for the limitation of sparse location
points. Furthermore, the grasp detection strategy will be u-
tilized on the aquatic robot to collect the plastic bottles and
protect the aquatic environment.
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