
Audio-Visual Speech Separation with
Visual Features Enhanced by Adversarial Training

Peng Zhang1,2, Jiaming Xu1,2∗, Jing Shi1, Yunzhe Hao1, Lei Qin4 and Bo Xu1,2,3∗
1Institute of Automation, Chinese Academy of Science, Beijing, China

2School of Artificial Intelligence, University of Chinese Academy of Science, Beijing, China
3Center for Excellence in Brain Science and Intelligence Technology, CAS, China

4Huawei Consumer Business Group, Beijing, China
Email: {zhangpeng2018, jiaming.xu, shijing2014, haoyunzhe2017, xubo}@ia.ac.cn, qinlei9@huawei.com

Abstract—Audio-visual speech separation (AVSS) refers to
separating individual voice from an audio mixture of multiple
simultaneous talkers by conditioning on visual features. For the
AVSS task, visual features play an important role, based on
which we manage to extract more effective visual features to
improve the performance. In this paper, we propose a novel
AVSS model that uses speech-related visual features for isolating
the target speaker. Specifically, the method of extracting speech-
related visual features has two steps. Firstly, we extract the visual
features that contain speech-related information by learning joint
audio-visual representation. Secondly, we use the adversarial
training method to enhance speech-related information in visual
features further. We adopt the time-domain approach and build
audio-visual speech separation networks with temporal convolu-
tional neural networks block. Experiments on four audio-visual
datasets, including GRID, TCD-TIMIT, AVSpeech, and LRS2,
show that our model significantly outperforms previous state-of-
the-art AVSS models. We also demonstrate that our model can
achieve excellent speech separation performance in noisy real-
world scenarios. Moreover, in order to alleviate the performance
degradation of AVSS models caused by the missing of some
video frames, we propose a training strategy, which makes our
model robust when video frames are partially missing. The
demo, code, and supplementary materials can be available at
https://github.com/aispeech-lab/advr-avss.

Index Terms—audio-visual speech separation, robust, adver-
sarial training method, time-domain approach

I. INTRODUCTION

Speech separation aims to separate individual voice from
an audio mixture of multiple simultaneous talkers, which
is also famously known as the cocktail party problem [1],
[2]. Although the audio-only models have made significant
progress in recent years due to deep learning success, there are
still many issues that have not been completely resolved, such
as the label permutation [3], [4] problem and the unknown
number of speakers problem [5], [6].

In the cocktail party environments, human listeners pay
attention to a target speaker by multiple cues from different
modalities (e.g., visual, timbre, and location) [7]. McGurk
effect [8] and many works [9], [10] show that there is a
strong influence of visual in human speech perception. Inspired
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by these discoveries, there is a natural idea to leverage
both the audio and visual signals to design a computational
auditory model. Recently, researchers proposed many audio-
visual speech separation (AVSS) models based on this idea,
which show the benefits of resolving the two problems men-
tioned in the last paragraph under specific scenarios, e.g.,
video conference. According to the type of visual features,
AVSS models can be mainly divided into two categories:
models using dynamic visual features (e.g., lip or face move-
ment) [15]–[22] and models using static visual features (e.g.,
identity) [23], [24]. The former models exploit the correlation
between visual and audio signals, while the latter utilize visual
identity information. A series of experimental results show
that models using dynamic visual features can achieve better
performance [16]. In this paper, we will focus on such models.

In recent years, many research groups have made signif-
icant contributions to AVSS. The AVSS models generally
use different types of visual features as auxiliary information
for isolating the target speaker. Ephrat et al. [15] use face
embedding as the visual features, which are extracted by a
pre-trained face recognition model. However, we find that
their model cannot achieve good performance on limited-size
datasets, such as GRID [41], which is shown in TABLE I.
Other successful models use lip embedding [17], [18], [32] ex-
tracted from lip thumbnails by a pre-trained lip reading model,
but previous work shows that using only lip as visual input
is not an optimal choice. Specifically, first, the lip contains
incomplete visual information, i.e., eyes and cheeks may also
contribute to AVSS [15]. Second, similar lip movements create
ambiguity [25]. Besides, raw pixels, optical flow [20], or facial
landmark-based features [22] are used as visual features in
many models too, but such models cannot achieve excellent
performance. To conclude from these observations, it can be
seen that the extraction and processing of visual features have
a great impact on the performance of AVSS. Based on this,
we think it is essential to design a better method to extract
visual features.

We think that effective dynamic visual features should
contain as much speech-related information as possible, i.e.,
visual features should strongly correlate with the dynamic
characteristics of speech. Therefore, in this paper, we propose
a novel AVSS model that uses speech-related visual features



extracted from the whole face to assist speech separation.
Specifically, the method of extracting speech-related features
has two steps, which is inspired by recent face generation
work [26]. Firstly, we extract the visual features that contain
speech-related information by learning joint audio-visual rep-
resentation. Secondly, we use the adversarial training method
to enhance speech-related information in visual features fur-
ther. The details of this method will be introduced in III-A.
We adopt the time-domain approach and build audio-visual
speech separation networks with temporal convolutional neural
networks block. Experimental results show that our model
outperforms previous state-of-the-art AVSS models on four
audio-visual datasets. The ablation experiments prove that our
method of extracting visual features is effective. We also
demonstrate our model’s capability in real-world scenarios,
which contains both overlapping speech and background noise.
Moreover, in order to alleviate the speech separation perfor-
mance degradation caused by partially missing video frames,
we propose a training strategy of randomly missing video
frames. Compared with the solution proposed by Afouras et
al. [17], our method is effective and does not require additional
voiceprint networks.

The major contributions of this work consist of the follow-
ing. Firstly, we propose a novel time-domain AVSS model to
solve the cocktail party problem, which extracts speech-related
visual features by learning joint audio-visual representation
and adversarial training methods. Results show that our model
outperforms previous state-of-the-art audio-visual models on
four audio-visual datasets. Secondly, we propose an easy but
effective training strategy to alleviate the speech separation
performance degradation caused by partially missing video
frames. Thirdly, our model achieves excellent performance in
noisy real-world scenarios, which verifies the robustness of
our model and indicates its great value in practice.

II. RELATED WORK

This section briefly reviews the related work in audio-
visual speech separation (AVSS) and audio-visual speech
enhancement (AVSE).

Decades ago, the idea of AVSS and AVSE had been
explored by many non-deep methods [27]–[29]. However, they
have many limitations, such as the inability to learn from large-
scale datasets, poor generalization for different speakers, and
so on. Recently, researchers proposed many AVSS and AVSE
models based on the deep learning method. The key idea of
these works could be concluded as to use different visual
features to assist speech separation or speech enhancement.

Many AVSS or AVSE models directly use face or lip
thumbnails as visual features at first, such as [30] and [31],
but this method is not always convenient. The reason is
that using neural networks to learn to perform tasks from
high-dimensional input composed of raw pixels is usually
challenging and requires a large amount of data. Although
Lu et al. [20] hope to add optical flow to the visual input to
alleviate this problem, the performance is still unsatisfactory.
Hence, researchers attempt to use different approaches to

extract various visual features from the raw pixels to ease
the above problem. The first type of approach is to use face
landmark points. Morrone et al. [22] obtain a differential
motion feature vector by subtracting the face landmark points
with the points extracted from the previous one. The model
that uses such type of visual features achieves satisfactory
performance on AVSE tasks. Another approach is to extract the
visual embedding with the pre-trained neural networks. Ephrat
et al. [15] extract face embedding from face thumbnails by
a pre-trained face recognition model, but their model needs
to be trained on a very large-scale dataset (e.g., AVSpeech)
to maintain good performance. Afouras et al. [17], [18] use
a pre-trained visual speech recognition model to extract lip
embedding from lip thumbnails as auxiliary visual features.
The work [17] combines lip embedding and self-enrolled
voiceprint to improve the proposed model’s robustness when
video frames are partially missing. This complicated method
has three stages. Firstly, the model separates the target audio
by conditioning on lip embedding. Then the segment of the
separated audio is used to enroll voiceprint. Finally, the model
separates target audio again by conditioning on lip embedding
and voiceprint. Besides, Wu et al. [32] also use lip embedding,
but they directly estimate a raw waveform in the time-domain
by extending the audio-only model TasNet [33] into the audio-
visual model. Previous work [15], [25] show that using only
lip as visual input is not an optimal choice. Hence, we believe
there are more effective visual features for AVSS and AVSE.

Additionally, some interesting attempts [23], [24] exploit
the speaker identity information extracted from still images.
Their idea is that there is a cross-modal relationship between
a speaker’s voice characteristics and facial appearance. Al-
though the overall model’s computation complexity is rela-
tively reduced, experimental results show that the performance
degradation is severe [23].

It can be seen that visual features are the core of AVSS and
AVSE models, so it is essential to study how to extract more
effective visual features. We believe that effective visual fea-
tures will improve all AVSS and AVSE models’ performance,
thus driving the development of this field.

III. THE PROPOSED MODEL

The framework of our proposed model is shown in Fig. 1.
Firstly, we use the face detector [11], [12] and tracking
algorithm [13], [14] to determine the number of speakers in
the scenario and obtain each speaker’s face thumbnails. Then
the pre-trained visual encoder extracts speech-related visual
features from the target speaker’s face thumbnails while the
speech encoder extracts mixed acoustic features from mixed
audio. The AVSS networks take both mixed acoustic features
and the target speaker’s visual features to predict the mask.
Finally, we obtain target acoustic features by doing element-
wise multiplication between mixed acoustic features and mask,
which are decoded as target audio by the speech decoder.
The visual encoder is pre-trained to extract speech-related
visual features, and the training method will be introduced
in section III-A. After the training is completed, the visual



Fig. 1. The framework of our proposed audio-visual speech separation model.

encoder is kept frozen. Besides, we will introduce the details of
the AVSS model and the training strategy of randomly missing
video frames in section III-B and section III-C, respectively.

A. Method of Extracting Speech-Related Visual Features

The method of extracting speech-related visual features can
be viewed as two steps. Firstly, as shown in Fig. 2(a), we ex-
tract the visual features that contain speech-related information
by learning joint audio-visual representation from clean audio
and video pairs. In order to achieve this, we force the extracted
visual features to be close to their corresponding audio features
by three types of supervision loss. Secondly, as shown in
Fig. 2(b), we further enhance the speech-related information in
visual features by the adversarial training method. The visual
encoder and audio encoder’s inputs are face thumbnails and
the mel-frequency cepstral coefficient (mfcc), respectively.

1) Sharing the Same Classifier: After the visual features
Fv = [f1v , ..., f

n
v ] and audio features Fa = [f1a , ..., f

n
a ] are

extracted from visual encoder Ev and audio encoder Ea,
respectively. We share the same classifier C for doing visual
and audio speech recognition tasks (word-level classification).
Through this method, the visual features and audio features are
pulled towards the centroid of the class [34]. The supervision
loss function is denoted as Lw:

min
Ev,Ea,C

Lw = −
Nw∑
k=1

pk(log(p̂
v
k) + log(p̂ak)), (1)

where p̂vk = softmax(C(Fv))k, p̂ak = softmax(C(Fa))k, pk
is the true class label, and Nw is the total number of word
label in dataset.

2) Generative Adversarial Training: Generative adversarial
training is an effective method to push the two distributions
further closer. So we use a simple version of generative
adversarial training to push the Fv and Fa to be in the
same distribution. In our case, the discriminator D aims to
distinguish whether Fv (and Fa) comes from video or audio.
The Ev and Ea can be viewed as the generator, and we train
them to produce fake features to cheat D. With the LSGANs
approach [35], the loss function can be denoted as follows:

min
D
L1
adv = [D(Fv)− 1]2 + [D(Fa)]

2, (2)

min
Ev,Ea

L2
adv = [D(Fv)]

2 + [D(Fa)− 1]2. (3)

Fig. 2. Illustration of method to train visual encoder. (a): The method of
learning joint audio-visual representation. The inputs of visual encoder Ev and
audio encoder Ea are face thumbnails and mel-frequency cepstral coefficient,
respectively. (b): The adversarial training method for enhancing the speech-
related visual features.

3) Contrastive Loss: We adopt contrastive loss to bring
closer paired data while dispelling unpaired data [36]. During
training, the m-th and n-th samples are drawn with labels
lmn = 1 (when m = n) and lmn = 0 (when m 6= n) from a
batch of N audio-video pairs. The distance between Fv(m) and
Fa(n) here is the Euclidean norm dmn = ‖Fv(m) − Fa(n)‖2.
The contrastive loss function is denoted as Lc:

min
Ev,Ea

Lc =
N,N∑
m,n=1

(lmndmn+(1−lmn)max(1−dmn, 0)). (4)

After learning joint audio-visual representation, we further
enhance the speech-related information in visual features by
the adversarial training method. The basic assumption is that
speech-related visual features cannot accomplish the identity
recognition task well. The training procedure is shown in
the Fig. 2(b). Firstly, the classifier Cp (the discriminator) is
trained to map Fv to the Np person-id classes (i.e., perform
identity recognition task well). The loss function is softmax
cross entropy loss, which is denoted as LDadv:

min
Cp

LDadv = −
Np∑
j=1

pj log(softmax(Cp(Fv))j), (5)

where Np is the number of person-id classes, and pj is the true
class label. Then we train Ev (the generator) to prevent the
Cp from success. The way to ensure this is that the Cp takes
in Fv and outputs the same prediction probabilities (1/Np)
for all classes. In other words, the Fv produced by Ev cannot
complete identity recognition task well. The loss function for
training Ev is denoted as LEv

adv:

min
Ev

LEv

adv =

Np∑
j=1

‖softmax(Cp(Fv))j −
1

Np
‖22. (6)

In conclusions, the whole training process is described as
follows. Firstly, we freeze Ea, Ev , C and train D, Cp. The
loss function is denoted as J1:

min
D,Cp

J1 = L1
adv + L

Cp

adv. (7)



Fig. 3. Details of our proposed audio-visual speech separation model. (a):
The flowchart of audio-visual speech separation model. UP: upsample, F:
multimodal fusion, LN: layer normalization. (b): Details of TCN block. Norm:
normalization, D-Conv: depth-wise convolution.

Then we freeze D, Cp and train Ea, Ev , C, The loss function
is denoted as J2:

min
Ev,Ea,C

J2 = L2
adv + L

Ev

adv + Lw + Lc. (8)

B. Audio-Visual Speech Separation Model

The details of the AVSS model is shown in Fig. 3. We
adopt the time-domain coding method, which can avoid the
phase reconstruction problem in the time-frequency coding
method. In our model, the speech encoder and speech decoder
are modeled as a 1-D convolutional layer and a 1-D transposed
convolutional layer, respectively.

In the visual pathway, firstly, the pre-trained visual encoder
extracts the speech-related visual features from the target
speaker’s face thumbnails. Then 3-layer bidirectional long
short-term memory (BiLSTM) are used to process it and obtain
deep visual features v. In the audio pathway, we stack the
temporal convolution networks (TCN) blocks by exponentially
increasing the dilation factor to capture the audio signal’s long-
term dependency. The details of the TCN block is shown in
Fig. 3(b), which has been proved to be effective in speech
separation tasks [37], [38]. Firstly, the speech encoder extracts
mixed acoustic features. Then it is transformed into deep audio
features a through the processing of layer normalization (LN),
point-wise convolution (1 × 1 Conv), and the first group of
TCN blocks. At the same time, we perform multimodal fusion
for a and v. Specifically, (i): to synchronize the time resolution
between a and v, the up-sample operation is done on the
latter. (ii): We concatenate them over the channel dimension.
(iii): We adopt a linear layer P to reduce the concatenated
features’ channel dimension and obtain fusion features f . The
description can be formulated as follows:

f = P ([a;upsample(v)]). (9)

Finally, the fusion features are processed by the last two groups
of TCN blocks, parametric rectified linear unit (PReLU),
point-wise convolution (1 × 1 Conv), and sigmoid activation
function to generate the mask. After that, we obtain target

acoustic features by doing element-wise multiplication be-
tween mixed acoustic features and mask, which are decoded
as target audio by speech decoder. All normalizations in our
AVSS model are global layer normalization (gLN), which is
formulated as follows:

gLN(F ) = F−E[F ]√
V ar[F ]+ε

� γ + β,

E[F ] = 1
NT

∑
NT F,

V ar[F ] = 1
NT

∑
NT (F − E[F ])2.

(10)

where F represents the features. γ, β are trainable parameters.
ε is a small constant for numerical stability.

The objective of training the AVSS model is minimizing the
negative scale-invariant source-to-noise ratio (SI-SNR), and
SI-SNR is defined as follows:

SI-SNR = 10log10
‖α · at‖2

‖ae − α · at‖2
, (11)

where ae and at are estimated audio and target audio, re-
spectively, and they are normalized to zero mean. Besides,
α = aTe at/‖at‖2.

C. Training Strategy of Randomly Missing Video Frames

Video frames missing is a huge disaster for AVSS models,
which is caused by face occlusion, packet loss of video, and so
on. In order to alleviate the performance degradation caused
by missing video frames, we propose a training strategy of
randomly missing video frames. Specifically, during training,
we do the following operations for each batch of data (or each
training step). (i): We randomly generate a number r from the
range [0, x] as the ratio of missing video frames for this batch
of data. (ii): We calculate the number of missing video frames
as Tm = INT(T × r), where T is the total number of video
frames, and INT(.) represents least integer function. (iii): We
randomly generate Tm integers from the range [0, T−1] as the
missing video frames’ location and set the value of the missing
video frames as zero. (iv): We use this batch of processed data
to train our model.

IV. EXPERIMENTS

A. Datasets

The visual encoder is pre-trained on the LRW dataset [39]
and the MS-Celeb-1M dataset [40]. We evaluate our audio-
visual speech separation model on GRID [41], TCD-
TIMIT [42], AVSpeech [15] and LRS2 [43] datasets.

1) GRID: Regarding the GRID corpus, the dataset contains
18 male speakers and 15 female speakers, and each of them has
1000 frontal face video recordings (“s21” has to be discarded).
The length of each video is 3 seconds. We randomly select 3
males and 3 females to construct a valid set of 2.5 hours and
another 3 males and 3 females for a test set of 2.5 hours.
The rest of the speakers form the training set of 30 hours.
To construct a 2-speaker mixture, firstly, we randomly choose
two different speakers. Then we select audio from each chosen
speaker randomly. Finally, we mix two audios at a random
signal-noise-ratio (SNR) between -5 dB and 5 dB.



2) TCD-TIMIT: The TCD-TIMIT corpus consists of 59
speakers (32 males and 27 females), and each speaker reads
98 sentences from the TIMIT corpus, resulting in durations of
around 5 seconds for each video. We randomly select 6 males
and 5 females to construct a validation set of 2.5 hours and
another 6 males and 5 females for a test set of 2.5 hours. The
rest of the speakers form the training set of 30 hours. The
generation of 2-speaker mixtures is the same as that of the
GRID dataset.

3) AVSpeech: The AVSpeech is a very large-scale audio-
visual dataset comprising video clips with no interfering
background signals collected from YouTube. The segments are
of varying length, between 3 and 10 seconds long. In total,
the dataset contains roughly 4700 hours of video segments
with approximately 150,000 distinct speakers, spanning a wide
variety of people, languages, and face poses. We compare our
model and baseline models on several different single-channel
speech separation tasks, i.e., one speaker+noise (1S+N), two
clean speakers (2S clean), two speakers+noise (2S+N), and
three clean speakers (3S clean). The training set is generated
from the training part of the AVSpeech dataset (20k video
clips) and the training part of AudioSet [50]. The test set is
generated by the test part of the AVSpeech dataset and the
evaluation part of AudioSet. The way of generating mixed
audio is the same as [15].

4) LRS2: The LRS2 audio-visual dataset consists of thou-
sands of spoken sentences from BBC television with their
corresponding transcriptions. The training, validation, and
test sets are generated according to the broadcast date. The
method of generating 2-speaker mixtures as follows. Firstly,
we randomly select two audios from the dataset. Then we mix
them at a random SNR between -5 dB and 5 dB. Finally, we
simulated 40k, 5k, and 3k utterances for training, validation,
and test sets, respectively.

B. Implementation Details

1) Network Architecture: The network architecture of Ev ,
Ea, C, D and Cp are detailed in our supplementary materials
and released code. Besides, we set the kernel size, stride, and
the number of filters in the speech encoder as 16, 8, and
512, respectively. Similarly, we set the kernel size, stride,
and the number of filters in the speech decoder as 16, 8,
and 1, respectively. The number of filters in the first and the
last point-wise convolutions are 128, 512 respectively. The
dimension of speech-related visual features is 256, and we set
hidden units of BiLSTM as 64. Besides, B and H are set as
128 and 512, respectively. We set x as 0.5.

2) Video and Audio Processing: For each video clip, we
resample the video to 25 FPS. The face thumbnails are resized
to 256×256. The audio is resampled to 16 kHz, and we follow
the implementation in [36] to extract the mfcc features.

3) Training Details: We use Pytorch to implement the
whole model. We set the batch size and learning rate for
the pre-training visual encoder as 18 and 1e-4, respectively.
For training the AVSS model, the batch size is set as 8, and
the learning rate begins with 1e-3 and halves when the loss

TABLE I
SDR IMPROVEMENTS WITH DIFFERENT MODELS BASED ON 2-SPEAKER

MIXTURES SIMULATED FROM GRID AND TCD-TIMIT DATASETS.

Datasets Models SDRi (dB)

GRID

DC [45] 7.72
uPIT [4] 7.60

AV-Match [21] 8.11
Google-AV [15] 8.31

AVDC [20] 8.88
AVDC+ [20] 8.95

Conv-TasNet [37] 14.40
Ours 15.74

TCD-TIMIT

DC [45] 6.32
uPIT [4] 6.37

AVDC [20] 7.47
AVDC+ [20] 7.92

Conv-TasNet [37] 14.17
Ours 16.18

increases on the validation set for at least 3 epochs. An early
stopping scheme is applied when the loss increased on the
validation set for 10 epochs. We use the Adam algorithm [44]
to optimize the whole model.

C. Baseline Models and Evaluation Metrics

The audio-visual baseline models to be compared include
Google-AV [15], AVDC [20], AV-Match [21], TDAVSS [32].
Besides, audio-only baseline models include Google-AO [15],
DC [45], uPIT [4], Conv-TasNet [37], PHASEN [48]. The
evaluation metrics include signal-to-distortion ratio (SDR)
[46], SI-SNR and perceptual evaluation of speech quality
(PESQ) [47] and the short-time intelligibility measure (STOI)
[49]. All these metrics are better if higher.

V. RESULTS AND DISCUSSIONS

A. Model Comparison

On GRID and TCD-TIMIT datasets, we compare our model
with three audio-only models (i.e., DC, uPIT, and Conv-
TasNet) and three audio-visual models (i.e., Google-AV, AV-
Match, and AVDC). The results of Google-AV1 and Conv-
TasNet2 are produced using the released code, trained on
the same data as our model. In addition, the results of
DC and uPIT are reported by Lu et al. [20]. The results
in TABLE I show that our model significantly outperforms
all baseline models on these two datasets and achieves the
state-of-the-art result. Specifically, compared with the state-
of-the-art audio-visual model AVDC+, our model achieves
6.79 dB and 8.26 dB improvements on GRID and TCD-
TIMIT, respectively. Besides, compared with the state-of-the-
art audio-only model Conv-TasNet, our model achieves 1.34
dB and 2.01 dB improvements on GRID and TCD-TIMIT,
respectively. In order to further analyze the advantages of our
AVSS model, we also report the results of separating different

1https://github.com/JusperLee/Looking-to-Listen-at-the-Cocktail-Party
2https://github.com/naplab/Conv-TasNet



TABLE II
QUANTITATIVE ANALYSIS AND COMPARISON WITH OUR MODEL AND

BASELINE MODELS ON AVSPEECH DATASET. THE METRIC UNDER
1S+NOISE IS SDR, WHILE THE OTHERS ARE SDR IMPROVEMENT.

Models 1S+N 2S clean 2S+N 3S clean
Conv-TasNet [37] 14.2 - - -
Google-AO [15] 16.0 8.6 10.0 8.6

Google-AV-1 face [15] 16.0 9.9 10.1 9.1
Google-AV-2 faces [15] - 10.3 10.6 9.1
Google-AV-3 faces [15] - - - 10.0

PHASEN [48] 16.8 - - -
Ours 19.1 12.0 10.8 10.1

Fig. 4. Comparative study on the performance of different models under
different and same-gender mixture. (a): The results on GRID dataset. (b):
The results on TCD-TIMIT dataset.

and same-gender mixtures, as shown in Fig. 4. We observe
that our model improves both cases’ performance on these
two datasets compared with Conv-TasNet. Furthermore, the
performance is improved even more significantly in the case of
the same-gender. In other words, the tough problem of speech
separation in the same-gender case can be alleviated effectively
by introducing visual cues.

On AVSpeech and AudioSet datasets, we compare our
model with four baseline models: Conv-TasNet, Google-AO,
PHASEN, Google-AV. The result of Conv-TasNet is reported
by Yin et al. [48]. The results in TABLE II show that our
model achieves the state-of-the-art result. It is noted that our
model only uses 20 k video clips as training data. However,
Google’s model uses 2.4 M video clips, and PHASEN uses
100 K video clips. Our model shows great advantage on the
limited-size dataset thanks to the speech-related visual features
are extracted explicitly. Since our model only uses one face,
to be fair, we compare it with Google-AV-1 face. Our model’s
performance improvements are 3.1 dB, 2.1 dB, 0.7 dB, and 1
dB on 1S+N, 2S clean, 2S+N, and 3S clean tasks, respectively,
which demonstrates the effectiveness of our method.

On the LRS2 dataset, we compare our model with uPIT-
BLSTM, Conv-TasNet, and TDAVSS. The results of baseline
models are reported by Wu et al. [32]. As seen in TABLE
III, Our model performs better than other models. It should
be noted that although the best SI-SNR reported by TDAVSS
is 14.02 dB, they use more data (i.e., at least twice as much
data) to train the model. Besides, compared with TDAVSS,

TABLE III
SI-SNR WITH DIFFERENT MODELS BASED ON 2-SPEAKER MIXTURES

SIMULATED FROM LRS2 DATASET.

Models #Param SI-SNR (dB)
uPIT-BLSTM [4] 22M 7.13
Conv-TasNet [37] 13M 10.58

TDAVSS [32] 21M 13.01
Ours 14M 13.22

TABLE IV
THE RESULTS OF ABLATION STUDY ON GRID DATASET.

Models SDRi (dB) PESQ STOI
Ours-LR 10.25 2.64 0.828

Ours-w/o-adversarial 14.41 3.04 0.892
Ours 15.74 3.22 0.906

our model has fewer parameters, reducing about 33%. The
parameters of the visual-front end are taken into account.

B. Ablation Study

In order to study the effect of each loss function for training
visual encoder, we conduct ablation experiments on the GRID
dataset. The ablation results are shown in TABLE IV. Ours-LR
represents that we only use lip reading loss to train the visual
encoder, and the loss function can be denoted as follows:

min
Ev

Lvw = −
Nw∑
k=1

pk(log(softmax(C(Fv))k). (12)

Ours-w/o-adversarial represents that we use Eq. 1, Eq. 2,
Eq. 3 and Eq. 4 to train visual encoder. In other words,
we do not use the adversarial training method and only
learn joint audio-visual representation. Ours represents our full
model. Results show that Ours-LR has the worst performance,
and Ours achieves the best performance. The results confirm
our original intention of designing the method, as described
in III-A. Besides, we can find that learning joint audio-visual
representation plays a more important role.

C. Robust Model vs. Vanilla Model

The performance degradation of the AVSS model caused by
missing video frames is an important problem. We propose
the training strategy of randomly missing video frames to
alleviate it. To prove this strategy’s effectiveness, we conduct
experiments on GRID and TCD-TIMIT datasets under the
condition that missing video frames randomly. The results are
shown in Fig. 5. The x-axis is the ratio of missing video
frames, and the y-axis is the performance of the model,
represented by SDRi. The model trained by our strategy is
denoted as the robust model (blue line), and the other model
is denoted as the vanilla model (red line). As seen in Fig. 5,
with the increase of missing video frames, the vanilla model’s
performance decreases seriously. When the ratio is 0.8, the
performance degradation of it is over 10 dB on two datasets.
In contrast, the robust model shows strong robustness when



Fig. 5. Vanilla model versus robust model. Left: The results on GRID dataset.
Right: The results on TCD-TIMIT dataset.

TABLE V
THE PERFORMANCE OF VANILLA MODEL AND ROBUST MODEL UNDER

THE CONDITION THAT THE VIDEO FRAMES ARE CONTINUOUSLY MISSING.

Datasets Models SDRi (dB) PESQ STOI

GRID
Vanilla model 10.97 2.74 0.826
Robust model 12.36 2.83 0.852

TCD-TIMIT
Vanilla model 9.63 2.63 0.763
Robust model 13.81 3.06 0.883

missing video frames. Specifically, when the ratio is 0.8, the
performance degradation is about 3 dB on two datasets.

In order to evaluate the effectiveness of our training strategy
when video frames are continuously missing, we occlude the
speaker’s face during the middle third segment of each video.
The results are summarized in TABLE V, and we can find
that the training strategy works well even under this condition.
The robust model outperforms the vanilla model on these two
datasets, especially in the TCD-TIMIT dataset. The reason is
that the video in TCD-TIMIT is longer (about 5 s), so more
video frames (about 42 frames) are missing. According to
Fig. 5 and TABLE V, we can conclude that the more missing
video frames, the more significant advantage of our training
strategy. Besides, we find that the robust model’s performance
is slightly lower than the vanilla model when there are no
missing video frames, which is to be expected and acceptable.

D. Real-World Speech Separation

In order to demonstrate our model’s speech separation
capabilities in real-world scenarios, we record noisy audio
and corresponding video in various scenarios (i.e., reading
room, canteen, and office) by several devices (i.e., smart-
phone, laptop). We use our trained model to separate the target
speaker’s audio in each sample under the guidance of target
visual cue. Because there is no clean reference audio for these
samples, so we cannot measure it with objective metrics. In
order to get an intuitive sense of the quality of separated audio,
we show the spectrogram of noisy audio and the spectrogram
of separated audio, as shown in Fig. 6. Besides, all the
separated audios can be found in our supplementary materials.
Results show that our model achieves excellent performance
in real-world speech separation, which means that our model
can be used in practical applications.

Fig. 6. The spectrogram illustrations of noisy audio and separated audio under
real-world speech separation.

VI. CONCLUSION

This paper proposes a novel time-domain audio-visual
speech separation model. Specifically, we extract the speech-
related visual features from visual inputs by a new method.
Experiments on audio-visual datasets, including GRID, TCD-
TIMIT, AVSpeech, and LRS2, show that our proposed model
significantly outperforms previous audio-visual models. Be-
sides, we demonstrate that our model can achieve excellent
speech separation performance in noisy real-world scenarios.
Finally, we propose a training strategy of randomly missing
video frames to alleviate the performance degradation caused
by missing video frames. In the future, we will investigate
that how to update our model to a high-performance real-
time model, which allows our model to be used in real-
time applications, such as video calling, video conference, and
human-robot interaction.
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