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Audio-visual speech separation has been demonstrated to be effective in solving the cocktail party problem. However, most
of the models cannot meet online processing, which limits their application in video communication and human-robot
interaction. Besides, SI-SNR, the most popular training loss function in speech separation, results in some artifacts in the
separated audio, which would harm downstream applications, such as automatic speech recognition (ASR). In this paper,
we propose an online audio-visual speech separation model with generative adversarial training to solve the two problems
mentioned above. We build our generator (i.e., audio-visual speech separator) with causal temporal convolutional network
block and propose a streaming inference strategy, which allows our model to do speech separation in an online manner.
The discriminator is involved in optimizing the generator, which can reduce the negative effects of SI-SNR. Experiments on
simulated 2-speaker mixtures based on challenging audio-visual dataset LRS2 show that our model outperforms the state-
of-the-art audio-only model Conv-TasNet and audio-visual model advr-AVSS under the same model size. We test the
running time of our model on GPU and CPU, and results show that our model meets online processing. The demo and
code can be found at https://github.com/aispeech-lab/oavss.
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1 INTRODUCTION

Speech separation aims to separate individual audio from an audio mixture of multiple simultaneous talkers,
which is an indispensable front-end module in intelligent speech applications, such as automatic speech
recognition (ASR) [1]. Solving speech separation tasks by using only audio as input is extremely challenging
and does not provide an association of the separated speech signal with the target speaker who we pay
attention to. Recently, many models [2, 3, 4, 5] attempt to solve this problem by audio-visual method, which
use visual features to “focus” the audio from the target speaker in a scene and improve the speech separation
quality. Experimental results show that they are effective. Disappointingly, the successful separation in many
of those audio-visual speech separation (AVSS) models are contingent upon the non-causal configuration of
speech separation network (e.g., [2, 3, 4, 5]) or rely on a large visual front-end (e.g., [2, 4]), which means that
they require future information from the input, need lots of computation and take a huge time delay. It greatly
limits the deployment of such models in online applications such as video communication and so on. To our
knowledge, there is no AVSS model that can meet online processing until now. Besides, how to reduce the
word error rate (WER) of separated speech on the public ASR platforms (e.g., Baidu ASR, Yitu ASR), i.e.,
reduce the negative effects of SI-SNR, is also a key issue.

Therefore, in this paper, we propose an online audio-visual speech separation model with generative
adversarial training. The generative adversarial training is adopted to reduce the negative effects of SI-SNR.
We build our generator (i.e., audio-visual speech separator) with causal temporal convolutional network (TCN)
block and propose a streaming inference strategy, which allows our model to do online speech separation and
maintain a small model size. Discriminator can further help the generator to generate more natural speech.
We conduct experiments on 2-speaker mixtures simulated from audio-visual dataset LRS2 [6] and test the
running time on the GPU and CPU. Results show that our model achieves significant performance in an
online manner. This study represents a major step toward the realization of the AVSS model for real-world
speech processing technologies. Our contributions are as follows:
 We propose an online audio-visual speech separation model with generative adversarial training for the

first time, which achieves significant performance on challenging audio-visual dataset LRS2 and
outperforms the state-of-the-art audio-only model Conv-TasNet and audio-visual model advr-AVSS
under the same model size;

 We propose a streaming inference strategy towards the time-domain and TCN based model, which
makes our model meets online processing on the GPU and CPU;

 We show that generative adversarial training can further reduce the WER of separated speech and
improve other metrics without any additional parameters of the model.

2 RELATED WORK

We briefly review related work in the areas of audio-visual speech separation, online audio-only speech
separation and generative adversarial networks.

2.1 Audio-visual Speech Separation

The overview of the AVSS model is shown in Figure 1. First, the AVSS model determines the number of
speakers in video and track their faces. This is usually performed by face detection [7] and face tracking
algorithm [8]. Then visual features (e.g., face embedding, lip embedding) belong to the target speaker are
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Figure 1: The overview of the audio-visual speech separation model.

Figure 2: Our proposed online audio-visual speech separation model with generative adversarial training. �: element-wise
multiplication; LN: layer normalization.

extracted from the face or lip thumbnails, and mixed acoustic features (e.g., spectrogram) are extracted from
mixed audio. Finally, the AVSS module takes in these two types of features and output target separated audio.
Recent models have used deep neural networks to perform this task. Ephrat et al. [2] propose a speaker-
independent audio-visual speech separation model that uses face embedding extracted by a pre-trained face
recognition model as auxiliary information, which is demonstrated to be effective in real-world scenarios
involving heated interviews, noisy bar, and so on. Lu et al. [3] propose an audio-visual speech separation
model-based deep clustering method, which shows some robustness when visual information is partially
missing. Zhang et al. [5] propose an audio-visual speech separation model with speech-related visual
representation, which achieves excellent performance even on limited size datasets. The main limitation of
these AVSS models is that they require future information or rely on a large visual front-end to achieve good
performance, which limits their deployment of such models in online applications.

2.2 Online Audio-only Speech Separation

In the areas of audio-only speech separation, several approaches have investigated online model designs [9,
10], but either their performance is not satisfying, or the design is complicated. Han et al. [11] propose the
online deep attractor network (ODANet), which can achieve a similar separation accuracy as the non-causal
ODANet. Li et al. [12] propose a source-aware context network that models the speaker-independent problem
as a speaker-dependent problem with a segment-wise auto-regressive network design, while it requires
teacher-forcing during training and more efforts on the auto-regressive architecture design. Another example
would be a time-domain separation system, the TasNet [13, 14], that directly performs separation in the
waveform domain and achieves state-of-the-art performance. The main limitation of these works is that audio-
only approaches build on a strategy to handle the predefined conditions (e.g., a fixed number of sources),
limiting their application in the complex auditory scene (e.g., an uncertain number of sources).
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2.3 Generative Adversarial Networks

Generative adversarial networks (GANs) are generative model introduced by Goodfellow et al. [15], which
consist of a generator (G) and a discriminator (D). The G produces samples from the data distribution �imS by
transforming noise variables � into fake samples �i�S. The D is a classifier that aims to recognize whether the
sample is from G or training data. G is trained to produce outputs that cannot be distinguished from “real” data.
D is trained to do as well as possible in detecting the generator’s “fake”. More formally, this adversarial
learning process is formulated as a two-player minimax game with the objective:

min
�
max
�

� �㤵� ��m���imi m ��䁒� m � ����� � �log iௐ ࡐ �i�i�SSSg. iௐS

Regular GANs suffer from the vanishing gradient problem because of the sigmoid cross-entropy loss
function adopted for the discriminator. The least-squares GANs (LSGANs) approach [16] substitutes the
cross-entropy loss by the least-squares function, which can generate higher quality samples and perform
more stable during the training process. The objective functions of LSGANs can be defined as follows:

min
�

�i�S � ௐ
�
�m���imi m � m ࡐ ௐ � � ௐ

�
�����imi � �i� � � S�g㤵 i�S

min
�
�i�S � ௐ

�
�����imi � �i� � � ࡐ ௐS�g. i3S

3 OUR PROPOSED MODEL

As shown in Figure 2. We propose an online audio-visual speech separation model with generative
adversarial training, which consists of a generator (G) and a discriminator (D). In our case, the G performs the
audio-visual speech separation. It transforms the mixed audio and target speaker's face thumbnails into the
target separated audio. The D aims to distinguish between the separated audio and true audio ones. We will
introduce the generator in Section 3.1, the discriminator in Section 3.2, and the loss function in Section 3.3.

3.1 Generator

The overview of generator is shown in Figure 2. Firstly, the visual module processes the target face
thumbnails to generate target deep visual features �m , and we obtain deep mixed acoustic features � from
mixed audio by the procession of the encoder, layer normalization (LN), pointwise convolution (1×1 Conv).
Then, the deep visual features and deep mixed acoustic features are processed by the TCN module,
parametric rectified linear unit (PReLU), pointwise convolution (1×1 Conv), and sigmoid activation function to
generate the mask � . Finally, we obtain target acoustic features by doing element-wise multiplication
between mixed acoustic features and mask, which are decoded as target separated audio by the decoder.

3.1.1 Encoder and Decoder.

The spectrogram-based method, i.e., time-frequency coding, and waveform-based method, i.e., time-domain
coding, are commonly used methods in speech separation tasks. Time-domain coding has many advantages
over time-frequency domain coding, such as trainable parameters, shorter window length, and no phase
reconstruction problem [17]. Therefore, we adopt time-domain coding here, i.e., our model works directly with
waveform. In our model, the encoder and decoder are modeled as one layer of 1-D convolutional neural
network and one layer of the 1-D transposed convolutional neural network respectively.

3.1.2 Visual Module and TCN Module.

As shown in Figure 3(a). In our model, the visual module extracts deep visual features from raw face images.
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Figure 3: Overall of our proposed method. (a): Details of visual module and TCN module. F: fusion stage. (b): The example
of receptive field of several stacked causal temporal dilated convolutional blocks (kernel size is 2). (c): Details of TCN block.
Norm: normalization; D-Conv: depth-wise convolution.

Figure 4: Two multimodal fusion methods. (a) Illustration of concatenating fusion method. (b): Illustration of deep
concatenating fusion method.

The visual encoder is a pre-trained model, which is suitable for online AVSS model because of its small model
size. We train it to extract speech-related visual features, following [5]. TCN module is used to process time-
series data and perform the multimodal fusion. TCN block is the basic component in the visual module and
TCN module, so we introduce it firstly. Specifically, the TCN block consists of several components connected
in a series, e.g., pointwise convolution (1×1 Conv), PReLU, normalization, depth-wise convolution, PReLU,
normalization, pointwise convolution (1×1 Conv), as shown in Figure 3(c). Besides, it has two output paths: a
residual path and a skip-connection path. The output of the residual path serves as the input of the next block,
and the skip-connection paths of all blocks are summed up as the output of TCN module. When performing
error backpropagation, skip-connection can make the error directly reach each TCN block, which is beneficial
to optimizing deep neural networks. Similar to the separation module in Conv-TasNet [14] and SpEx [18], both
the TCN module and visual module consist of stacked TCN blocks. There are three groups of TCN blocks in
the TCN module and one group of TCN blocks in the visual module. Each group consists of four TCN blocks.
For the online setting, the causal TCN blocks ensure that only past information to be exploited. Besides,
stacking causal TCN blocks can help to increase the receptive field, and the larger the receptive field, the
more a network can look into the past. In our model, the dilation factors of four TCN blocks in each group are
set as 1, 4, 16 and 64 respectively. Figure 3(b) illustrates the example of the receptive field of several stacked
causal TCN blocks. Another key point is how to fuse the target deep visual features �m and the TCN block’s
output �ௐ, which will be introduced in Section 3.1.3.
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3.1.3 Multimodal Fusion.

There are two multimodal fusion methods in our model. The first one is concatenate fusion (CF), which is
suitable for scenarios, such as video calling, where only the target speaker's visual cues are available. The
second one is deep concatenate fusion (DCF), which is suitable for scenarios, such as video conferencing,
where all speakers' (e.g., target speaker and interference speaker) visual cues are available. Prior to the
fusion, the visual features, including target deep visual features �m and interference deep visual features �� ,
are up-sampled so that the visual features and acoustic features �ௐ have same resolution on the time
dimension. Then we perform CF or DCF on visual features and acoustic features. Finally, a linear layer is
used to reduce the dimension of fusion features. Specifically, for CF, the process mentioned above is shown
in Figure 4(a) and can be formulated as follows:

� � �i��ௐ����i����i�mSgS㤵 i4S
where �i�Ǣg represents the operation of concatenating i and Ǣ over channel dimension. � represents a linear
layer and � represents fusion features. For DCF, the process is shown in Figure 4(b) and can be formulated
as follows:

� � �i��ௐ����i���� �m ����i����i��SgS㤵 i5S
where �i�Ǣ�ܾg represents the operation of concatenating i, Ǣ, and ܾ over channel dimension.

3.1.4 Normalization.

In our model, the choice of the normalization method depends on whether requires online processing or not.
For offline (or non-causal) model, we use global layer normalization (gLN), which is proved to outperform
other normalization methods, such as batch normalization and so on. In gLN, the feature is normalized over
both the channel and the time dimensions, as follows:

䁒晠䗯 � � ���gࡐ�
�ih � ��

�t � �

� � � ௐ
䗯t 䗯t ��

�ih � � ௐ
䗯t 䗯t iࡐ� ���gS��

㤵 i6S

where � � �䗯�t is the feature. t㤵 � � �䗯�ௐ are trainable parameters. � is a small constant for numerical
stability. In online model, gLN cannot be applied since it need future information of the features, so we use
cumulative layer normalization (cLN) operation to perform step-wise normalization, cLN is defined as follows:

ܾ晠䗯 �� � ���m��gࡐ��
�ih �m�� ��

�t � �

� �m�� � ௐ
䗯� 䗯� �m���

�ih �m�� � ௐ
䗯� 䗯� i�m�� �����m��gSࡐ

㤵 i7S

where �� � �䗯�ௐ is the �-m� frame of the entire feature �, �m�� � �䗯�� corresponds to the features of k frames
��ௐ㤵�㤵��g.

3.2 Discriminator

In our model, the discriminator takes in true audio or separated audio and output a label, e.g., true or false, as
shown in Figure 2. It consists of several components, e.g., 1-D convolution, bidirectional long-short term
memory (BiLSTM), CNN module, average pooling, linear layer. The 1-D convolution extracts acoustic features
from the raw waveform. One layer of BiLSTM captures the time dependency on acoustic features. CNN
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module learns features that benefit the robust classification task. Average pooling reduces input’s width and
height and generates important features. Two linear layers can be viewed as the classifier. For the CNN
module, six consecutive convolutional blocks are utilized, each of which consists of a 2-D convolutional layer
(2-D Conv), spectral normalization (SN) [19], and PReLU. SN is utilized herein to stabilize the training process
of the discriminator. The kernel size and the stride of 2-D Conv are set to (3, 2) and (2, 2) along the width and
height respectively. We set the number of channels about six consecutive convolutional blocks as 16, 16, 32,
32, 64 and 64 respectively. Besides, we set the number of units of two linear layers as 16 and 1 respectively.

3.3 Loss Function

The G, D networks are jointly optimized by the generative adversarial training algorithm. Mathematically, we
define mixed audio, separated audio, true audio, random sampled clean audio and visual input as i�, i�, im ,
ih� and �. D tries to classify audio as true or separated. With the LSGANs approach, the loss function can be
formulated as follows:

min
�
晠i�S � �ih����imi ih� � ih� ࡐ �i � � �i����imi i� 㤵����imii�S�i� � i�㤵 � ࡐ �ǢS�g㤵 i8S

where �i and �Ǣ are sampled from iͲ.Ǥ㤵 ௐ.ௐS and iͲ㤵 Ͳ.�S respectively. The generator G is trained to separate
target audio that cannot be distinguished from “true” audio by the discriminator D, so D can correct the output
of G towards the realistic distribution. The separation loss of G is denoted as the negative scale-invariant
source-noise ratio (SI-SNR), as follows:

min
�
晠�� � ࡐ� ௐͲ log ௐͲ ��im �

iࡐ���im � , (9)

where i� and im are normalized to zero mean, � � i�tim� im � . The adversarial loss of G, with the LSGANs
approach, can be defined as follows:

min
�
晠䁒ihi�S � �i����imi i� 㤵����imii�S�i� � i�㤵 � ࡐ ௐS�g. iௐͲS

Therefore, the final loss of G is as follows:
min
�
晠 � � 晠䁒ih � � 晠��i�S. iௐௐS

4 EXPERIMENTS

4.1 Dataset

We conduct experiments on 2-speaker mixtures created from LRS2 dataset [6], which consists of thousands
of spoken sentences from BBC television with their corresponding transcriptions. The training, validation, and
test sets are generated according to the broadcast date. The method of generating 2-speaker mixtures as
follows: we randomly select two audios from the dataset, then mix them at a random signal-noise-ratio (SNR)
between -5 dB and 5 dB. The corresponding two videos are concatenated to simulate a cocktail party scene,
as shown in Figure 1. Finally, we simulated 40k, 5k, and 3k utterances for training, validation and test sets
respectively.

4.2 Implementation Details

In the generator, the kernel size and stride of encoder and decoder are set as 32 and 16 respectively. The
number of input channels and the number of output channels in first pointwise convolution are set as 512 and
128 respectively. The number of input channels and the number of output channels in second pointwise
convolution are set as 128 and 512 respectively. In the visual module, the dimension of speech-related visual
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features is 256, and the number of units of FC is 64. In the TCN block, the H is set as 512, and the kernel size
of depth-wise convolution is 3. In the discriminator, the kernel size, stride, number of input channels, and
number of output channels are set as 400, 160, 1 and 256 respectively. The number of hidden channels in
BiLSTM is 64. For each video clip, we resample the video to 25 FPS and convert it to video frames firstly.
Then we use a face detector [20] and a face tracking algorithm to find the faces in each frame and resize the
face image to 256 × 256. Besides, the audio is resampled to 16 kHz. Our model is trained with five seconds of
audio/video samples using Adam [21] optimizer for 100 epochs with early stopping when there is no
improvement in validation loss for consecutive 10 epochs. The initial learning rates for generator and
discriminator are set as 1e-3 and 2e-4 respectively.

The baselines are the state-of-the-art audio-only model Conv-TasNet [14], the state-of-the-art audio-visual
model advr-AVSS [5] and raw mixed audio. To make a fair comparison, we modify the model size of these
two models to the same size as our model and obey the setting in their papers.

4.3 Online Streaming Inference Strategy

In order to test our model in online conditions, we propose a streaming inference method. Specifically, the
chunk length of audio and video are both set as tܾ , and the stride is tܾ too. Considering the encoder should
encode complete audio information, we concatenate 1 ms past and 1 ms future audio to the start and end of
the input audio chunk respectively. The decoder will output many chunks of separated audio. To obtain
complete separated audio, we perform an overlap-add operation between each chunk of separated audio,
and the overlap is 1 ms. The causal temporal dilated convolutional network needs history hidden states to
compute the current time step state. Therefore, we use a buffer to store the history of hidden states, which
needs to update partially after the current chunk computation is completed. The strategy mentioned above
can make our model online inference without performance drop.

4.4 Evaluation Metrics

We evaluate the quality of the separated audio using several measures, such as signal-to-distortion ratio
(SDR) [22], perceptual evaluation of speech quality (PESQ) [23], and the short-time intelligibility measure
(STOI) [24]. To further assess the intelligibility of the separated audio, we use the Baidu automatic speech
recognition (ASR) system to compute the word error rate (WER) between the separated audio and the ground
truth target audio. The higher SDR, PESQ, STOI represents better. The lower WER represents better.

5 RESULTS AND ANALYSIS

The experimental results of our models and baseline models are summarized in Table 1. By analyzing the
results, we can draw the following conclusions. In Table 1, we can see that our model with DCF and GAT
outperforms the audio-only model Conv-TasNet and the audio-visual model advr-AVSS on all evaluation
metrics (i.e., SDR, PESQ, STOI, WER). Besides, the deep concatenate fusion (DCF) method outperforms the
concatenate fusion (CF) method. The reason may be that the DCF method utilizes additional visual
information, so the model learns a better mask representation by the DCF method that enhances the target
speaker and suppresses the interference speaker. It is obvious that our model with generative adversarial
training (GAT) outperforms our model without it. In this paper, we prove that not only GAT is suitable for the
time-domain, audio-visual speech separation method, but also GAT can bring steady improvement of speech
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Table 1: The performance of our models and baseline models on the test set. CF represents concatenate
fusion; DCF represents deep concatenate fusion; GAT represents generative adversarial training.

Models Online SDR (dB) PESQ STOI (%) WER (%)
Raw mixed audio - 0.15 1.78 69 72.2
Conv-TasNet [14] No 9.60 2.58 87 25.3
advr-AVSS [5] No 9.94 2.64 87 22.7
Ours (CF) No 10.01 2.65 87 22.5
Ours (DCF) No 10.30 2.68 88 20.3

Ours (CF+GAT) No 10.24 2.67 87 20.1
Ours (DCF+GAT) No 10.48 2.70 88 19.2
Conv-TasNet [14] Yes 6.25 2.22 80 39.0

Ours (CF) Yes 4.95 2.13 78 39.3
Ours (DCF) Yes 6.27 2.28 82 32.6

Ours (CF+GAT) Yes 5.48 2.21 79 36.1
Ours (DCF+GAT) Yes 6.76 2.33 83 30.8

Table 2: The running time of our model on the GPU and CPU under different chunk lengths.

Hardware
Platform

Chunk length (tܾ)
40 ms 80 ms 120 ms 160 ms 200 ms 240 ms 280 ms

CPU 166 ms 167 ms 173 ms 175 ms 178 ms 182 ms 187 ms
GPU 24 ms 24 ms 24 ms 25 ms 25 ms 25 ms 25 ms

quality without any additional parameters. In addition, the results show that GAT is an effective method to
reduce the WER of separated speech. We test the running time of our model on the GPU (NVIDIA GeForce
GTX 1080Ti) and CPU (Intel i7) under the online streaming inference setting. The definition of online is that
the system’s response time is less than the length of the time window that is to be processed, so we can draw
two conclusions from Table 2. When tܾ � �ͲͲ �� , our model meets online processing on CPU. When tܾ �
4Ͳ�� , our model meets online processing on GPU. The reasonable delays of video communication and
human-robot interaction are less than 200 ms and 1 s respectively [25], so our model meets the delay
requirements of these scenarios. Besides, the number of our model’s parameters is about 11.6 M. To our
knowledge, this is the smallest audio-visual speech separation model.

6 CONCLUSIONS

In this paper, we propose an online audio-visual speech separation model for the first time and integrate it
with generative adversarial training. Results show that our models achieve significant improvements
compared with Conv-TasNet and advr-AVSS. Besides, we propose a streaming inference method towards the
time-domain, TCN-based model, and results show that our model meets the online processing on the GPU
and CPU. Our model has great potential for application in online scenarios, such as video communication,
human-robot interaction and so on.
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