
EEG-Based Emotion Recognition with Prototype-Based Data
Representation

Yixin Wang1,2, Shuang Qiu1, Chen Zhao4, Weijie Yang4, Jinpeng Li1,2, Xuelin Ma1,2, Huiguang He1,2,3,∗

Abstract— Emotions play an important role in human com-
munication, and EEG signals are widely used for emotion
recognition. Despite the extensive research of EEG in recent
year, it is still challenging to interpret EEG signals effectively
due to the massive noises in EEG signals. In this paper, we
propose an effective emotion recognition framework, which
contains two main parts: the representation network and the
prototype selection algorithm. Through our proposed repre-
sentation network, samples from the same kind of emotion
state are more close to each other in high-level representation,
and then, we selected the prototypes from the clustering set
in feature space match the following testing samples. This
method takes advantage of the powerful representation ability
of deep learning and learns a better describable feature space
rather than learn the classifier explicitly. The experiments
on SEED dataset achieves a high accuracy of 93.29% and
outperforms a set of baseline methods and the recent deep
learning emotion classification approaches. These experimental
results demonstrate the effectiveness of our proposed emotion
recognition framework.

I. INTRODUCTION

Emotions play a vital part in people’s daily life, and their
effect involves many aspects, such as human interaction,
decision-making, perception of the world around us and so
on [1]. Recently, interest was shown in making emotional
connection between the human-being and the computer. The
field of Affective Computing (AC) [2] has emerged to fill the
gap between the high-level emotional signals and the low-
level features of raw digital data. Emotion recognition is the
primary process of affective computing, including detection
and model the human emotional state.

There are various approaches to identify an affective state.
On the one hand, several of them are non-physiological,
like facial expressions [3], voice [4], body language and
posture [5]. On the other hand, there are some physiological
measurements which can catch the participants’ underlying
responses expressed at the time of stimulation [6]. They can
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also be separated into two parts according to the signals’
sources, one is from the autonomic nervous systems, such as
Galvanic Skin Response (GSR), Electromyography (EMG),
Heart Rate (HR), and Respiration Rate (RR). Other is from
the central nervous systems, for instance, Electroencephalog-
raphy (EEG), functional Magnetic Resonance Imaging (fM-
RI), and etc [7]. Although EEG has a poor spatial resolution
and need many electrodes placed at the specified location on
the head, it provides great time resolution. The usage of EEG
is noninvasive, fast, and inexpensive, making it a preferred
method in detecting and evaluating emotion [8].

In the field of EEG-based emotion recognition, the delta,
theta, alpha, beta and gamma bands are always being men-
tioned [9] [10], and then the features are extracted from
these bands to use in the classification process. The most
used methods were the Fourier Transform, such as the Short-
time Fourier Transform (STFT), Power Spectral Density
(PSD) [11]. Also the entropy method such as Differential
Entropy (DE) [12] was widely used. However, EEG signals
are very complex non-stationary, because of the variation of
users’ neural activity and the random noise during recording.
Emotion recognition based on EEG is very challenging and
remains many meaningful problems in different levels.

There are a large number of classifiers’ families that are
commonly used: bayesian, support vector machines, decision
trees [8]. For example, Zheng and Lu [13] proposed selecting
12 channel electrodes DE features in SVM for positive,
negative and neutral 3-classes problem, which provided
86.65% on average. Zheng proposed a discriminative Graph
regularized Extreme Learning Machine (GELM) based on
the idea that similar samples should share similar properties,
which obtained the state-of-art accuracy of 91.07% [14].
With the help of the powerful deep learning [15] method,
the explorations in emotional EEG recognition has been
spread. From using the fundamental network (including deep
belief networks (DBNs) [13], convolutional neural networks
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Fig. 1. The flow chart of EEG emotion classification with prototype-based
data representation.
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(CNNs) [16] and recurrent neural networks (RNNs) [17]) to
decoding the inner construction of emotional EEG signals,
the deep learning has been becoming a promising orientation
in our field. For instance, Li organized DE features extracted
from 62 channels as 2-D maps to train the hierarchical convo-
lutional neural network (HCNN) and achieved 88.2% at the
Gamma wave band in three classes problem [18]. Zhang used
a spatial-temporal RNN (STRNN) to integrate the feature
learning from both spatial and temporal information, which
can get the accuracy of 89.5% with DE features [19].

In this paper, we propose a brand-new method to solve
the EEG recognition from representation learning point of
view. Our method is composed of two main parts in the
training stage. One is the representation network based on
deep neural networks (DNNs), which make the distance
minimum for same emotion samples, maximum for different
emotion samples in feature space by weak supervision. The
other is the prototype selection algorithm, intended to find
a representative subset of the training set. In testing stage,
we map the original testing samples to our feature space,
and the prediction for test samples are the same category as
thier the nearest prototypes. This method combines powerful
representation ability of deep learning with the traditional
metric learning. It’s also a novel attempt to learn a better
describable distribution rather than learn the classifier ex-
plicitly. We show the entire flow chart in the Fig 1.

In Section 2, we will introduce the preliminary knowledge
and model construction. Section 3 presents experiment set-
tings, data pre-processing, feature extraction and classifiers
training details. Following the experiment results and discus-
sion are described in Section 4. Conclusions and future work
are in Section 5. The experiment result demonstrates that our
method can significantly improve the emotion classification
performance on a benchmark dataset—SEED.

II. THE PROPOSED METHOD

The framework of our method is shown in Fig 2. More
details are demonstrated as follows.

A. Problem Statement

Given the training set {(xi, yi)}Ni=1, where xi ∈ RD, yi ∈
{0, 1, ..., c− 1}. Though the category labels are supplied, we
only use binary labels between pairwise samples to learn
the representation network. The goal of the representation
network is to obtain a representative feature embedding space
f(xi; Θ) ∈ RM , where Θ is the parameter of the model.

Let f(X) =


f(x1)T

f(x2)T

. . .
f(xN )T

 ∈ RN×M be the representation

data matrix of N training samples in RM , and the pairwise
dissimilarity matrix D = {dij}j=1,...,N

i=1,...,N can be calculated
by some predefined metric function between each samples.
In our proposed method, we choose Euclidean distance as
the measure criterion, i.e., dij = ‖f(xi)− f(xj)‖22. Given
dissimilarity matrix D, we focus on the problem of selecting
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Fig. 2. The training stage framework of our proposed method.

a few data points in the training set, called prototypes, that
can describe all the samples.

Using the effective prototype selection method—–
Dissimilarity-based Sparse Subset Section (DS3) algorithm
[20], we assume series of unknown variables zij connected
with dissimilarities values dij , where zij ∈ {0, 1}. When the
value is one, we select xi as the representation of xj , and is
zero otherwise.

After getting the selection matrix, we can use these
prototypes to match the testing set for classification. The
prototypes are expressed as pij , where i ∈ {1, 2, . . . , C},
means the index of classes and j ∈ {1, 2, . . . ,Ki} means
the index of prototypes in each class. Note that we can not
ensure the number of prototypes in each class is equivalent.

In the training stage, we learn the deep dissimilarity metric
learning network and the selection indicator, finally output
the feature mapping f(·; Θ) and the prototypes {pij}. In the
testing stage, we map the original testing samples to the
cluster feature space and find the nearest prototype according
to Euclidean distance. The testing samples belong to the
same category as their matching prototypes.

B. Problem Formulation

To select the most discriminative subset, we take advan-
tage of the promising deep representation learning approach
at first. And then, we solve the selection matrix Z as a row-
sparsity regularized trace minimization problem. Combined
with two key points, we come up with the following opti-
mization goal:

min
Θ,{zij}

N∑
j=1

N∑
i=1

ΦdSim(f(xi; Θ)f(xj ; Θ))zij + λ

N∑
i=1

‖zi‖p

s.t.

N∑
i=1

zij = 1,∀j; zij > 0,∀i, j.

(1)
where the first term in the objective function is the total cost
of representing X via prototypes, and the second term is to
limit the number of prototypes. The regularization parameter
λ sets the trade-off between the two terms. For smaller λ,
we are focused on how to represent the original training set
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better and get more prototypes. In extreme cases, every point
becomes the prototype of itself. For larger λ, we put more
emphasis on the row sparsity of Z and get fewer prototypes.

As shown in (1), f(·; Θ) denote a mapping from high-
dimensional observations to a low-dimensional feature space,
and Θ is the set of parameters. ΦdSim(f(xi; Θ), f(xj ; Θ))
indicates how well f(xi; Θ) represents f(xj ; Θ). Z =

{zij}j=1,...,N
i=1,...,N is a selection matrix. We use the sum of lp-

norms of rows of Z instead of counting the number of
nonzero rows of Z. To ensure that each xj is represented by
one prototype, we must constrain

∑N
i=1 zij = 1. In addition,

we give the relaxation condition zij ∈ [0, 1], and we set
p = ∞, there we can typically consider that {zij} are in
{0, 1}.

Once we solve the selection matrix, we can find the indices
of nonzero rows of the solution Z, and these can be regarded
as indices of the chosen prototypes in the whole training set.
The details about how to optimize Θ and Z are introduced
in the following sections.

C. Representation Learning

In this section, we introduce a deep metric learning
algorithm borrowed from Song [21], which can measure
similarities between pairs of EEG samples and change their
distribution. The main idea is to minimize the distance in the
feature space for similar pairs, and maximize the distance for
dissimilar pairs with the help of weak supervision.

Given a batch of D-dimensional embedding features X ∈
Rn×D, and the column vector of squared norm of individual
batch elements x̃ = [‖f(x1)‖22 , . . . , ‖f(xn)‖22]T. We can
efficiently compute the distance matrix by D2 = x̃1T +
1x̃T− 2XXT. The objective function of our representation
network is defined as follows:

J̃i,j = log(
∑

(i,k)∈N

exp {α−Di,k}+
∑

(j,l)∈N

exp {α−Dj,l})

+Di,j

J̃ =
1

2 |P|
∑

(i,j)∈P

max(0, J̃i,j)
2

(2)
where N denotes the set of pairs of examples with different
class labels, and P denotes the same class. α denotes a fixed
margin constant. And the parameters of the representation
network are optimized by mini-batch adaptive moment esti-
mation algorithm:

min
Θ

J̃(D(f(X,Y ; Θ))) (3)

D. Dissimilarity-based prototype selection

We can rewrite the optimization program (1) in the matrix
form as:

min
Z

tr(DTZ) + λ ‖Z‖1,p
s.t. 1TZ = 1T, Z > 0

(4)

……
testf(x )

1*{f(p )}
2*{f(p )}

3*{f(p )}

test sample

……

Representation Network

Fig. 3. The testing stage framework of our proposed method.

where
∑N

i,j=1 dijzij = tr(DTZ), tr(·) denotes the trace
operator, 1 ∈ RN is a column vector with all 1.

The problem described in (4) can be solved by the Alter-
nating Direction Method of Multipliers (ADMM) framework
[22]. First, we introduce an auxiliary matrix C ∈ RN×N and
consider the following optimized objective

min
Z,C

tr(DTC) + λ ‖Z‖1,p +
µ

2
‖Z −C‖2F

s.t. 1TC = 1T, C > 0, Z = C
(5)

where µ > 0 is a parameter of penalty term. Since (1) is
equivalent to (5), they have the same optimal solution for
Z. Then, we can augment the last equality constraint of (5)
to the objective function by the Lagrange multiplier matrix
Λ ∈ RN×N .

L = λ ‖Z‖1,p +
µ

2

∥∥∥∥Z − (C − Λ

µ
)

∥∥∥∥2

F

+ h1(C,Λ)

=

N∑
i=1

(λ ‖Zi∗‖q +
µ

2

∥∥∥∥Zi∗ − (Ci∗ −
Λi∗

µ
)

∥∥∥∥2

2

) + h1(C,Λ)

(6)
where Λi∗ denotes the i-th row of the matrix Λ and the term
h1(·) does not depend on Z, we can rewrite the function as

L =
µ

2

∥∥∥∥C − (Z +
Λ + D

µ
)

∥∥∥∥2

F

+ h2(Z,Λ)

=

N∑
i=1

µ

2

∥∥∥∥Ci∗ − (Zi∗ +
Λi∗ + D∗i

µ

∥∥∥∥2

2

) + h2(Z,Λ)

(7)
where the term h2(·) does not depend on C. The steps
of the ADMM implementation consist of 1) initializing Z,
C and Λ; 2) minimizing L with respect to Z with other
variables fixed; 3) minimizing L with respect to C subject
to the constrains

{
1TC = 1T, C > 0

}
with other variables

fixed; 4) updating the Lagrange multiplier matrix Λ with
other variables fixed.

E. Nearest neighbor classifier for prediction

Given a test sample x, we first get the feature repre-
sentation via the representation network f(x; Θ), then we
compute the distance between the extracted feature and all
the selected prototypes pij , and the classification operation
can be formulated as follows:
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x ∈ class arg
C

min
i=1

gi(x) (8)

where gi(x) is the discriminant function for class i:

gi(x) = −
Ki

min
j=1
‖f(x; Θ)− f(pij ; Θ)‖2 (9)

and the process of test is shown in Fig 3.

III. MATERIALS

A. Experiment settings

In our paper, we use the public dataset – the SJTU emotion
EEG dataset (SEED) [13]. There are three kinds of emotion
states in our stimulating film clips, including positive, neutral
and negative. The number of film clips is fifteen, and the
duration of each film clip is about 4 minutes. There is a
15s hint before each clips and 10s feedback after each clip.
The order of presentation is arranged so that two film clips
targeting the same emotion are not shown consecutively. For
the feedback, participants are told to report their emotional
reactions to each film clip by completing the questionnaire
immediately after watching each clip. EEG signals of 15 sub-
jects were recorded while they were watching the emotional
film clips.

EEG signals are recorded by an ESI NeuroScan system at
a sampling rate of 1000 Hz from 62-channel electrode cap
according to the international 10-20 system.

B. Data preprocessed and Feature extraction

The data was initially down-sampled to 200Hz. We ex-
tracted the EEG segments corresponding to the duration
of each movie. The EEG data were visually checked and
the recordings seriously contaminated by electromyography
(EMG) and Electrooculography (EOG) were removed manu-
ally from the dataset. To further filter the noises, a bandpass
frequency filter from 0.3-75Hz was applied finally.

The EEG of each channel was divided into 1s segments
without overlapping. The total number of the segment is
about 3400. Features are extracted on each EEG segment.
Zheng has demonstrated that DE features are more suitable
for EEG-based emotion recognition than other traditional
features, including PSD, DASM, RASM, ASM and DCAU
[14]. Therefore, we choose DE to characterize the EEG
segments mainly.

According to five frequency bands: delta (1-3Hz); theta
(4-7Hz); alpha (8-13Hz); beta (14-30Hz); and gamma (31-
50Hz), in each frequency band, DE is equivalent to the
logarithmic power spectral density for a fixed length EEG
sequence. The differential entropy feature is defined as
follows

h(X) = −
∫ ∞
∞

1√
2πσ2

exp
(x− µ)2

2σ2
log

1√
2πσ2

exp
(x− µ)2

2σ2
dx =

1

2
log2πσ2

(10)

TABLE I
COMPARISONS ON EEG-BASED EMOTION DATASET SEED

Method Feature Frequency
bands

Channels
number

Accuracy
(%)

SVM [13] DE δ, θ, α, β, γ 62 83.99
DE δ, θ, α, β, γ 12 86.65

DBN [13] DE δ, θ, α, β, γ 62 86.08
HCNN [18] DE γ 62 88.20
STRNN [19] DE δ, θ, α, β, γ 62 89.51

BDAE [23] DE
eye movement δ, θ, α, β, γ 62 91.01

GELM [14] DE δ, θ, α, β, γ 62 91.07
Ours DE δ, θ, α, β, γ 62 93.28

where X submits the Gauss distribution N(µ, σ2), x is a
variable, π and e are constants. Since each frequency band
signal has 62 channels, we extracted differential entropy
features with 310 dimensions for a 1s sample.

IV. RESULTS AND DISCUSSION

In this section, we design series of contrast experiments
and present the results of our approaches on the SEED
dataset.

A. Classification performance

We first compare our result with those of various existed
algorithms which are also used the SEED dataset, including
SVM [13], DBN [13], HCNN [18], STRNN [19], BDAE [23]
and so on. In our experiment, the training data contains the
first 9 sessions of data while the test data contains other 6
sessions of data, which is a widely used protocol in previous
studies [13] [18] [19] [23].

The performance of our proposed model and the compari-
son classifiers using the SEED dataset are presented in Table
1. Our model with the DE feature achieve a high accuracy of
93.29%, outperforming the state-of-the-art methods. This is
probably because our proposed method learns a discrimina-
tive data representation and selects the prototypes to match
the testing samples, while other comparison methods directly
learn a classifier. Benefiting from that, our method gains the
outperformance.

In order to demonstrate the effectiveness of our method,
we also evaluate the performance under different dataset
partitions. Except for the widely-used partition way above,
we reduce the proportion of the training data to the testing
data gradually and design four other partition ways: (1) using
the first three-quarters of data in each session of the first 9
sessions as training data and the remaining 6 sessions as
testing data, (2) using the first 6 sessions as training data
and the following 3 sessions as testing data, (3) using the
first 6 sessions as training data and the following 6 sessions
as testing data, (4) using the first 6 sessions as training data
and the remaining 9 sessions as testing data.

We choose K nearest neighbor (kNN), logistic regression
(LR), support vector machine (SVM) as baselines on account
of their universality in emotion recognition [8]. Fig. 4 shows
the mean accuracies with 5 different dataset partition ways. A
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TABLE II
RESULT VARIATIONS WITH THE NUMBER OF SELECTED PROTOTYPES

Number of prototype Average accuracy(%)
Random selection 3 85.16 ± 9.14
No selection 2010 87.53 ± 6.4
Ours 50∼100 93.29 ± 5.8∗∗∗††
∗ ∗ ∗ Ours significantly outperformed to random selection. (p<0.001)
†† Ours significantly outperformed to no selection. (p<0.01)

Two-Way Repeated-Measure Analysis of Variance (ANOVA)
was performed to analyze the effect of both dataset partition
ways and classification method on the accuracy.It showed
significant main effects of classification methods (F(2.64) =
13.11, p<<0.001), and dataset partition ways (F(2.40) =
4.62, p<0.05). All of these dataset partition experiments
demonstrate that our method with the use of fewer training
data can still retain the outperformance. We can see that
our method significantly outperforms other common methods
in (2)-(4) partition conditions, which achieves 5.02% higher
mean accuracy than SVM, 6.03% for LR and 12.31% for
kNN. Comparing the first partition way 3/4×9→6 with the
widely used way 9→6, our method emerges a 5.63% decline,
however SVM has no obvious changes, only 0.1%. It may
due to the removed 1/4 session may contain some significant
information for our method.

Our method first takes advantage of the network’s repre-
sentative ability. To show the performance of representation
network using visualization methods, we choose one typical
subject’s data, compute the Pearson correlation coefficient
[24] between the different emotion state samples and plot
the correlation matrices in Fig 5. In Fig 5(a), we can see
that the correlation matrix of the original DE feature is
disordered and can not distinguish the emotion state directly.
After the mapping from DE feature to the representative
feature space, these three kinds of emotions are very distinct
as Fig 5(b) shows. Fig 5(a)→Fig 5(b) is constrained by
weak supervision, while we directly use the trained network
for Fig 5(c)→Fig 5(d). Then, we used this trained network
for testing samples. Fig 5(c) shows the original DE feature
of testing samples. The testing samples went through this
trained represent network, and then is shown in Fig 5(d). It
has a good display. It implies that our representation network
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Fig. 5. Correlation matrices for one subject, which computed the self-
correlations on three situations separately. (a) between the training data, (b)
between the feature representation on training set, (c) between the testing
data, (d) between the testing set via the trained representation network.

has extracted the emotion intrinsic information and had the
primary ability to discriminate the EEG emotion signal.

To select the most representative subset as the prototypes
is an important step in our model. We compare our model
with two selection methods to demonstrate the effect of
prototype selection. Firstly, we randomly select one sample
from one class as the prototype of this class, which is called
”Random selection”. Thus, there are only three prototypes.
Secondly we use all samples as prototypes, which is called
”No selection”, the number of prototypes is the same as that
of the training set, which is 2010. Lastly, as for our method,
we search the parameter λ, which is used to limit the number
of prototypes in the range of [0.1, 0.5, 1, 5] with a step of one.
According to the parameter search for each subject, we can
find that the number of selected prototypes, is range from 50
to 100 on average.

The results are presented in Table 2. A one-way Analysis
of Variance (ANOVA) showed significant main effects of
prototype selection methods (F(3.22) = 4.63, p<0.05). Our
prototype selection method is significantly outperforms ran-
dom selection method (p<0.001) and no selection method
(p<0.01). It indicates that the prototype selection can signif-
icantly improve the classification performance.

B. Feature Visualization

T-Distributed Stochastic Neighbor Embedding (t-SNE)
[25] is a technique for dimensionality reduction that is par-
ticularly well suited for the visualization of high-dimensional
datasets. In this paper, we choose t-sne as the dimensionality
reduction approach to show the feature evolution along the
cascaded stages. Here, we choose one typical subject’s data.

As we can see in Fig 6(a), we input the high-dimensional
original DE feature training data into the t-sne algorithm
directly, we can intuitively see that the original data cannot
be easily discriminated by linear classifiers. We put these
original data into our representation network to learn a
feature space, and plot the distributions of each class. The
same class of training samples are preliminarily clustered
in Fig 6(b). Then, we select the prototypes from the trained
feature space, the prototype is marked by yellow sign, where
there are more than 2000 dots specified training samples and
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（a） （b） （c）

（d） （e）

Fig. 6. The visualization of different stage in our methods. (a) is the training
data (9 session), (b) is the feature space via the representation network, (c)
is the selected prototypes in the feature space, (d) is the testing data (6
session) and (e) the test data and the selected prototypes in the feature space.
(red/green/blue dots: the positive/neutral/negative emotion, yellow cross-
es/plus signs/asterisks: the selected prototypes of positive/neutral/negative
emotion state.)

about 100 yellow signs.
In Fig 6(d), we first plot the high-dimensional original DE

feature of testing data. And then we use the trained network
to map the testing sample into our feature space, in addition,
we also plot the selected prototypes together. We can see that
the same kind of prototypes are more close to each other
than testing samples. From Fig 6(d) → Fig 6(e), the testing
samples become discriminative using these close prototypes
in feature space, which get the accuracy of 89.52%. Note
that the colors are marked according to prediction results in
Fig 6(e), rather than the actual labels as Fig 6(a), Fig 6(b),
Fig 6(c) and Fig 6(d) use.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed the combining the representa-
tion network and prototype selection framework to represent
the distribution of the EEG samples and classify the three
states of emotion, our method outperforms the state-of-
the-art emotion classification approaches in the benchmark
EEG emotion dataset–SEED dataset, which achieves a mean
accuracy of 93.29%.

The visualizations of the embedding feature show the
feature evolution along the cascaded stages. It indicates that
our proposed methods can help to learn a more discriminative
embedded feature space.

In future, we will focus on the following issues that we
have not covered in this paper. First, we will explore the
cross session or cross subject domain adaptation problem,
so that we may try to use the prototype selection to finding
the subset of the source data to represent the target data.
Second, we will take advantage of the selected prototypes
to cyclical refinement and get the better representation of
the EEG samples. Besides, more experiments are needed in
order to study the online performance.
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