EEG-Based Emotion Recognition with Similarity Learning Network
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Abstract— Emotion recognition is an important field of re-
search in Affective Computing (AC), and the EEG signal is
one of useful signals in detecting and evaluating emotion. With
the development of the deep learning, the neural network is
widely used in constructing the EEG-based emotion recognition
model. In this paper, we propose an effective similarity learning
network, on the basis of a bidirectional long short term memory
(BLSTM) network. The pairwise constrain loss will help to
learn a more discriminative embedding feature space, combined
with the traditional supervised classification loss function. The
experiment result demonstrates that the pairwise constrain
loss can significantly improve the emotion classification perfor-
mance. In addition, our method outperforms the state-of-the-
art emotion classification approaches in the benchmark EEG
emotion dataset-SEED dataset, which get a mean accuracy of
94.62%.

I. INTRODUCTION

Recently, Affective Computing (AC) has been attracting
more and more attention, which helps to make connection
between the human and the computer by developing com-
putational systems that can recognize and react to human
emotions [1]. The ultimate purpose of affective computing
is to make the artifact machines more ’sympathetic’ in the
human machine interaction [2]. Emotion recognition is an
important part of affective computing, which is the process
of identifying human emotion.

Various measures have been used to recognize emotion
states. On the one hand, several non-physiological signals,
for example, facial expression [3], body gesture [4] and voice
signal [5], are widely used for emotion recognition. On the
other hand, they are physiological signals [6], including elec-
troencephalography (EEG), electromyogram (EMG) and so
forth. Because of the high accuracy, high temporal resolution,
and quite objective assessment, EEG has shown a greater
potential in evaluating emotion states. Many psychophysiol-
ogy studies that human emotions can be reflected by EEG
signal. There are five bands that always be mentioned: Delta,
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Theta, Alpha, Beta, and Gamma [7]. And then we can extract
EEG features from each band to distinguish the emotional
processes. However, EEG signal is non-stationary, it may
be caused by variations of user’s physiological activities,
including different stimulus, increasing fatigue and varying
electrode impedances, etc. Thus the problem of classifica-
tion for EEG-based emotion recognition is still seen as a
challenge.

There are many feature extraction techniques to character-
ize the EEG signals, including the differential entropy (DE)
[8] feature, the power spectral density (PSD) [9] feature and
so on. Nowadays, numerous classifier have been implement-
ed for EEG-based emotion recognition, such as the Support
Vector Machine (SVM), K-Nearest Neighbor (KNN), and
Linear Regression (LR). For example, Zheng [10] proposed
selecting 12 channel electrodes features in SVM, which pro-
vided 86.65% on average. Zheng [11] proposed a discrimina-
tive Graph regularized Extreme Learning Machine (GELM)
which obtained a mean accuracy of 91.07%. Furthermore,
deep learning becomes leader in the field of the machine
learning recently [12], there are many related methods being
used in the EEG-based emotion recognition task, including
deep belief networks (DBNs), convolutional neural networks
(CNNps) [13], recurrent neural networks (RNNs) [14] and so
on. For instance, Li [15] organized DE features extracted
from 62 channels as 2-D maps to train the hierarchical
convolutional neural network (HCNN) and achieved 88.2%
at the Gamma wave band. Zhang [16] used a unified deep
network framework called spatial-temporal RNN (STRNN)
with DE features, which can get the accuracy of 89.5%.

Typical BLSTM models can utilize long-range context
for the current prediction. In our paper, we take account
into that the EEG signals contain the temporal information,
and take advantage of the Bidirectional Long Short-Term
Memory (BLSTM) [17] framework to process it. We also
innovatively import the pairwise constrain loss [18] which is
a useful metric learning approach to change the distribution
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Fig. 1. The flow chart of EEG emotion classification with similarity
learning network.
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Fig. 2.

The framework of our similarity learning network.

of the EEG signal. The basic idea of pairwise loss is to
minimize the distance in a feature space for similar pairs,
and maximize the distance for dissimilar pairs with the
use of weak labels [19]. The loss will help to learn a
more discriminative embedding feature space, combined with
the traditional supervised classification loss function. The
experiment results demonstrates that the pairwise constrain
loss can significantly improve the emotion classification
performance, and our method outperforms the state-of-the-art
emotion classification approaches based on EEG.

II. THE PROPOSED METHOD
A. LSTM

Recurrent Neural Networks (RNNs) are neural networks
adapted for sequence data (z1,...,z7). At each time step
t € {1,...,T}, the hidden state vector h; is updated by the
equation h; = o(Wxy + Uhy—1) in which z; is the input at
time ¢. W is the weight matrix from inputs to the hidden-state
vector and U is the weight matrix on the hidden-state vector
from the previous time step h;_1. In this equation and below
the logistic function is denoted by o(z) = (1 +e7%)L.

The Long Short-Term Memory (LSTM) variant of RNNs
in particular has success in tasks related to EEG signals
analysis. A LSTM is parametrized by weight matrices from
the input and the previous state for each of the gates, in
addition to the memory cell. We use the standard formulation
of LSTMs with the logistic function (o) on the gates and the
hyperbolic tangent (tanh) on the activations. In the equations
(1) below, o denotes the Hadamard (elementwise) product.

it = o(Wizy + Uihy—1)
fi=0Wyxy +Uphi_1)

0t = c(Woxs + Ught—1)

¢ = tanh(Wexy + Uchy—1)

¢t =14 0C + froC—1

(D

it = o o tanh(c;)

Bidirectional RNNs [20] incorporate both future and past
context by running the reverse of the input through a separate
RNN. The output of the combined model at each time step
is simply the concatenation of the outputs from the forward
and backward networks.

B. Pairwise-constrain loss

The proposed network contains two layers of Bidirectional
LSTM nodes. The activations at last timestep of the final

BLSTM layer are picked to produce the output. The whole
framework is shown in Fig 2.

Let fy (z1) and fw (z2) be the projections of x7 and x4
in the embedding space computed by the network function
fw, there we choose BLSTM as framework to utilize the
time series information. We define the energy of the model
Ew to be the Euclidean distance between the embeddings
of x1 and x:

Ew(z1,22) = || fw(z1) — fw (@) )

To turn the distance into a cost, we define that if x; and
9 come from a similar pair, the cost will be plain Euclidean
distance; otherwise, it will be the hinge loss (still using the
Euclidean distance). The weak labels indicate the pairwise
relationship, which is converted from the class label. If a pair
has the same class label, then it is a similar pair, otherwise
it is dissimilar.

108Spair = Is(x1,22) By (21, x2)+ 3)
Iis(x1,x2)maz(0,¢c — Ew (21, 22))
Function I in (3) will be equal to one when (x1,x2) is
a similar pair, while ;s works in reverse manner. The only
hyper-parameter in the loss is the ¢ in (3).

III. MATERIALS
A. Experiment settings

In our paper, we use the public dataset — the SJTU emotion
EEG dataset (SEED) [10]. There are three kinds of emotion
states in our stimulating film clips, including positive, neutral
and negative. The number of film clips is 15, and the duration
of each film clip is about 4 minutes. The order of presentation
is arranged so that two film clips targeting the same emotion
are not shown consecutively.

For the feedback, participants are told to report their
emotional reactions to each film clip by completing the ques-
tionnaire immediately after watching each clip. EEG signals
of 15 subjects were recorded while they were watching the
emotional film clips. EEG signals are recorded by an ESI
NeuroScan system at a sampling rate of 1000 Hz from 62-
channel electrode cap according to the international 10-20
system.

B. Data preprocessed and Feature extraction

The data was first downsampled to 200Hz. A bandpass
frequency filter from 0-75Hz was applied. We extracted the
EEG segments corresponding to the duration of each movie.
The EEG data were visually checked and the recordings
seriously contaminated by electromyography (EMG) and
Electrooculography (EOG) were removed manually from the
dataset. EOG was simultaneously recorded in the experi-
ments to vanish the blink artifacts from the recordings.

According to five frequency bands: delta (1- 3Hz); theta
(4-7THz); alpha (8-13Hz); beta (14-30Hz); and gamma (31-
50Hz), we compute the traditional PSD features using Short
Time Fourier Transform (STFT) with a Is long window and
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Fig. 3. The results of 5 compared classifiers and our purposed method with
the feature of (a) DE and (b) PSD respectively. (* : p<0.05, ** : p<0.01,
% p<0.001.)

no overlapping Hanning window. The differential entropy
feature [8] is defined as follows.

(z — p)?
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exrp dr = %log27m2

where X submits the Gauss distribution N (g, 0?), x is a
variable, and 7 and e are constants. In each frequency band,
DE is equivalent to the logarithmic power spectral density
for a fixed length EEG sequence. Since each frequency band
signal has 62 channels, we extracted differential entropy
features with 310 dimensions for a 1 s sample. After this
process, we use a no-overlapping slicing window of 10s to
temporally scan the sequences, and get the 10¥310 dimen-
sions time series sample.

C. Classifiers training details

For every data file, the data from the subjects watching
the first 9 movie clips are used as training samples and
the rest 6 movie clips are used as test samples. The model
which doesn’t contain time property will use the original
310-dimension sample, and BLSTM-based models include
the 10s information in one sample so that the shape of a
sample is 10*310.

o For kNN, we use k=5 for baseline in comparison with
other classifiers.

o For LR, we employ L2-regularized LR and search the
regularization parameter in [1.5 : 10] with a step of 0.5.

e For SVM, we use the linear kernel SVM and search the
parameter space 2[7119 with a step of one for C to
find the optimal value.

o For deep neural networks, we construct a DBN with
two hidden layers. We search the optimal numbers of
neurons in the first and the second hidden layers with
step of 50 in the ranges of [200 : 500] and [150 : 500],
respectively.

e We construct a BLSTM with two hidden layers, and
search the L2 regularization parameter and the learning
rate in the range of 10(=5~1 and 10[~3~4 with a
step of one. As for our purposed method, we add one

TABLE I
COMPARISONS ON EEG-BASED EMOTION DATASET SEED

Frequency Channels | Accuracy

Method Feature bands number (%)

PSD 5.0, a5, 62 59.60

DE 5.0,a,5,7 62 83.99

SVM [10] PSD 50 By 2 6202

DE 6,0, c, B, 12 86.65

PSD 5.0,0, B, 62 61.90

DBN [10] DE 5.0.0. B ) 86.08

HCNN [15] DE ¥ 62 88.20

STRNN [16] DE 5.0,0, B, 62 8951
DE

BDAE [21] eye movement 6,0, c, B, 62 91.01

Ours PSD 5.0,a, 5,7 62 8627

u DE 5,0,a, 08, 62 94.96

parameter—-the weight of the pairwise constrain loss,
in the range of 10[=3:~11,

IV. RESULTS AND DISCUSSION

In this section, we design series of contrast experiments
and present the results of our approaches on the SEED
dataset.

A. Classification performance

We first compare two kinds of features: DE and PSD. We
can clearly see that the DE features have a higher accu-
racy and lower standard deviation than the traditional PSD
features, implying that the DE feature are more descriptive
feature than the PSD feature in emotion recognition research.
We also show the classification results of kNN, LR, SVM,
DBN, BLSTM and our pairwise-constrain loss method for
the mean accuracy of 15 subjects in Fig 3.

Accuracy means and standard deviation using DE feature
in percentage(%) of kNN, LR, SVM, DBN, BLSTM and
the pairwise loss BLSTM are 78.35/12.46, 84.84/10.58,
86.99/10.66, 91.27/6.36, 92.0/5.98, 94.96/4.86, respective-
ly. It shows that DBN, BLSTM and our purposed
method perform better than the traditional shallow mod-
el. The results of PSD feature can also verify our im-
plication, which are respectively 72.38/12.42, 75.38/15.81,
76.52/16.91, 80.32/16.87, 82.22/12.30 and 86.27/8.60.

In order to evaluate the performance of our proposed pair-
wise constrain loss, we compared our proposed method with
the standard BLSTM without the pairwise constrain loss.
BLSTM with the pairwise constrain loss significantly out-
performs the framework without it. (DE feature: 92.05/5.98
vs 94.96/4.86 p:0.004 and PSD feature 83.51/12.30 vs
86.27/8.60 p:0.012). We also compared our result with those
of various existed algorithms which is also used the SEED
dataset, shown in Table 1, The pairwise constrain BLSTM
model with the DE feature outperforms better than other
methods with the best accuracy of 94.96%.

B. Feature Visualization

For simplicity, we select one typical subject’s data to
exhibit our loss’s performance. We provide the visualizations
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of two models on the feature space layer and softmax layer.

T-Distributed  Stochastic ~Neighbor Embedding (t-
SNE)[22] is a technique for dimensionality reduction that is
used for the visualization of high-dimensional datasets. We
choose t-SNE to visualize the high-dimensional features.
In Fig 4, in the input space, the original data can not
be easily discriminated by linear classifiers. We put the
continuous 10s together to get the time series and input
it in our framework. In the two models, the features of
different emotion states become separable. To investigate
the effect of the pairwise constrain loss to the BLSTM
model, we compare the first row (without this loss) with the
second row (with this loss) in Fig 4. We found that using
the pairwise loss could make the distance between different
categories farther, and help to learn a more discriminative
embedding feature space.

We can also find additional phenomena in the 2-D projec-
tion of the representations. First of all, the positive emotion
is easy to separate. In each of two rows, we find the
positive emotion is more easily to be separated from the
neutral emotion and the negative emotion. Secondly, the
neutral emotion and the negative emotion are more similar
to each other, it may imply that the *no emotion’ state in our
cognition pattern can be more similar to the negative state.
What’s more, the distance between the green dots and blue
dots is farther visibly when using the pairwise constrain. It
shows that the loss has a useful effect on the two states which
hard to discriminate.

V. CONCLUSIONS

In this paper, we proposed the BLSTM with the pairwise
constrain loss to classify the three states of emotion, our
method outperforms the state-of-the-art emotion classifica-
tion approaches in the benchmark EEG emotion dataset—
SEED dataset , which get a mean accuracy of 94.62%.

The visualizations of the embedding feature show the
feature evolution along the cascaded layers, where the repre-
sentations become linearly separable. It shows that pairwise
constrain loss can help to learn a more discriminative embed-
ded feature space, combined with the traditional supervised
classification loss function.

As future work, we will focus on the following issues that
we have not covered in this paper. We want to go deeper
with the performance of the pairwise constrain loss when
parameters change. Besides, more experiments are needed
in order to study the stability of the network.
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