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Abstract—For multi-robot assembly of two large cabins, the
pose measurement of cabin is indispensable. Traditionally, this is
achieved by installing targets or markers on the cabins, making
the process inefficient. To address this, a pose measurement
method based on point cloud which can be readily collected by
3D vision sensor is proposed in this paper. The cylinder model
of the cabin is firstly established according to its geometry. The
point clouds of cabins are segmented from the point cloud scene
using RANSAC model fitting. Then the relative pose between
two cabins can be calculated using the segmented point clouds
and model coefficients. It is validated in the experiment that the
proposed method is accurate and robust for pose measurement
of large cabins.

Index Terms—large cabin, point cloud, pose measurement

I. INTRODUCTION

The assembly of large cabins is a fundamental process for

the manufacturing of aircraft [1], spacecraft [2], ship [3], etc.

Specifically, for the assembly of two separate large cabins,

conducting precise initial alignment of two cabins is a pre-

requisite, since the poses (including position and orientation)

of the cabins need to be aligned properly before joining [4].

Traditionally, in order to align the two cabins, one of the

large cabin is hoisted from the ground, while several workers

manually adjust its pose, making the whole manufacturing

process inefficient and labor intensive. To address this, multi-

robot system, which can support the cabin and alter its pose,

Research supported by National Natural Science Foundation of China under
Grant No.U1813208. *Corresponding author: Fengshui Jing.

is adopted in the automatic alignment [5]. For the robotic

assembly system, the robot action is based on the feedback

of cabin poses, normally given by the measurement of sensor.

Therefore, the accurate measurement of cabin pose during the

alignment is decisive for the precision and effectiveness of the

whole robotic assembly process.

The pose measurement of large cabin in alignment and

assembly process is widely studied over the years. Zheng

et al. [6] proposed a pose fitting method for large cabin

assembly. This method adopted SVD point set registration

to calculate the pose with the measured key points and the

corresponding points on digital models. Then the registration

error was optimized using evolutionary computation method,

and the final pose of the cabin was thus obtained. Wen et al.
[7] proposed a position and orientation alignment method for

large cabins on Stewart platform. The centers of spherical

joints on both moving side and stationary side of Stewart

platform were selected as key points. These key points were

used to compute the pose of the moving side, along with

the cabin fixed on it. Chen et al. [8] proposed a position

and orientation fitting algorithm during large scale assembly.

In this method, considering the structure deformation of the

large component, the pose compensation of measured key

points on the component was calculated using weighted non-

linear optimization. The final pose was computed using SVD

registration between model points and measured points with

pose compensation. The above mentioned methods realized

pose measurement of large cabin during the assembly process.
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Nevertheless, the key points in these methods were manually

selected in the CAD model. The results were largely dependent

on the selection of the key points by the experts, making the

whole process less automatic. Moreover, the sensors in these

methods were mainly laser trackers, which generally required

targets fixed on the key points of the cabin, thus lowering the

efficiency while raising the overall cost.

Comparing to laser tracker, 3D vision sensors, including

binocular camera, structured light sensor and TOF camera [9],

are able to provide more information with high efficiency for

cabin pose measurement. Since 3D vision sensor can capture

3D information of the whole cabin, the key points of the cabin

can be automatically determined by feature extraction. In ad-

dition, the vision sensors are generally cost-efficient. However,

there are also some challenges for the vision measurement. For

instance, the surface geometry, texture and color of cabins are

generally simple, causing difficulties in feature extraction and

the processing afterwards.

There are many researches that involve the pose measure-

ment of large cabin using vision sensors. Zhang et al. [10]

designed a two-stage iterative algorithm for pose estimation

in spacecraft rendezvous and docking, which was similar to

cabin alignment. However, in this method, the vision sensor

was fixed on the surface of the cabin, and had to be removed

manually after the measurement. Wei et al. [11] proposed a

cabin pose measurement technique based on binocular vision.

In this study, visual markers attached on the surface of

cabin were leveraged to locate the feature points for pose

measurement. The markers required to be placed before the

measurement and removed afterwards, inducing inefficiency.

Xu et al. [12] devised a fast pose registration method for the

local area measured by structured light vision sensor in large

scale assembly of aircraft. However, this method was not well

applicable if the surface curvature of the cabin was identical,

since it was based on curvature feature. Hence, the problem of

accurate and efficient pose measurement for the large cabins

in multi-robot assembly is yet to be fully addressed.

In this paper, a pose measurement method of large cabin

based on 3D point cloud in multi-robot assembly is proposed.

The point cloud scene containing the cabins and the back-

grounds can be captured using a 3D vision sensor from one

side of the cabins, with no markers or targets required on the

cabins. Then the cabins are segmented from the point cloud

and the relative pose between two cabins is computed based

on model fitting algorithm, considering that the surface of

cabin is texture-less and the geometry of cabin is cylindrical.

This method is robust, non-contact and efficient, suitable for

the on-site measurement of large cabin during alignment and

assembly.

In the remaining part of this paper, the overall system

description is presented in Section II. The point cloud segmen-

tation method and pose measurement method are introduced

in Section III and Section IV, respectively. In Section V, the

experiment results and analyses are provided. Finally, this

paper is concluded in Section VI.

II. SYSTEM DESCRIPTION

A. System Overview

In this research, the cabin assembly system is outlined in

Fig. 1. There are two large cabins in this system, which are

fixed cabin and movable cabin. The fixed cabin is fastened on

a supporting structure with a stable pose. The movable cabin is

supported by a supporting structure with four 3-DOF (Degree

of Freedom) robots underneath. As the robots move, the pose

of the movable cabin is changed accordingly. The objective

of this assembly system is to automatically align the end face

of movable cabin to the end face of the fixed cabin, so that

two cabins can be further joined into one entity via welding

or peg-in-hole assembly.

Robots

Supporting 
Structure

Movable 
Cabin

Fixed
Cabin

Of
Yf

Zf
Xf

Zm Xm

OmYm

3D Vision 
Sensor

Fig. 1. The outline of cabin assembly system.

To accomplish the alignment, the relative pose between the

fixed cabin and the movable cabin needs to be measured.

The measurement device is a 3D vision sensor that is able to

capture the point cloud of the scene including two cabins in a

non-contact fashion. The captured point cloud is a partial view

of the scene from one side, upon which the pose is measured.

B. Cylinder Model

Noticing that the large cabins are generally cylindrical,

cylinder model is introduced in the model fitting process of the

cabin. The cylinder model is illustrated in Fig. 2. Supposing

that the cabin is a cylinder whose axis vector is (l,m, n) in

Cartesian coordinate and radius is r, all the points (x, y, z) on

the cylindrical surface of cabin are subject to the following

equation:

(x−x0)
2+(y−y0)

2+(z−z0)
2−r2=

(l(x−x0)+m(y−y0)+n(z−z0))
2

l2 +m2 + n2
,

(1)

where (x0, y0, z0) is a point on the cylindrical axis. Ideally,

the points on the cylindrical surface of the cabin point cloud

lie on the same model described by (1).

C. Coordinate Definition

As shown in Fig. 1, the coordinate systems of the cabins are

composed of fixed cabin coordinate system {F} and movable

cabin coordinate system {M}. For each system, the origin of

the coordinate system is set at the circle center of the cabin
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Fig. 2. Definition of cylinder model.

end face. The Y axis is the cylindrical axis whose direction

is from the movable cabin to the fixed cabin, the X axis is

horizontal on the end face, and the Z axis is derived using

right hand rule. The main objective of this research is to

obtain the relative pose of the two cabins, which is equivalent

to compute the pose between {F} and {M}. Though the 3D

point cloud acquired by the vision sensor is defined on the

sensor coordinate system {S}, the relative pose between {F}
and {M} in the point cloud scene is the same as the actual

pose. Therefore, the relative pose measurement is conducted

based on the point cloud view given by the sensor.

III. POINT CLOUD SEGMENTATION

A. Point Cloud Pre-processing

In order to extract the cabin point clouds from the w-

hole scene, point cloud segmentation needs to be conducted.

However, the entire point cloud scene captured by the sensor

may contain massive amount of points. The segmentation

of large amount of points is time consuming, thus lowering

the efficiency of this method. Hence, weighted voxel grid

filter method is adopted to sample the original point cloud

given by the sensor. In this method, the whole point cloud is

firstly divided into many voxels with uniform side length. The

average 3D position (the center of mass) of all the points inside

each voxel is then calculated, and a centroid point is added

to the average 3D position to represent the corresponding

voxel, replacing the original points inside it. Therefore, the

total number of the point cloud is reduced. Compared to voxel

grid filter using geometry center of the voxel as centroid, this

method is able to better preserve the original curvature of the

point cloud.

Moreover, the background of the scene still contains large

amount of points, which are redundant during the cabin seg-

mentation. Considering that the background generally contains

the floor and the walls, which are mostly large planes, the

planar background can be extracted from the scene using

RANSAC plane fitting [13], [14]. After the largest plane is

fitted, the inliers of the plane are removed from the point

cloud and the plane fitting is processed again, until there is no

viable plane model detected. Hence the planar background is

removed from the point cloud.

B. Cabin Segmentation

To further segment the cylindrical cabins from the scene,

RANSAC cylindrical fitting is introduced. Nevertheless, the

equation of cylinder has at least six parameters (the three axis

vector parameters are correlated). Therefore, six cylindrical

surface points are required to fit a cylinder. In RANSAC

fitting, the total iteration needed for a reasonably good model

is dependant on the sample points for the model computa-

tion. Consequently, using six sample points would inevitably

increase the total iterations, hence lowering the efficiency.

B

Axis

B

O

A

Fig. 3. Cylinder fitting using 2 points with normal vectors.

In this research, the cylinder is instead fitted using sample

points with corresponding normal vectors. Thereby, the cylin-

der model coefficients can be determined using only two points

with different normal direction. As shown in Fig. 3, supposing

that A and B are the two sampled points with normal vectors,

the cylindrical axis can be determined since it is perpendicular

to both vectors. Then point B and its normal vector can be

projected onto the plane defined by point A and the cylindrical

axis. The intersection point O of normal vector of A and B’

is the center of cylinder cross section, and the radius can be

determined by the length of OA or OB’.

Accordingly, the RANSAC cylinder fitting is conducted

subsequently as shown in Algorithm 1. The normal vector of

the scene point cloud is estimated using neighbor searching

method [14]. In order to prevent that the planar point cloud

from being mistakenly identified as cylindrical surface with

extremely large radius, a radius limit for the cylinder model

is defined in the fitting process.

From the model coefficients, it can be seen that the model

is a cylindrical surface with infinite length, so the points from

the background or other objects might be falsely included

as the model inliers. To address this, point set clustering

using Euclidean distance is applied to separate the background

segments from the cylindrical cabin, making the cabin a

individual entity. Then, the cabin point cloud is extracted

and removed from the scene, while the background segments

are put back into the scene, in case a part of which belong

to another cabin. These procedures are conducted repeatedly,

until there is no cylinder model in the scene. Normally after

two fitting and clustering procedures, the point clouds of the

movable and fixed cabin can be segmented.

IV. CABIN POSE MEASUREMENT

A. Cabin Coordinate Determination

From the above fitting process, the cabin cylinder model

coefficients (x0, y0, z0, l,m, n, r) in sensor coordinate {S} are

obtained. It can be observed in (1) that the cylinder model only
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Algorithm 1 RANSAC cylinder fitting

Require: point cloud of the scene

Ensure: the largest cylinder

1: set desired success probability p1
2: estimate cylinder inlier point probability p2
3: set threshold dt and minimum cylinder point sum kmin

4: calculate total iteration N = log(1− p1)/log(1− p22)
5: initiate point counts k = kmin

6: for t = 1, 2, , N do
7: select 2 random non-collinear points from the cloud

8: compute cylinder using the 2 points with normals

9: counts the number cnt of points that lie within the

threshold distance dt from the cylinder model

10: if cnt > kmin and rmin < r < rmax then
11: k = cnt
12: update cylinder coefficients

13: end if
14: end for
15: if k > kmin then
16: return the cylinder coefficients

17: else
18: return no cylinder model detected

19: end if

describes a cylindrical surface with no end face, and the axis

vector might be directed towards either of the two end faces.

Hence the determination of the end faces and the axis direction

is necessary.

Firstly, the 3D centroids of the point clouds are computed by

averaging 3D positions of the segmented cabin points. A key

point on the rim of a end face can be determined by finding

the farthest point from the centroid point. Then, the second

key point on the rim of the other end face can be determined

by searching the farthest point from the first key point.

With the two key points Ki(xki, yki, zki), (i = 1, 2) on the

end face and cylindrical axis (l,m, n), the corresponding end

face plane coefficients can be determined.

l(x−xki)+m(y−yki)+n(z−zki) = 0, i = 1, 2 (2)

Then the two circle centers Ci(xci, yci, zci), (i = 1, 2) can

be calculated by projecting the fitted (x0, y0, z0) on both end

faces of a cabin.

xci=
(m2+n2)x0−l(my0+nz0−lxki−myki−nzki)

l2 +m2 + n2
(3)

yci=
(l2+n2)y0−m(lx0+nz0−lxki−myki−nzki)

l2 +m2 + n2
(4)

zci=
(l2+m2)z0−n(lx0+my0−lxki−myki−nzki)

l2 +m2 + n2
(5)

From the fixed and movable cabins, four circle centers

are obtained in total. Among them, the two closest center

points from the two cabins are designated OF and OM ,

corresponding to the origins of {F} and {M}.

OM = (xM , yM , zM ), OF = (xF , yF , zF ) (6)

The direction of the Y axis vS F of {F} and the Y axis vS M

of {M} are defined by finding the cylindrical axis orientation

whose angle with the vector vS MF =
−→

OMOF is smaller.

vS MF = (xF − xM , yF − yM , zF − zM ) (7)

vS F =

{
(lF ,mF , nF ), (lF ,mF , nF )· vS MF > 0,

−(lF ,mF , nF ), (lF ,mF , nF )· vS MF ≤ 0.
(8)

vS M =

{
(lM ,mM ,nM ), (lM ,mM ,nM )· vS MF >0,

−(lM ,mM ,nM ), (lM ,mM ,nM )· vS MF ≤0.
(9)

Thus, the cabin coordinate {M} and {F} are located in the

scene point cloud in the vision sensor coordinate {S}.

B. Pose Computation

As mentioned in Section II, computing the relative pose

between two cabins is equivalent to computing the rotation

between the Y axis of {F} and the Y axis of {M} and the

translation between OF and OM .

The rotation can be present by equivalent angle-axis, where

unit vector ω is the rotation axis and θ is the rotation angle

around the axis. The computation of the angle-axis is as

follows:

θ = arccos (
vS M · vS F∣∣ vS M

∣∣ ∣∣ vS F

∣∣ ) (10)

ω = (ωx, ωy, ωz) =
vS M × vS F∣∣ vS M × vS F

∣∣ (11)

The rotation can also be presented by rotation matrix as

follows:

R = eω̂θ = I + ω̂ sin θ + ω̂2(1− cos θ), (12)

where I is identity matrix, and

ω̂ =

⎛⎝ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞⎠ (13)

The relative translation t equals to the vector vS MF in (7).

Therefore, the relative pose (R, t) is measured.

V. EXPERIMENTS AND ANALYSES

A. Experimental Setup

In order to verify the effectiveness of the proposed method

for large cabins, a simulation experiment was conducted.

In this experiment, the CAD models of the cabins were

firstly designed as shown in Fig. 4. The diameter of the

aligning side face of the cabin was 2.98m. The cabins were

placed in one scene with robots, supporting structures, and

the background. To simulate the point cloud scene captured

by vision sensor, a virtual sensor was established to render

partial point clouds of the CAD models seen from different
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Fig. 4. The CAD models of large cabins.

viewpoints. The partial view taken from one side of the cabins

was adopted in this experiment, as it coincided with the

above mentioned system configuration. The point cloud scene

with 4.75 × 104 data points was obtained as shown in Fig.

5, on which the cabin segmentation and pose measurement

experiments were thereafter conducted.

In order to effectively evaluate the pose measurement

method, several point cloud scenes containing movable cabin

with different ground truth poses were established and ren-

dered. In the initial scene, the pose of movable cabin was

aligned with the fixed cabin. Then the movable cabin in the

initial pose was rotated plus minus 5◦ and plus minus 10◦,

around the X axis and the Z axis of its center coordinate

respectively. Thus, totally 9 scenes with different movable

cabin poses were constructed.

Movable Support
Movable Cabin

Robots
Ground
Fixed Cabin
Fixed Support

Fig. 5. The rendered point cloud scene: point cloud ensemble (above), point
cloud with component annotation (below).

In the experiment of this research, the point cloud process-

ing algorithms introduced above were implemented using C++

language with open source Point Cloud Library (PCL) [15],

on a computer with Intel i7-6700 GPU and 8GB RAM.

B. Experiment Results

The fixed and movable cabins were firstly segmented from

the point cloud scene. The visualized segmentation result from

each step of the segmentation procedure is presented in Fig. 6.

And the final segmentation results of two cabins in different

poses are shown in Fig. 7. As illustrated by the figures, the

proposed segmentation method was able to precisely extract

the fixed and movable cabins from the scene.

Based on the segmented cabin point clouds, the coordinates

of the cabins were determined and the relative pose was

calculated using the proposed method. To demonstrate the

performance of the proposed method, ICP registration [16]

which was widely applied in pose measurement was adopted

in this task as comparison. In this experiment, ICP was used

to register the point clouds of fixed and movable cabins

previously segmented using the method above, and output the

relative pose between the two point clouds.
The measurement errors of the relative pose between the two

cabins of 9 scenes are given in Table I and Fig. 8. The rotation

errors were represented in Z-Y-X Euler angle measured in

degree, and Rot-X, Rot-Y, and Rot-Z represents the rotation

error of X, Y, and Z axis, respectively.
Noticing that the cabin was rotationally symmetric along the

Y axis, the rotation along the Y axis was relatively trivial in

this study, i.e. only the pitch and yaw angles of the cabin were

considered important for the pose measurement and alignment.

Comparing the rotation error of X and Z axis, our method

was more accurate due to the accurate determination of the

coordinate of both fixed and movable cabin according to the

model fitting result. In contrast, for ICP registration, the fixed

and movable cabin was different in size and their point clouds

only overlapped partially, resulting in large amount of outliers,

thus interfering the performance. In addition, ICP sought

to find the largest overlap between point clouds, regardless

of difference of viewpoints. Hence, the unnecessary rotation

along Y axis was conducted during the ICP registration.

TABLE I
MEASUREMENT ERROR OF THE PROPOSED METHOD AND ICP

Method Error(◦) Rot-X Rot-Y Rot-Z

The proposed
method

Mean 0.2130 0.0233 0.3031

Standard Deviation 0.2224 0.0211 0.2732

ICP
registration

Mean 0.6557 7.8228 1.0356

Standard Deviation 0.5716 6.2030 1.1330

0 2 4 6 8
−0.8

−0.6

−0.4

−0.2

0

0.2
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0.8

Measurement Times
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e
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e
)

 

 
Rot−X

Rot−Y

Rot−Z

Fig. 8. The measurement error of the proposed method.

VI. CONCLUSION

In this paper, a pose measurement method of large cabin

based on point cloud model fitting for multi-robot assembly

is proposed. The major contributions are as follows:

• The proposed method is non-contact and efficient. It only

uses point cloud which is easily available with 3D vision
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Movable Cabin Ground

Fixed Cabin

RANSAC 
Segmentation

Euclidean 
Segmentation

RANSAC Planar
 Segmentation

RANSAC 
Segmentation

Euclidean 
Segmentation

Movable Cabin Segmentation Fixed Cabin Segmentation

Fig. 6. The visualized segmentation procedure.

Movable Cabin

Fixed Cabin

1) Original Pose 2) X: +5° 3) X: -5°

4) X: +10° 5) X: -10°

6) Z: +5° 7) Z:  +10° 8) Z: -5° 9) Z:  -10°

Rotation in X Axis Rotation in Z Axis (View from Above)

Fig. 7. The segmentation results with 9 different cabin poses.

sensors, without extra requirement for the installation of

markers or targets on the cabin for measurement.

• This method is well applicable for the cabins with no

distinct texture or curvature features, since the segmen-

tation and pose measurement methods are devised based

on cylindrical model fitting of the cabin point cloud.

• As compared to point cloud pose measurement method

such as ICP, the proposed method is robust and accurate

in the experiment, not interfered by the difference in size

of fixed and movable cabins.

In the future work, we will seek to apply this method in on-

site measurement of large cabins to facilitate the multi-robot

alignment and assembly process.
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