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Abstract—In the past few years, Generative Adversarial Net-
works as a deep generative model has received more and more
attention. Mode collapsing is one of the challenges in the study
of Generative Adversarial Networks. In order to solve this
problem, we deduce a new algorithm on the basis of Wasserstein
GAN. We add a generated distribution entropy term to the
objective function of generator net and maximize the entropy to
increase the diversity of fake images. And then Stein Variational
Gradient Descent algorithm is used for optimization. We named
our method SW-GAN. In order to substantiate our theoretical
analysis, we perform experiments on MNIST and CIFAR-10, and
the results demonstrate superiority of our method.

I. INTRODUCTION

In the past decade, the field of artificial intelligence has wit-
nessed a frenzy of deep learning [1]. Compared with the great
success of deep discriminative models in computer vision,
natural language processing and other fields, the halo of deep
generative models is slightly inferior due to the difficulty of
approximating intractable probabilistic computations. Thanks
to Goodfellow proposed Generative Adversarial Networks
(GANs) [2] model in 2014, the deep generative model has
gained increasing attention.

In the early research of deep generative model, researchers
tried to model probability distribution functions to sample data
that match some nature distributions, and optimize the prob-
ability model by Maximizing Likelihood Estimation (MLE).
However, high dimensional MLE is usually computationally
intractable. Instead of modeling the probabilistic distribution,
GANs model takes a different approach. It generates the
samples that match the data distribution directly through the
deep network.

Like all other methods, GANs is not perfect. It avoids the
difficulty of calculating the probability distributions, but there
are still some inherent disadvantages. Training instability and
mode collapsing are two typical problems. Training instability
involves the generator and discriminator oscillating rather than
converging to a fixed point during training. Mode collapsing
means that the generator tends to produce only a single sample
or a small family of very similar samples.

Within a few years after GANs being put forward, various
improvements on it have emerged one after another. These
methods can be roughly divided into two categories: one is
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to improve the model structure; the other proceed from the
objective function. Deep Convolutional Generative Adversarial
Networks (DC-GANs) [3] is a representative of the methods
based on the model structure. The convolutional neural net-
work is applied to GANs framework, and good results are
achieved under the training in the subset of large scale scene
dataset LSUN [4] . Wasserstein GAN (W-GAN) [5] improves
original GANs objective function by introducing Wasserstein-
11 distance. However W-GAN raises another issue: Lipschitz
constraint on the discriminator network. It leads to several
excellent improvement works on constraining the gradient or
norm of discriminator, such as WGAN-GP [6], SN-GAN [7].

Based on the problem of mode collapsing, we introduce
Stein Variational Gradient Descent (SVGD) [8] into W-GAN
and theoretically deduce the feasibility of alleviating mode
collapsing problem. Based on W-GAN, we add a generator
distribution entropy term to the objective function. Maximizing
the entropy will increase the diversity of generated data, and
then alleviate the issue of mode collapsing. SVGD provides
an excellent computing tool for optimizing the KL divergence
between the generated distribution and the target distribution.
It avoids the intractable computation of normalization constant
of the target distribution. And its own property makes further
efforts to stop mode collapsing. We use the widespread score
criterion IS and FID to evaluate our model. The baseline
model is original W-GAN. The experimental results on two
commonly used datasets MNIST and CIFAR-10 show the
superiority of our method.

II. RELATED WORK

Until recently, a lot of works on GANs had been devoted
to unstable training problem. Radford et al. [3] used convo-
lutional neural network to replace the multilayer perceptrons
of the original GANs. They explained that the convolutional
neural net work can extract the hierarchical visual features of
nature images so as to improve the stability of GAN’s training.
Arjvsky et al. [9] thought GAN’s equivalent objective function
– Jensen-Shannon (JS) divergence is not a good distance
metric. Because JS divergence between two non overlapping
distributions of high dimensional space is a constant, which

1 The Wasserstein-1 is also called Earth-Mover (EM) distance, it measures
the cost of optimal transport plan from distribution Pr to distribution Pg :
W (Pr,Pg) = infγ∈Π(Pr,Pg) E(x,y)∼γ [||x − y||]. All the Wasserstein
distance in the following paper denotes Wasserstein-1 distance.



will lead to generator gradient vanishing. So Arjvsky et
al. recommend using Wasserstein-1 distance instead of JS
divergence to maintain the stability of GAN’s training process.

W-GAN has an irritating K-Lipschitz2 constraint. Most of
the improvements based on W-GAN have revolved around
meeting this constraint. In W-GAN, Arjvsky et al. [5] clipped
the weight of discriminator to satisfy the constraint. But this
way is too simplistic to guarantee the constraint. Gulrajani et
al. [6] found that the Lipschitz constraint is actually equivalent
to identifying the magnitude of the discriminator’s gradient
less than a constant. Therefore, the Lipschitz constraint can
be satisfied better only by adding the gradient penalty to the
objective function. For the sake of creating a more explicit
restriction on the gradient, Miyato et al. [7] used the spectral
norm to normalized the parameter matrix of the discriminator.
The above schemes seek better solutions to meet constraint
instead of aiming at solving the two inherent problems of
original GANs, so the effect of these methods on solving mode
collapsing or training instability are within the scope of the
original W-GAN framework.

Previous works have also taken approaches to alleviate
mode collapsing problem. Gurumurthy et al. [10] thought the
latent space of GANs model is too simple to tackling the ex-
tremely complex underlying distributions of real data. So they
reparameterize the latent generative space as a mixture model
and learn the mixture models parameters along with the GANs.
This modification enables diversity in generated samples. Su
et al. [11] introduced Turing test into the GANs model and
lead to a new mode for training GANs. It allows GANs model
to use information of real samples during training generator
and accelerates the whole training procedure. Kumar et al. [12]
proposed an energy-based model and train it by an amortized
neural sampler. The resulting objective maximizes entropy
of the generated samples. They use nonparametric mutual
information maximization techniques to maximize entropy
term. This is the main difference between us. We directly add
an entropy term of the generated samples to the generator’s
objective function and optimize the objective function by Stein
Variational Gradient Descent algorithm.

Some previous works have used Stein Variational method in
GANs. The most relevant work is Stein-GAN [13]. Stein-GAN
is a byproduct of Stein Contrastive Divergence [13] (Stein-CD)
with a CD-type objective function:

min
w

max
θ
{KL(q0||pw)−KL(q[Gθ]||pw)} (1)

where pw is an unknown target distribution and q[Gθ] de-
notes the distribution of the generator’s output. q0(x) =
1/m

∑m
i=1 δ(x− xi) is the empirical distribution of observed

data {xi}mi=1. Then it uses Stein-CD algorithm to optimize w
and minimize the Euclidean distance between images pixels
to optimize θ. Our work differs from Stein-GAN. We base
on W-GAN and add entropy term to the objective function
for increasing diversity of generated samples. We maximize

2 The K-Lipschitz constraint denotes the L-norm of f smaller than some
constant K: ||f ||L ≤ K

(4) to optimize discriminator’s parameter w, and use Stein
Variational Gradient Descent algorithm in the process of
optimizing generator’s parameter θ.

III. BACKGROUND

In this section, we first introduce the background of GANs
and W-GAN which forms the foundation of our work. Then
a brief description of Stein Variational Gradient Descent
algorithm will be introduced for the convenience of quoting
conclusions directly in section IV.

A. Wasserstein GAN

GANs is a minimax two-player game between two compet-
ing networks. The generator G receives raw data to generate
samples that match an observed distribution. A simple case is
that a generator takes random noise as input and outputs face
images. The discriminator D is trained to distinguish whether
its input data comes from the true data. The generator and
discriminator act adversarially in training process. The GANs
objective function is:

min
G

max
D

V (G,D) = Ex∼pr(x)[logD(x)]

+Ex∼pg(x)[log(1−D(x))]
(2)

where pr(x) is the real data distribution and pg(x) is the
generated data distribution with x = G(z). z is the input to
G obeying a given distribution pz(z). D(x) is the output of
discriminator and represents the probability that x comes from
the real data rather than fake data.

GANs is trained by optimizing (2) which alternates the max-
imization and minimization. Specifically, maximize V (D,G)
by using gradient ascent algorithm to update discriminator
(under the current generator) firstly, and then using gradient
descent algorithm to adjust generator to minimize V (G,D);
repeating the above process until G produces realistic data.
In each iteration, the optimal D measures the JS divergence
between real data and generated data given G, and optimizing
G will narrow the gap between two distributions. In the process
of game, the capability of D and G is enhanced.

There are many ways to measure the distance between two
distributions, which original GANs involved JS divergence.
Arjvsky et al. [5] brilliantly observed that Wasserstein distance
has nicer properties of optimization than JS divergence. So
they introduced Wasserstein distance into GANs framework,
then consider solving the problem:

min
G

max
D

V (G,D) = Ex∼pr(x)[fw(x)]− Ex∼pg(x)[fw(x)]

(3)
where fw(x) is the discriminator with parameter w, and it
is denoted by D(x) in (2). maxD V (G,D) in (3) yields a
calculation of Wasserstein (or Earth-Mover) distance between
pr and pg .

W-GAN shows that Wasserstein distance is a sensible cost
function when learning distributions supported by low dimen-
sional manifolds. The discriminator is trained to maximize:

max
w∼W

Ex∼pr(x)[fw(x)]− Ex∼pg(x)[fw(x)] (4)



where W is a parameter family of discriminator. The generator
is trained to minimize:

min
θ∼Θ

Ex∼pr(x)[fw(x)]− Ex∼pg(x)[fw(x)]

= min
θ∼Θ
−Ex∼pg(x)[fw(x)]

(5)

where Θ is a parameter family of generator. Equation (5)
holds for the term Ex∼pr(x)[fw(x)] is independent of the
optimization.

B. Stein Variational Gradient Descent

The goal of variational inference is finding a simpler distri-
bution q(x) to approximate a target distribution p(x). This
problem can be solved by searching a q∗(x) that satisfies
certain accuracy requirements:

q∗(x) = arg min
q
KL(q(x)||p(x)) (6)

where gradient decent algorithm can solve q∗(x) iteratively.
While p(x) always equips with an intractable normalization
constant.

Stein Variational Gradient Descent (SVGD) is a general
purpose variational inference algorithm introduced by Liu et
al [8]. It works without knowing the normalization constant of
p(x). SVDG links the derivative of KL divergence and Stein
Discrepancy [14]–[16]. It shows that:

∇εKL
(
q[M ]‖p

)∣∣
ε=0

= −Ex∼q [trace (Apφ(x))] (7)

where q[M ](z) is the density of z = M(x) = x+εφ(x) when
x ∼ q(x). φ(x) is a smooth vector function that characterizes
the searching direction. ε represents the searching step. Ap is
Stein Operator, which act on function φ(x):

Apφ(x) = ∇x log p(x)φ(x)T +∇xφ(x) (8)

To the right side of (7), Ex∼q[trace(Apφ(x)]’s maximum
value for φ(x) is Stein Discrepancy:

D(q, p) = max
φ

Ex∼q[trace(Apφ(x)] (9)

The optimization has a closed form solution by maximizing
φ(x) in the unit ball of a Reproducing Kernel Hilbert Space
(RKHS) H. In this case, Stein Discrepancy is called Kernel-
ized Stein Discrepancy:

D(q, p) = max
φ∼Hd

{Ex∼q[trace(Apφ(x)],

s.t. ||φ||Hd ≤ 1}
(10)

where Hd is the space of vector functions f = [f1, f2, ..., fd]
with fi ∈ H. The optimal solution of (10) can be shown as:
φ(x) = φ∗q,p(x)/||φ∗q,p||Hd , in which:

φ∗q,p(·) = Ex∼q[Apk(x, ·)]

=

∫
x∼q

[∇x log p(x)k(x, ·) +∇xk(x, ·)]dx (11)

k(x, ·) is the kernel of RKHS H. RBF kernel k(x, x′) =
exp(−||x− x′||22/h) is a viable option.

SVGD avoids the intractable derivation of the normalization
constant to ensure the smooth operation of the optimization
algorithm. At the same time, SVGD has its own characteristics
for fostering particles diversity. By maximizing the Kernelized
Stein Discrepancy, SVGD gets the fastest descent direction of
KL divergence.

To sum up, SVGD suggests an iterative procedure that
transforms an initial distribution q0(x) to the target distribution
p(x): starting with applying transform M∗

0 (x) = x+εφ∗q0,p(x)
on q0; this would give a new distribution q1(x) that closer to
p(x) than q0(x); repeating M operation until convergence.
φ∗q0,p(x) can be view as a negative gradient of KL(q0, p) to
x.

IV. OUR METHOD:SW-GAN
W-GAN does not specifically consider the problem of

generated data diversity. We solve this problem by adding the
generated data distribution entropy term to (5) and rewrite it
as:

G∗ = arg min
θ∼Θ
{−γEx∼pg(x)[fw(x)]−Hx∼pg(x)(x)} (12)

where Hx∼pg(x)(x) is the entropy of generated data, and γ is
regularization coefficient. Minimizing (12) will maximize the
fake data’s entropy on the basis of Wasserstein distance. Add
a constant C that is independent of optimization to (12):

G∗ = arg min
θ∼Θ
{−Ex∼pg(x)[γfw(x)]−Hx∼pg(x)(x)] + C(w)}

= arg min
θ∼Θ
{−Ex∼pg [log(eγfw(x)/Z(w))] + Ex∼pg [log pg(x)]}

(13)

where eγfw(x)/Z(w) is the Gibbs distribution of fw that given
w:

p(x|w) = eγfw(x)/Z(w)

with Z(w) =

∫
x

exp[γfw(x)]dx
(14)

That is to say, Gibbs distribution p(x|w) is used to model real
data distribution pr. Then (13) can be wrote as:

G∗ = arg min
θ∼Θ
{−Ex∼pg log pr + Ex∼pg log pg}

= arg min
θ∼Θ
{KL(pg, pr)}

(15)

Equation (15) shows that we can optimize generator G by
minimizing KL(pg, pr), and SVGD could work on this case.
Firstly, G generates a batch of negative samples {x̂i}mi=1 from
a given z ∼ p(z):

x̂i = G(zi) (16)

Then making operator M(x) acts on x̂i:

M(x̂i) = x̂i + εφ∗(x̂i) (17)

where x̂′i = M(x̂i) forms increasingly better approximations
for real data than x̂i. Equation (17) mimics a gradient dynam-
ics at the particle level for updating samples.

φ∗pg,pr (·) =
1

m

m∑
j=1

[αk(xj , ·)∇xjfw(xj) + β∇xjk(xj , ·)]

(18)



where two terms play different roles: k(xj , ·)∇xjfw(xj) drives
the particles x̂i towards the high probability areas of pr,
∇xjk(xj , ·) acts as a repulsive force that prevents all the x̂i to
collapse together into local modes. α and β balance the effect
of above two terms.
−φ∗(x̂i) in (17) serves as the gradient of KL(pg, pr) to

x̂. According to the Chain Rule, the gradient of KL(pg, pr)
to G’s parameters θ is ∂x̂

∂θ φ
∗(x̂). Then the rule for gradient

descent to update θ is:

θl+1 = θl + δ
∂x̂

∂θ
φ∗(x̂) (19)

where δ is the learning rate.
We train discriminator to maximize (4), it is the same

as original W-GAN. The gradient ascent rule for updating
parameter w is :

wl+1 = wl + δ
∂

∂w
{Ex∼pr [fw(x)]− Ex∼pg [fw(x)]} (20)

In a word, we add an entropy term to the objective function
of generator G to expand the diversity of fake data. Then
derive it can be optimized by SVGD in minimizing the KL
divergence between pg and pr. The SVGD increases the
diversity further due to its own speciality. And we verify the
change on generator’s objective function has no bad effect on
the optimization of (20) by experiments. It even helps with
stabilizing the training.

In practice, we train the whole nets iteratively. For each
iteration, we update discriminator D n times firstly and then
update the generator G one time. We use the update algorithm
RMSProp [17] in W-GAN. The procedure of our method is
summarized as Algorithm 1.

Algorithm 1 SW-GAN. All experiments in the paper used the
default values δ = 0.00005, c = 0.01, m = 64, ncritic = 5

Require:
δ, the learning rate; c, the clipping parameter;
m, the mini-batch size; ncritic, the number of iterations
of the discriminator per generator iteration; w0, initial dis-
criminator’s parameters; θ0, initial generator’s parameters.

1: while Θ has not converged do
2: for t = 0, ..., ncritic do
3: Sample {xi}mi=1 ∼ pr(x) a batch of the real data.
4: Sample {zi}mi=1 ∼ p(z) a batch of prior samples.
5: gw ← ∇w[ 1

m

∑m
i=1 fw(xi)− 1

m

∑m
i=1 fw(G(zi))]

6: w ← w + δ ·RMSProp(w, gw)
7: w ← clip(w,−c, c)
8: end for
9: Sample {zi}mi=1 ∼ p(z) a batch of prior samples.

10: gθ ← − 1
m

∑m
i=1

∂G(zi)
∂θ φ∗(G(zi))

11: θ ← θ − δ ·RMSProp(θ, gθ)
12: end while

V. EXPERIMENT

We do experiments on datasets MNIST and CIFAR-10. For
MNIST, we design a toy experiment, and evaluate the quality

of fake images by a pretrained LeNet [18]. For CIFAR-10, we
run IS and FID experiments to evaluate the models. In two
datasets, our algorithm shows the advantages over baseline
W-GAN both in terms of the accuracy and speed.

We set the architecture and super parameters the same as
those in benchmark model W-GAN3. We specify super param-
eters in Algorithm 1. The whole networks apply convolutional
architecture: the discriminator employs convolutions layers
and generator employs transposed convolution layers. The
generator net uses ReLU [19] activation for all layers except
for the output, which uses Tanh. The discriminator net uses
LeakyReLU [20] activation for all layers except for the output,
which does not has any activation. Batch Normalization [21]
is applied in training both the G and D nets. For all our exper-
iments, we use RBF kernel k(x, x′) = exp(−||x − x′||22/h),
and take the bandwidth to be h = rep2/ log n, where rep
is the 0.6 times median of the pairwise distance between the
current samples. We set the parameter α = 2, β = 0.5 for all
SW-GAN models training. In each comparison experiment, we
input same random normal distribution noise into generator.

Model Evaluation Criteria There are many ways to eval-
uate the performance of GANs, but all of them come from
very intuitive views. In the field of image generation, a simple
idea to model automatic evaluation is classifying images by a
classifiers with excellent performance. The better the image
quality is, the easier it can be classified. This raises two
common indicators: Inception Score (IS) [22] and Fréchet
Inception Distance (FID) [23].

IS calculates the KL divergence between p(y|x) and p(y).
Given the image x, the conditional probability p(y|x) indi-
cates corresponding category. p(y) shows the distribution of
different categories . If x is a realistic image, its IS will be
high. IS grows up as the quality of generated data becomes
better. On the basis of IS, FID considers the effect of real
data and a Fréchet distance between generated images and real
images is calculated. FID as a distance metric, the smaller the
better. Both of them used inception model [24] to extracting
images feature. If the generated images do not fit to the world
view of inception net, although the image quality is high, its
score turns worse. Therefore, we need to choose appropriate
scoring rules according to different situation.

A. Experiment on MNIST

We train a LeNet model on MNIST to classify the fake
images. The generated images are 1-channel images of 32*32
pixels in size. The test accuracy of our LeNet model is 98%.
Because the purpose of this paper is not to obtain an accurate
LeNet classifier, the classification network does not need be
finely tuned to the best accuracy. We put 128 images randomly
selected from our model and baseline in Fig.1 which the
models have the same random noise inputs.

Suppose in an ideal situation, a qualified model generates N
images randomly. They should contain all the digits from 0 to

3 We use the baseline model under
https://github.com/martinarjovsky/WassersteinGAN



(a) Images from W-GAN (b) Images from SW-GAN

Fig. 1. Images randomly sampled from models with 9500 G’s iterations.
Note that two models can generate realistic figures. While the images from
W-GAN appear mode collapsing in the red mark. While our method doesn’t
encounter this problem.

9 and each digit has N/10 images. The mean value of these
digits is 4.5. From this point, we calculate the mean value
of fake digits to compare two models. We also calculate the
standard deviation (std) of digit’s numbers to further reflect
the balance of generated data:

std =

√√√√ 1

K − 1

K∑
i=1

(ni − n) (21)

where K is the number of different digit categories, ni is the
number of digit category i and

∑
ni = N , n is the mean of ni

and n = N/K. Fig.2 shows the mean and std of two models.

(a) Figures Mean (b) Figure Number’s Std

Fig. 2. The mean value and digits number’s std of 500 generated images.
The solid red lines are from W-GAN model and the dash blue lines are from
our method. Our method has lower mean and std than W-GAN. It means our
model generates more abundant samples than W-GAN.

During the experiments, we find that our model is earlier
than W-GAN in generating all the 10 digits. The number of
generated digits with G’s iterations is counted in Table I. ’400’
is the iteration that W-GAN generates all the 10 digits for the
first time (sampling interval is 50 G’s iterations). Our method
generates 10 digits in 50 G’s iterations. It shows that our
method is faster than baseline.

B. Experiment on CIFAR-10

We train our model and baseline on CIFAR-10. The CIFAR-
10 images is more vivid than MNIST. Generator is trained to
generate 3-channel images of 32x32 pixels in size. Fig.3 shows
the random samples of two models.

TABLE I
THE NUMBER OF CATEGORIES WITH G’S ITERATION

G Number of categories
iteration W-GAN SW-GAN

50 3 5
100 2 10
150 2 10
200 7 10
250 8 10
300 8 10
350 7 10
400 10 10

(a) Images from W-GAN (b) Images from SW-GAN

Fig. 3. Images randomly sampled from models with 11000 G’s iterations.
Two models have the same noise inputs.

For calculating IS on each model, we generate 1000 images
10 times and compute the averages inception score. The model
performance goes up with oscillation, so we plot the IS curves
with net G iterations in Fig.4. IS is related to image quality
and diversity, the higher the better. The IS curve of our model
is higher than baseline.

Fig. 4. The IS with net G iterations. The solid red lines are from W-GAN
model and the dash blue lines are from our method. Our method has higher
IS than baseline.

FID uses the real data statistics for calculating. We down-
load the precalculated statistics from FID repository4. And
each model generates 10000 images for computing the fake
data statistics. Fig.5 shows the FID with net G iteration. FID
measures the distance between real data and generated data,

4 The precalculated statistics for FID:
https://github.com/bioinf-jku/TTUR



the smaller the better. The FID curve of our method is below
the baseline model.

Fig. 5. The FID with net G iterations. The solid red lines are from W-GAN
model and the dash blue lines are from our method. Our method has lower
IS than baseline, and reaches minimum value faster than baseline.

Since we change the objective function of the generator,
we should make sure it doesn’t affect the optimization of
the discriminator. Actually, we find that our method helps to
stabilize the training of discriminator. W-GAN states clearly
that under the same discriminator’s architecture, the objective
function is a meaningful loss metric that correlates with the
generators convergence and sample quality. As the training
goes on, objective function becomes smaller and the quality
of generated data gets better. We recorded the D loss curves
during training in Fig.6. It shows that our method dose not
have a bad effect on optimizing discriminator; it improves the
stationary of optimization on the contrary.

(a) SW-GAN with RMSprob updating (b) W-GAN with RMSprob updating

(c) SW-GAN with Adam updating (d) W-GAN with Adam updating

Fig. 6. The curves of D’s training loss with D iterations. (a) and (b) are under
the RMSProb updating rule. (a) and (b) have the same decline, it confirms
that our method dose not have a bad effect on optimizing discriminator. (c)
and (d) using the Adam [25] to update. (d) preforms worse than (c), it seems
that our method improves the stationary of optimization.

VI. CONCLUSION

We introduce an algorithm that we named SW-GAN. In
our method, we increase the diversity of generated data and
alleviate mode collapsing by optimizing an additional entropy
term. Then we use the Stein Variational Gradient Descent
algorithm in optimization and expand the diversity further. Our
method shows better experimental results relative to original
W-GAN. In the future work, we plan to investigate more
theoretical basis for our method and experiment our algorithm
on larger and more complex datasets. We will also do some
research on new way to realize Lipschitz constraint for SW-
GAN.
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