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Abstract—The rapidly developing ocean exploration and obser-
vation make the demand for underwater object detection become
increasingly urgent. Recently, deep convolutional neural networks
(CNN) have shown strong ability in feature representation and
CNN-based detectors also achieve remarkable performance, but
still facing the big challenge when detecting multi-scale objects in
a complex underwater environment. To address this challenge, we
propose a novel underwater object detector, introducing multi-
scale features and complementary context information for better
classification and location ability. In the auto-grabbing contest of
2017 Underwater Robot Picking Contest sponsored by National
Natural Science Foundation of China (NSFC), we won the 1-
st place by using proposed method for real coastal underwater
object detection.

I. INTRODUCTION

Although the ocean has extremely rich biological resources,
it is not fully developed because human underwater work
is dangerous and costly. Thus, people resort to automation
devices like underwater robots, submarine, etc. Such devices
need to analyze underwater images without human interfer-
ence, which makes underwater object detection a fundamental
yet huge demand.

For general object, many endeavors have been made to
develop an efficient detector. In traditional fashion, underwater
object detectors typically base on hand-craft features such as
SIFT [1] and HOG [2], then follow a separate classifier like
SVM. However, such methods suffer from weak representa-
tion ability and expensive multi-stage pipeline. Fortunately,
in recent years, with the help of deep CNN [3], [4] and
large computer vision dataset like ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [5]–[7], detection
quality has achieved impressive success. Two-stage CNN-
based methods (e.g., Faster R-CNN [8]–[10], R-FCN [11])
firstly generate region proposals for potential objectness, then
a classify network refines those proposals to get the final
prediction. This kind of methods maintains state-of-the-art
performance on PASCAL VOC [12] and MS COCO [13]
but cannot meet real-time requirements. On the other hand,
one-stage CNN-based methods like SSD [14] and YOLO [15]
classify and localize objects simultaneously. Though slightly

sacrificing some accuracy, one-stage methods make inference
efficient and applicable to tasks which need to be real-time,
like face detection [16].

However, so far, comparing with detecting objects on and
over the ground in ImageNet [6] and PASCAL VOC [12], less
progress was made in the unconstrained natural underwater
scene. There are some tough challenges in underwater object
detection, the challenges mainly come from three aspects:

1) Multi-scale and small objects. Since underwater images
are usually collected by automatic devices, it is hard to con-
strain the distance between the imaging equipment and objects
in a definite scope. Thus, scales of objects are divergent.
Meanwhile, due to the huge exploration space in the ocean,
scales tend to be small.

2) Unstable or lost features. Marine organisms live in
complex and changeable underwater environment. With the
water and its constituents, images may degrade due to blurring
and scattering of light [17], resulting in unstable or lost
features.

3) Efficiency requirements. When used in real-time appli-
cations where other parts of the system are computational as
well, the detector should be efficient.

Considering above challenges and specific difficulties in
underwater object detection tasks, we propose a robust and
efficient single shot feature aggregation network which only
contains a single fully convolutional network and can be
trained end-to-end. Specifically, by introducing the multi-box
feature pyramid module, we enhance multi-level features to
handle various scales of objects, which is especially beneficial
for detecting small objects. Moreover, to remedy unstable or
lost features and build more robust feature representation, we
propose the feature integration module which allows each level
of feature pyramid to utilize useful information from both main
and auxiliary features. Besides, we carefully design the anchor
boxes and matching strategy to better suit the underwater
detection task. Our method is evaluated on the challenging
underwater object detection dataset1 provided by NSFC, which

1Publicly available in http://www.cnurpc.org/index.html
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Fig. 1. The network structure of proposed approach. Given an input image, the feature is extracted using multi-box feature pyramid module and then go
through a feature integration module to get the aggregated feature maps, then we make the classification and regression prediction to calculate the final loss
respectively. Multi-box feature pyramid module is built on the VGG16 [18] backbone network with batch normalization [19], and details about the feature
integration module will be discussed in section III.C.

has three typical marine organisms including sea cucumber,
sea urchin, and scallop. Our approach beat both one-stage and
two-stage state-of-the-art models on the public NSFC-dataset,
and by using a single lightweight fully convolutional network,
our model achieves 24 FPS on a portable device with NVIDIA
GTX 1070.

II. RELATED WORK

So far, limited pattern recognition methods are applied in
underwater object detection tasks. In this section, we briefly
review both underwater and general objection detection ap-
proaches.

Classic object detection and visual recognition methods are
mainly based on the sliding-window paradigm with hand-craft
features like SIFT [1], HOG [2], and Haar [20]. Besides,
Felzenszwalb et al. proposed the deformable part model
(DPM) [21], which prevailed on PASCAL VOC [12] for many
years. For underwater object detection, brightness and color
feature are used in [22], Mehdi et al. [23] adopt Haar and shape
feature in automated fish detection. In [24], scale-invariant
feature transform (SIFT) [1] and template of the objects of
interest are used for discrimination and localization.

With the revival of convolutional neural networks, CNN-
based detectors achieve significant improvement in detecting
accuracy. Modern CNN-based object detection approaches can
be roughly divided into two categories: two-stage method
and one-stage method. We briefly review these two kinds
of methods. 1) Two-stage method: This kind of method
consists of two stages, the first is proposal generation (e.g.,
EdgeBoxes [25], DeepMask [26], [27], Selective Search [28],
RPN [10]) and the second determines position and class label
of objects using convolutional neural networks. The two-stage
method achieves state-of-the-art performance, maintaining top
results on PASCAL VOC and MS COCO. 2) One-stage
method: One-stage method unifies the proposal and prediction
processes, making detector faster comparing to a two-stage
one. Redmon et al. propose a real-time detector YOLO [15],
using an end-to-end convolutional neural network to directly
predict object’s classes and locations, but there is still a large

accuracy gap between YOLO and other two-stage methods.
After that, SSD [14] adopts the concept of anchor boxes in
[10] and tiles anchor boxes of different scales respectively
on a certain layer to improve detection performance. Later,
DSSD [29] is proposed to introduce context information for
better feature representation. Inspired by above CNN-based
general object detection approaches, Li et al. [30] adopt Fast
R-CNN [9] framework for underwater object detection. In
[31], the backbone network is modified to achieve efficient
fish detection.

Meanwhile, some underwater object detection methods are
implemented by the help of specific sensors like underwater
ultrasonic signal [32], high-resolution sonar [33], to name a
few, which is out of our scope.

III. OUR APPROACH

In this section, we first present the architecture of the
proposed model. Then we introduce the multi-box feature
pyramid module. After that, we discuss different strategies of
aggregating contextual information in different levels of fea-
tures to obtain robust underwater object detector. Finally, we
introduce our training methodology. The details are described
as follows.

A. Network Structure

Our framework is illustrated in Figure 1. We use VGG16
[18] as the backbone network and initialize it by the ImageNet
pre-trained weights. For our underwater detection task, we
convert fc6 and fc7 in VGG16 [18] to convolutional layers
and subsample their parameters as in SSD [14], but keep
pool5 unchanged. Next, the multi-box feature pyramid module
is performed to introduce extra connections for propagating
high-level features to augment the semantic information of
lower layers in a high-to-low fashion. Then a complementary
feature integration module is conducted to incorporate differ-
ent levels of features for robust representations. Finally, we
perform multi-class classification and class-agnostic bounding
box regression to get the final prediction of the object.

1907



i
pool

1-iL

1x1 conv

deconv Å

iL

ob ob

ob

1-i
'
L

Fig. 2. Connection scheme of the multi-box feature pyramid module.
Convolution and deconvolution layers are used to fix the channels of feature
map to 256 for consistency before fusion.

B. Multi-Box Feature Pyramid

In the unconstrained underwater environment, scales of
objects are various and tend to be relatively small. Unlike
using a single level of feature map to extract information as in
Faster R-CNN [10] and R-FCN [11], we choose to tile multi-
scale anchor boxes on multiple layers and utilize fine-grained
information to improve performance.

Since we use straight feedforward network (e.g., VGG16
[18]) as backbone, we argue that higher layers have stronger
high-level representation and lower layers remain more de-
tailed features as in [34]. Thus, simply tiling anchor boxes
on fine-grained layers to detect small objects is an intuitive
but not suitable choice because such layers lack of semantic
information for prediction. In SSD [14], extra layers are added
following backbone network to capture high-level informa-
tion, but with the network become deeper and thinner, the
receptive field of per pixel on feature maps increases, small
objects may not even have information in these layers. To
take advantage of fine-grained information and alleviate the
harmfulness of the lack of semantic information, we forgo
extra layers in SSD [14] and introduce the multi-box feature
pyramid module inspired by [35] to enhance low-level feature
maps with semantic information and reasonable classification
and localization abilities. Specifically, We adopt poo12, pool3,
pool4, pool5 to generate our pyramid in an hourglass manner
with shortcut connection, which are more fine-grained than
features used by the existing method. A concrete connection
scheme is illustrated in Figure 2.

C. Feature Integration Module

With above feature pyramid fashion, scales of anchor boxes
are discretized for different layers, hence anchor boxes in
scales like 0.39 and 0.41 could be distributed to two different
feature maps, but these two anchor boxes are fairly similar.
Moreover, in a specific underwater scene, image degradation
can destroy some levels of features. For instance, according
to organisms like sea urchin and scallop, texture information
is easy to be damaged and color information sometimes can

3
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Fig. 3. Feature integration module, ”X” indicates the normalization and
integration process. We use 3× 3 convolution and deconvolution with stride
2 for downsampling and upsampling respectively.

be more stable, while for sea cucumber, texture information
would be more discriminative. In experiments which use a
single level of feature map, we find that using conv5 will
improve the accuracy of sea cucumber but decrease which
of sea urchin and scallop comparing with conv4. Therefore,
simply extracting features from one single level of feature map
may suffer from nonoptimal anchor assignment and missing
important features, then lead to inaccurate classification and
localization.

Further, context is a very important factor for visual recog-
nition tasks and details are helpful to discriminate object
of a small scale. Thus, in order to utilize both kinds of
information and alleviate above problems, we introduce con-
tiguous feature as the ”auxiliary” feature for further feature
aggregation. Contiguous feature has several advantages: (a)
Multi-level semantic features. Deep, medial and shallow fea-
tures are complementary as shown in many computer vision
task, integration of them is beneficial for underwater object
detection task. (b) Feature consistency. Too deep or shallow
levels of features have more resolution differences and need
large-scale upsampling or downsampling, which can introduce
noise and errors. Thus it is reasonable to fuse features which
have similar scale and spatial distribution in a contiguous way.
(c) Computation efficiency. Making use of all other levels of
features is also a choice but demands heavy computation, yet
the average computation of contiguous feature doesn’t increase
as we use more levels of features.

As shown in Figure 3, we take the generation process of N4

for an example. For L4, we utilize its neighboring feature maps
L3 and L5 to get the auxiliary feature map. First, L3 and L5

are reduced to half of its channels by a 1×1 convolution layer,
and we upsample and downsample respectively to generate
feature maps of the same width and height with L4. Then,
we concatenate the two half-channels feature maps to get the
final auxiliary feature for the main L4. Considering L2 and
L5 only have a single neighbor, for N2 and N5, we skip the
channel reduction and concatenation step, directly implement
the downsampling or upsampling process.
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Fig. 4. Statistics of ground truth boxes of training set in the NSFC-dataset.
Scale ratio (%) is object’s ratio with respect to the original image.

Next, to match the order of magnitude of the main and
auxiliary feature maps before integration, we first apply a
normalization operation. We explore two different methods:
L2 Normalization and 1 × 1 convolutional layer to model
normalization. Then we study how to integrate main and
auxiliary features. We perform four integration strategies:
element-wise sum, element-wise max, element-wise product
and channel-level concatenation. Experiments show that 1× 1
convolutional normalization and element-wise sum achieves
the best performance. Specific performance of each normal-
ization and integration strategies are discussed in section IV.

D. Anchor Box Design and Matching Strategy

During training, anchor boxes need to be matched with
ground truth boxes for subsequent loss calculation and back-
propagation process. Thus a proper anchor box design and
matching strategy could speed up training process and is
crucial for model’s performance.

There are two prior conditions: 1) as shown in Figure 4,
underwater object’s scale is various and relatively small; 2)
we tile anchor boxes on semantically enhanced high-resolution
feature maps. To better match ground truth bounding box and
utilize the discrimination of high-resolution feature maps, we
use eight scales on four pyramid layers evenly distributed from
0.02 to 0.6 with aspect ratios 1:1, 1:2 and 2:1.

For anchor boxes matching, we follow [14] to match each
ground truth box with anchor boxes with best Jaccard overlap
firstly. Then we decrease the threshold from 0.5 to 0.4 for
matching ground truth boxes and anchor boxes with a Jaccard
overlap higher than this threshold to improve the recall rate
for small objects.

E. Training

Our model is trained on a challenging dataset provided
by NSFC including nearly 20,000 underwater 720 × 405
images of three typical creatures: sea cucumber, sea urchin,
and scallop. We use VGG16 [18] as our backbone network,
which is pretrained on ImageNet [7] dataset, then we fine-
tune the model on NSFC-dataset. This subsection introduces
our training strategies and other implementation details.

1) Data Augmentation: We use a few of data augmentation
strategies to enhance data diversity and generalization of our
model. Each training image is processed by random crop,
random padding, color jittering and horizontal flipping in
sequence.

2) Loss Function: Our loss function is similar to which
is defined in [14]. Specifically, we adopt softmax loss for
classification and smooth L1 loss for bounding box regression:

L({pi}, {ci}, {li}, {gi}) =
1

N

(∑
i

Lcls(pi, c
∗
i )

+ α
∑
i

[c∗i ≥ 1]Lloc(li, g
∗
i )
) (1)

In Equ.(2), pi indicates the predicted confidence and c∗i is
the ground truth label of i-th anchor boxes. For our underwater
object detection task, we set the weight term α = 4 by cross-
validation.

3) Hard Negative Mining: After matching, most anchor
boxes are negative. This introduces the imbalance between
negatives and positives, which is very harmful to the training
process. In order to overcome this problem, we sort anchor
boxes by loss values and resample from top ones to keep the
negative and positive anchor boxes up to 3:1.

4) Other implementation details: Our experiments are all
based on VGG16 [18] with a minor change, please refer to
[14] for more details. We use batch size 8 for training. The
maximum number of training epoch is 40. Meanwhile, we
set the initial learning rate to 10−3 for the first 20 epochs,
and 10−4 for the last 20 epochs. All new layers are randomly
initialized with the ”Xavier” [36] method.

IV. EXPERIMENT

We train the proposed model with 320 × 320 input size
for fast training and inference on the NSFC-dataset. We
implement our approach in MXNet [37].

A. Evaluation on benchmark

Since the detailed frameworks or code of the four typical
state-of-the-art methods [10], [11], [14], [38] are publicly
available, we can adapt them to our task for comparisons. All
models are similarly initialized with pretrained model and fine-
tune for the NSFC-dataset with same hyperparameters. We ap-
ply the same anchor assignment strategy for those handcrafted
anchor-based methods [10], [11], [14]. The detection accuracy
is measured by mean Average Precision (mAP). Results are
shown in TABLE I.

From TABLE I, we can see a counterintuitive phenomenon:
two-stage methods are not performing better than one-stage
SSD. We argue that this phenomenon results from the ROI
pooling operation in [10], [11]. As is noted in [39], pooling
operation could merge nearby response, lead to crowding and
decrease recognition accuracy in a messy setting. Though
modern detector’s performance is generally verified on datasets
like PASCAL VOC and MS COCO, there is still a consid-
erable domain gap between those datasets and underwater

1909



TABLE I
MEAN AVERAGE PRECISION ON BENCHMARK

Method seacucumber seaurchin scallop mAP

F-RCNN [10] 47.0 56.8 66.4 56.7
R-FCN [11] 46.9 56.1 61.0 54.7

SSD [14] 51.8 62.7 69.1 61.2
YOLOv2 [38] 43.2 46.6 56.2 48.7

Ours 55.4 65.6 70.8 63.9

image datasets, which incorporate more clutters and flankers
in similar appearance with target objects. Since YOLOv2’s
performance still trails two-stage methods, we argue that
the multi-layer features for multi-scale anchor tiling of SSD
contribute a lot as well.

Based on one-stage paradigm, our model improves the per-
formance by promoting both mAP and average precision (AP)
for each individual category, which shows the effectiveness of
our approach.

B. Ablation Study

For clarity and consistency, all the ablation experiments use
same hyperparameters and single-model training and testing.

1) Normalization and Integration Strategy: In this part, we
explore different strategies for normalizing and integrating
main and auxiliary information.

TABLE II
PERFORMANCE OF DIFFERENT NORMALIZATION AND INTEGRATION

STRATEGIES.

Strategy SUM MAX PROD CONCAT

None 63.0 63.1 63.3 62.6
L2 Norm 62.5 61.3 - 61.6
1x1 conv 63.9 63.1 62.8 62.2

Metric: mAP(%) on PASCAL VOC.

Normalization. Since features from different layers show
different scales of activations, it is crucial to normalize the
feature properly before integration. We investigated two dif-
ferent normalization strategies: L2 Normalization and 1 × 1
convolution. Experiments show that 1× 1 conv achieves best
results.

Integration strategy. From TABLE II we can see that
element-wise sum generally performs best. This operation
is effective and widely used in computer vision tasks [40],
[41]. And we argue that element-wise max can be seen as an
ensemble process and the element-wise product could weaken
activations at the early stage of training. For concatenation,
training could become harder because the network needs to
learn how to effectively integrate the concatenated features
without prior relation information of channels of the fea-
tures. Moreover, other integration strategies are worth to be
researched like learnable integration or other non-linearity
structure.

2) Module Ablation: To better understand our approach
, we ablate each proposed module to examine how they
contribute to final performance. TABLE III shows our results.

TABLE III
ABLATION STUDY OF VARIOUS DESINGS

Module

Multi-Box Feature Pyramid ×
Feature Integration × ×

mAP 63.9 62.6 60.8

Multi-Box Feature Pyramid. We construct the network
on VGG16 without any extra connection in multi-box feature
pyramid module to demonstrate the effect of it. By comparing
the second and third columns in TABLE III (62.6% vs
60.8%), we find that multi-box feature pyramid improves mAP
by 1.8%. The main reason is that semantic information is
enhanced on fine-grained feature maps by this module, which
can significantly help to promote the accuracy.

Feature Integration. To validate the effectiveness of feature
integration module, we remove the feature normalization and
integration process of our model. We find that the mAP drops
by 1.3% (from 63.9% to 62.6%), which indicates that the fea-
ture integration module can yield a considerable improvement
of the performance.

C. Runtime Performance

Our model falls into the efficient one-stage category, it is a
single shot network to predict classification and localization
results simultaneously. We forgo extra layers in [14] and
introduce multi-box feature pyramid and feature aggregation
modules with few additional computation overhead. The speed
is evaluated with batch size 1 on a portable machine with
NVIDIA GTX 1070 and CUDA 8.0. Our model achieves
24 FPS in inference, which is considerable in the real-time
application.

V. CONCLUSION

In this paper, we propose a novel framework for underwater
object detection which consists of two interconnected modules.
Firstly, the multi-box feature pyramid module introduces se-
mantic cues for accurate underwater object detection. Then we
propose feature integration strategies for further feature aggre-
gation to enhance the feature robustness and complementarity.
With the combination of these two modules and appropriate
anchor design and matching, we beat four typical state-of-the-
art detectors on the challenging NFSC-dataset, which validates
the effectiveness of our approach. The proposed detector is
fast, achieving 24 FPS on a portable device.
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