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Abstract. Current multi-object tracking (MOT) algorithms are domi-
nated by the tracking-by-detection paradigm, which divides MOT into
three independent sub-tasks of target detection, appearance embedding,
and data association. To improve the efficiency of this tracking paradigm,
this paper presents an anchor-free one-stage learning framework to
perform target detection and appearance embedding in a unified network,
which learns for each point in the feature pyramid of the input image an
object detection prediction and a feature representation. Two effective
training strategies are proposed to reduce missed detections in dense
pedestrian scenes. Moreover, an improved non-maximum suppression
procedure is introduced to obtain more accurate box detections and
appearance embeddings by taking the box spatial and appearance sim-
ilarities into account simultaneously. Experiments show that our MOT
algorithm achieves real-time tracking speed while obtaining comparable
tracking performance to state-of-the-art MOT trackers. Code will be
released to facilitate further studies of this problem.
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1 Introduction

Multi-Object Tracking (MOT), a.k.a Multi-Target Tracking (MTT), is critical
in video analysis systems ranging from video surveillance to autonomous driving.
The objective of MOT is to determine the trajectories of multiple objects
simultaneously by localizing and associating targets with the same identity across
multiple frames. It is a very difficult task due to challenging factors like large
variations in intra-target appearance and frequent inter-target interactions [13].

1 student paper
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Fig. 1: The label ambiguity of features in an anchor-based MOT tracker.

Tracking-by-detection is the main paradigm for the current multi-object
tracking algorithms. It usually includes three steps: object detection in each
frame, appearance embedding of each object, and data association across frames.
Integrating these steps in one algorithm is usually difficult, especially if real
time performance is required. For a MOT framework using a common simple
association strategy (e.g. Hungarian algorithm), its computing resources are
mainly consumed in separated object detection and appearance embedding steps.
These two steps can share low-level features to improve the tracking speed. This
suggests unifying object detection and appearance embedding in one step.

At present, there are two main schemes for joint detection and embedding
learning. One is a two-stage framework similar to Faster-RCNN [17], and
the other is a one-stage framework similar to SSD [11]. In the two-stage
framework [25], the first stage uses a Region Proposal Network [17] to detect
targets, and the second stage uses metric learning supervision to replace
classification supervision in Faster-RCNN to learn target embedding. Although it
saves some computation by sharing the low-level features, the two-stage design
still limits its tracking speed. Moreover, generating a large number of region
proposals improves accuracy but reduces efficiency. The solutions in one-stage
framework are not well studied yet. The existing methods, such as AJDE [23],
learn a joint detector and embedding model based on an anchor-based network,
which relies on some predefined proposals named anchor boxes. The framework
achieves near real-time tracking speed, but still has two disadvantages. As shown
in Fig. 1, according to the Intersection-Over-Union (IOU) values, different anchor
boxes (dotted boxes) at the same location are responsible for different targets
(solid boxes), but only one feature vector is obtained, making the labels of
features ambiguous. The other disadvantage stems from anchor-based structures,
such as the manual configuration of hyper-parameters to define anchors and the
complex architecture of detection subnets based on the predefined anchors.

To improve the tracking speed and avoid the disadvantages of the anchor-
based structure, an anchor-free one-stage network is proposed in this work,
where the bounding boxes and their corresponding appearance features are
simultaneously extracted from the locations on feature maps directly, rather than
predefined anchor boxes. We notice that the idea in [26] is similar to ours, but
the method in [26] is more focused on the design of backbone, while our method
focuses on the processing of joint object detection and embedding. We name the
locations on feature maps as samples in the following. Unlike in general object
detection tasks, the targets in multi-target tracking, especially multi-pedestrian
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tracking, tend to have similar scales and large occlusions. Thus, general anchor-
free detectors (such as FCOS [21]) have a large number of missed detections
in MOT due to attention bias and feature selection. Attention bias means that
objects with good views tend to draw more attention from the detector making
the partially occluded objects being easily missed. The feature selection issue
arises because each target is scaled to a single pyramid level. This causes that
multiple targets with similar scales may be assigned to same locations, especially
if one target occludes another. The embedded features of the targets sharing
the same location are ambiguous in that case. Therefore, the proposed model
includes two strategies to reduce missed detection while incorporating embedding
into the detector. First, the samples used for detection and embedding are re-
weighted in the contribution to the network loss based on their distance to the
object center. Second, the box regression ranges overlap in adjacent pyramid
levels. A multi-task loss is introduced to train the model end-to-end.

Our precise embedding facilitates an improved Non-Maximum Suppression
(NMS). The traditional NMS operator only considers Intersection-Over-Union
(IOU) values between detections. The appearance information is ignored. As
a result, many true targets are suppressed in crowded scenes. The improved
NMS suppresses proposals, using both overlaps between the detections and
the similarity of the appearances within the detected boxes for reducing over-
suppression. The main contributions of this work are in three-fold:
– An anchor-free one-stage joint detection and embedding learning network

is presented for online multi-target tracking. The model achieves real-time
tracking speed while obtaining state-of-the-art tracking performance.

– Two effective training strategies are proposed to detect targets with similar
scales in crowded scenes. The strategies are regression range overlapping and
samples re-weighting.

– An improved NMS operator is designed to incorporate both the box spatial
and appearance similarity to reduce false negatives in crowded scenes.

We develop a high performance online multi-object tracking system by
incorporating the proposed network into a hierarchical data association pipeline.
Extensive experimental analyses and evaluations on the MOT benchmark
demonstrate the effectiveness and the efficiency of the proposed approach.

2 Related Work

Separate Detection and Embedding for MOT. These methods are
dominant in the tracking-by-detection paradigm. Some of these methods build
embedding networks upon the detections provided by the MOT benchmark to
associate detections across frames, such as DeepSort [24], MOTDT [12], and
DAN [19]. Other methods design both detectors and feature extractors to track
targets. For example, POI [27] proposes a pedestrian detector based on Faster
R-CNN, and Tracktor [1] uses the previous tracking results as proposals to detect
the new bounding boxes of the targets for tracking. The single object tracking-
based trackers [32] can also be regarded as detectors based on template matching.
All these methods need an additional extractor after the detector to handle long-
time occlusions. The overall inference time for these methods is approximately
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equal to the sum of the times for detection and extraction. This makes real-time
operation difficult to achieve.
Joint Detection and Embedding for MOT. These methods reduce the
tracking time calculations by combining the detection and the embedding into
one step. MOTS [22], STAM [3] and D&T [6] integrate the embedding into
a detector in a two-stage network, while AJDE [23] is a one-stage model.
In a two-stage model, the detection and the embedding share the low-level
features. The embedding is then extracted from the Region-of-Interest (ROI)
after the detection. Due to the sequential nature of detection and embedding,
the two-stage structure still has a limited tracking speed. Besides, since each
target is processed separately in the second stage, the runtime of embedding
is proportional to the number of targets. The one-stage model, AJDE, adds
an embedding branch to the detection header of the SSD framework to
carry out detection and embedding in parallel. This speeds up the tracking
while maintaining tracking performance. But it suffers from the anchor-based
structures, such as the manual configuration of anchor hyper-parameters and the
complex architecture of detection header. Besides, the corresponding relationship
between embedding and anchor boxes at the same location is not always one-
to-one correspondent (Fig.1). The proposed model is an anchor-free one-stage
network, which overcomes the disadvantages of anchor-based structure and
further improves the tracking speed.

3 Our Approach

3.1 Anchor-free Joint Detection and Embedding

Network architecture As shown in Figure 2, the network consists of a
backbone, a feature pyramid and one prediction header per pyramid level, in a
fully convolutional style. The backbone can include commonly used convolutional
networks, such as ResNet50 [7]. The feature pyramid is adopted to deal effectively
with large scale variations between targets. A pyramid level is represented as
Pm where m denotes the level number. The level has 1/sm resolution of the
input frame size, where sm is the stride of down-sampling. A prediction header
contains two task-specific subnets, i.e. detection and embedding. The embedding
subnet has three 3× 3 convolutional layers and the output layer extracts a 512-
dimensional discriminative feature from each location on the feature map. The
detection subnet contains two 3×3 convolutional layers followed by two branches
for classification and bounding box regression. The classification branch outputs
the probability that each location is a positive sample. The regression branch
predicts the distances from each sample to the boundaries of a corresponding
target if the sample is positive.
Supervision targets A target in a frame I ∈ R3×W×H is denoted as B =
(x, y, w, h, c) where (x, y) is the center position, w, h are the box width and
height respectively. Thec ∈ Zk is the partially annotated identity label, where
−1 indicates a target without an identity label. Given a target, we first assign
it to one pyramid level according to its scale. Specifically, the target is assigned
to the mth pyramid level Pm if max(w, h) ∈ [am, bm], where [am, bm] is the
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Fig. 2: Architecture of the anchor-free joint detection and embedding model.

predefined regression range of bounding box in Pm. We overlap the predefined
regression ranges in adjacent pyramid levels to improve the recall by providing
more proposals from different granularity, especially for close and similar-scaled
targets. Next we define the positive samples in the mth pyramid level. Each
sample pmij with i = 1, 2, . . . ,W/sm and j = 1, 2, . . . ,H/sm on Pm has a
corresponding image spatial location (Xmij , Ymij) where Xmij = sm(i − 0.5)
and Ymij = sm(j − 0.5). The sample is set as positive if its centerness to any
one target Bk assigned to Pm is larger than a threshold τc. The centerness is the
same as that defined in FCOS [21], i.e.,

CT(pmij , Bk) =

√
min(lkmij , r

k
mij)

max(lkmij , r
k
mij)

min(tkmij , b
k
mij)

max(tkmij , b
k
mij)

, (1)

where (lkmij , r
k
mij , t

k
mij , b

k
mij) denotes the distances between (Xmij , Ymij) and the

left, right, top and bottom boundaries of target Bk.

If the centernesses of a positive sample pmij to multiple targets are all larger
than the threshold τc, the sample is regarded as ambiguous. The target Bk∗ with
maximal centerness is chosen as the responsible object of the ambiguous sample,
where k∗ = argmaxk{CT(pmij , Bk)|k = 1, 2, . . . ,K}, and K is the number of
targets assigned in mth level. The centerness map on Pm is defined as:

Mmij = max
k=1,2,...,K

CT(pmij , Bk). (2)

Multi-task loss function The loss function of the proposed anchor-free joint
detection and embedding model consists of three components for different tasks,
the point classification, the box regression, and discriminative feature extraction.

In the detection subnet, we use the IOU loss Lreg as in FCOS to regress
bounding boxes Bk∗ from positive samples. For the point classification, the
hard-designation of positives and negatives brings more difficulties for training.
To reduce the ambiguity of the samples between hard positives and negatives,
we apply the centerness map M to re-weight the contributions of ambiguous
samples. The focal weight [10] on hard examples are also adopted to combat
the extreme class imbalance between positive and negative samples. Let ρmij
be the network’s estimated probability indicating whether the sample pmij is
positive, and γ be the focusing hyper-parameter. Then, the classification loss in
mth pyramid level can be formulated as:

Lmcls = − 1

K

W/sm∑
i=1

H/sm∑
j=1

αmij(1− ρ̂mij)γ log(ρ̂mij), (3)
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where

ρ̂mij =

{
ρmij , if Mmij > τc
1− ρmij , otherwise

, αmij =

{
1, if Mmij > τc
(1−Mmij)

β , otherwise
. (4)

The focusing hyper-parameter γ is experimentally set to 2 as suggested in
the Focal Loss [10], and the hyper-parameter β controls the penalty on the
ambiguous samples to reduce their contributions to the total loss.

The objective of the embedding subnet is to learn an embedding space where
observations of the same target are close to each other, while observations of
different targets are far apart. We transform the metric learning problem into the
classification problem like many re-identification (ReID) models [30, 20]. Then
the cross-entropy loss is used to extract discriminative features. Let fmij ∈ R512

be the output feature in pmij and ck be the class label of Bk regressed in pmij .
Let W ∈ R512×N be the learnable parameters of the last classifier layer, where
N is the number of targets. Then, the embedding loss is defined as follows,

Lmemb = −
∑

ij:Mmij>τc

log
e(W

T fmij)ck∑
q e

(WT fmij)q
. (5)

The automatic learning scheme for loss weights proposed in [8] is adopted
to combine these three losses. The total multi-task loss with automatic loss
balancing is formulated as,

L =
∑

m,T∈{cls,reg,emb}

1

ew
m
T
LmT + wmT , (6)

where wmT , T ∈ {cls, reg, emb} is the learnable weight parameters.

3.2 Appearance Enhanced NMS (ENMS)

NMS is an integral part of the object detection pipeline. The detected boxes are
first sorted according to scores. The box with the highest score is then selected.
All the other boxes that have a significant overlap with it are suppressed. This
process is applied recursively to the remaining boxes until the final detection
result is obtained. Though NMS is efficient in suppressing false positives, it also
over-suppresses in dense scenes as it does not take any appearances into account.
As shown in Fig. 3, the raw proposals are given in Fig. 3(a) and the detections
processed by NMS are given in Fig. 3(b).The arrows in Fig. 3(b) point to targets
that are wrongly suppressed by NMS.

Benefiting from the joint model introduced in the last subsection (3.1), which
provides detection and embedding simultaneously, we can use the discriminative
feature to enhance the NMS operator. Formally, given the raw proposals B =
{(Bk, ρk, fk)k = 1, 2, . . . , N} and an empty set Bf = ∅, where Bk, ρk, fk denotes
the regressed boxes, predicted scores and features respectively, the most reliable
proposals (Bk∗ , ρk∗ , fk∗), k∗ = argmaxk ρk are selected firstly. Then get the false
proposals of BK∗ based on the box overlap and the appearance similarity, i.e.,

Bs = {(Bk, ρk, fk)|IOU(Bk, Bk∗) > τi ∩ fTk∗fk > τe}, (7)

where τi, τe are predefined thresholds for IOU and appearance similarity
respectively. Update the set Bf = Bf ∪ {Bk∗} and apply the above process
recursively in B = B \ (Bs ∪ {Bk∗}) until B = ∅. The set Bf contains the
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Fig. 3: An exemplar of ENMS. (a),(b),(c),(d) show the detections without NMS,
with NMS, with NMS using appearance similarity and with ENMS respectively.

final detections. The detections obtained after suppressing false positives using
only appearance similarity are shown in Fig. 3(c), while that obtained using the
proposed ENMS are shown in Fig. 3(d). It shows that the ENMS reduces false
suppressions in dense scenes.

3.3 Tracking Pipeline

The proposed anchor-free joint detection and embedding model and the appear-
ance enhanced NMS operator are combined with the hierarchical association
strategy in MOTDT [12] to form the tracking pipeline in our tracking algorithm.

– Step 1. Given a new frame, obtain the proposals and corresponding features
using the proposed anchor-free joint detection and embedding model.

– Step 2. Filter the proposals using the enhanced NMS.
– Step 3. Assign the filtered detections to existing tracklets using feature

similarities with a threshold εd for the minimum similarity. The similarity
is also limited by the distance between the detection and prediction of the
tracklet in order to meet the constraint of spatial continuity. That is, the
target motion offset in consecutive frames is small. The tracklet feature is
online updated as,

ft = ηft−1 + (1− η)fk, (8)

where η is the momentum cofficient and set as 0.9 as in AJDE [23], fk is the
feature of associated detection and ft denotes the track feature at time t.

– Step 4. Associate the remaining candidates with unassociated tracklets based
on the IOU values between candidates and predictions with a threshold εiou.

– Step 5. Mark any untracked track as lost. Initialize a new trajectory with
any unmatched detection with a confidence higher than εp. Terminate any
trajectory that remains lost for over εn successive frames or exits the field of
view. Additionally, any new tracks will be deleted if they are lost within the
first two frames. This is to suppress false trajectories.

– Step 6. Repeat above steps for the next frame until no more frames arrive.
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Table 1: Statistics of the training set.
Dataset ETH CP CT M16 CS PRW Total

#img 2K 3K 27K 5.3K 11K 6K 54.3K
#box 17K 21K 46K 112K 55K 18K 270K
#ID - - 0.6K 0.5K 7K 0.5K 8.7K

Table 2: Quantitative analysis of two
training strategies.
OR RW MOTA Pre Rec IDS IDF1 mAP TFR0.1

× × 63.4 80.3 75.7 366 66.3 81.2 88.3
×
√

66.7 85.7 81.1 98 67.1 82.7 89.0√
× 70.2 88.9 81.9 103 66.1 82.2 90.8√ √

71.9 88.4 83.4 78 69.8 82.8 91.7

4 Experiments

4.1 Experimental Settings

Datasets. Since we transform metric learning into a classification problem,
datasets for pedestrian detection, pedestrian ReID and multi-pedestrian tracking
are all used to train the anchor-free joint detection and embedding model.
The statistics of the training sets are shown in Table 1. ETH dataset [4]
and CityPersons (CP) dataset [28] are used for person detection. We mark
their targets ID as -1 in training as they have no identity annotations. PRW
dataset [29] and CUHK-SYSU (CS) dataset are derived from the ReID task.
CalTech (CT) dataset [25] and MOT16 (MT) dataset [15] are collected from the
MOT task. The sequences in the ETH dataset that overlap with the MOT16
test set are excluded for fair evaluation. The model is first analyzed on the
MOT15 dataset [9] after excluding the sequences appeared in the training, then
its performance is compared with the SOTA methods on the MOT16 test set.

Evaluation Metrics. The CLEAR MOT metrics [2] are used to analyze the
tracking performance. They include multiple object tracking accuracy (MOTA,
↑), the number of mostly tracked targets (MT, > 80% covered, ↑), the number
of mostly lost targets (ML, < 20% covered, ↓), false positive (FP, ↓), false
negative (FN, ↓) precision (Pre, ↑), recall (Rec, ↑), and identity switches(IDs, ↓).
Additionally, ID F1 score (IDF1, ↑) [18] is also employed to measure the identity-
preserving ability of trackers. IDF1 denotes the ratio of correctly identified
detections over the average number of ground-truth and computed detections.
To evaluate the detection accuracy and the appearance embedding, we also use
the metrics defined in [23], i.e., the average precision (AP, ↑) at IOU threshold
of 0.5 over the Caltech validation set and the true positive rate at false accept
rate 0.1 (TFR0.1, ↑) over the CUHK-SYSU and PRW validation sets. Here ↑
means higher is better, and ↓ means lower is better.

Implementation Details. We employ DarkNet-53 [16] as the backbone
network. The network is trained for 60 epochs with Stochastic Gradient Descent
(SGD) optimizer and the batchsize is set as 16. The learning rate is initialized as
10−2 and is decreased by 0.1 at the 30th and 50th epoch. The input resolution is
1088×608 if not specified and the data augmentation techniques, such as random
rotation, random scale and color jittering, are applied to reduce over-fitting. The
predefined regression ranges [am, bm],m = 1, 2, 3 are set as [0, 160], [64, 320] and
[256, 608] respectively. The parameters τi and τe used in the improved NMS
are set to 0.5 and 0.2 respectively according to the experiment analysis shown
in Fig.4. The parameter τc used for selecting positive anchor points and the
parameter β used in Eq. (5) are analyzed in next subsection. For data association,
we set εd = 0.5, εiou = 0.5, εp = 0.6 and εn as the frame rate of the sequence.
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4.2 Ablation Study

Analysis of the hyper-parameters. Table 4 analyzes the effects of the hyper-
parameters τc and β, where τc is the centerness threshold used to select positive
samples and β is the exponent in Eq.(4) used to penalize ambiguous samples.
When β = 1.0, the higher τc obtains a better Pre as the positives are more
concentrated, but concentrated positives mean more ambiguity in negatives
which decrease the Rec. When τc = 0.8, the performances of β > 0 are all, except
Pre, better than the performances with β = 0. This means that the weighted
focal loss is more effective than the original focal loss in MOT. The higher Pre
is obtained at β = 0 because samples around positives are marked as hard
negative samples. This enhances the certainty of positives, but also introduces
the ambiguity of negatives leading to a lower Rec. The proposed model has the
best performance at τc = 0.8 and β = 1.0, so we use these settings when we
evaluate the proposed method on MOT benchmark.

Fig. 4: The analysis of IOU threshold
ti and appearance similarity threshold
ts on the performance of the appear-
ance enhanced NMS on MOT15 train
dataset. (a) and (b) are IDF1 and
MOTA respectively.

Table 3: Analysis of the appearance
enhanced NMS (ENMS). × and

√

indicate whether the ENMS module is
used.

Method ENMS MOTA Pre Rec IDs IDF1 FPS

AJDE
× 67.3 84.0 85.1 203 66.4 29.4√

62.0 78.3 89.6 366 67.4 28.7

AFOS† × 67.7 87.0 80.4 99 66.2 31.3√
68.9 86.8 82.1 106 66.6 30.8

AFOS
× 71.9 88.4 83.4 78 69.8 31.6√

72.8 86.3 87.2 80 70.5 30.8

Table 4: Analysis of the hyper param-
eters on MOT15-train.
τc β AP TFR0.1 MOTA Pre Rec IDs IDF1

0.70 1.0 83.3 90.9 70.7 87.2 83.8 96 69.0
0.75 1.0 83.3 89.2 71.2 87.4 84.2 109 67.5
0.80 1.0 82.8 91.7 71.9 88.4 83.4 78 69.8
0.85 1.0 83.7 90.4 71.7 88.4 83.4 106 68.7
0.80 0.0 82.2 90.9 70.2 88.9 81.9 103 66.1
0.80 0.05 83.9 91.7 71.8 88.2 82.9 97 66.8
0.80 2.0 82.6 91.5 71.2 87.5 84.0 93 69.8

Table 5: Failure analysis of each subset
of MOT16-test.

Sets Density FP FN

MOT16-01 14.2 284 (2.0%) 2675 (5.5%)
MOT16-03 69.7 10928 (75.3%) 15068 (31.2%)
MOT16-06 9.7 651 (4.5%) 4013 (8.3%)
MOT16-07 32.6 967 (6.7%) 5321 (11.0%)
MOT16-08 26.8 667 (4.6%) 8702 (18.0%)
MOT16-12 9.2 420 (2.9%) 2874 (6.0%)
MOT16-14 24.6 594 (4.1%) 9635 (20.0%)

Total 30.8 14511 48288

Table 6: Comparison with the state-of-the-art online MOT trackers under the
private detectors on the MOT16 benchmark. In each column of the one-stage
and two-stage methods, the best result is in bold.
#stage Tracker Det Emb #box #id MOTA IDF1 MT ML FP FN IDs FPS

Two-
stage

DeepSORT 2 FRCNN WRN 429K 1.2K 61.4 62.2 32.8 18.2 12852 56668 781 <8.1
RAR16wVGG FRCNN Inception 429K - 63.0 63.8 39.9 22.1 13663 53248 482 <1.5
TAP FRCNN MRCNN 429K - 64.8 73.5 38.5 21.6 12980 50635 571 <8.2
CNNMTT FRCNN 5-layer 429K 0.2K 65.2 62.2 32.4 21.3 6578 55896 946 <6.4
POI FRCNN QAN 429K 16K 66.1 65.1 34.0 20.8 5061 55194 805 <6.0

One-
stage

AJDE 864 Anchor-box JDE 270K 8.7K 62.1 56.9 34.4 16.7 - - 1608 32.1
AJDE 1088 Anchor-box JDE 270K 8.7K 64.4 55.8 35.4 20.0 9172 54160 1544 25.4
AFOS 864(ours) Anchor-free JDE 270K 8.7K 63.2 59.0 33.6 22.9 13268 52277 1485 34.3
AFOS 1088(ours) Anchor-free JDE 270K 8.7K 64.8 63.1 35.0 22.9 14511 48288 1300 26.5
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Analysis of two training strategies. Two training strategies, i.e. overlapping
regression ranges (OR) and samples re-weighting (RW), are designed to deal with
crowded scenes. The quantitative analyses of the strategies with the enhanced
NMS are shown in Table 2. Both Pre and Rec are improved by overlapping
regression ranges because targets with similar scales in crowded scenes are
assigned to different pyramid levels to reduce their interaction. This also makes it
possible to extract more discriminative embedding to reduce the ID switching in
MOT. Samples re-weighting further enhances tracking performance by improving
Rec, as the contribution of ambiguous samples among hard positives and
negatives is reduced. Both strategies improve detection and tracking performance
by enhancing the discrimination of targets in crowded scenes.
Analysis of the appearance enhanced NMS. Enhanced NMS (ENMS)
introduces feature similarity to conventional NMS to reduce over-suppression.
As can be seen from Table 3, AFOS and AFOS†, which represent results with
and without overlapping regression ranges respectively, all benefit from ENMS.
Although ENMS slightly decreases the Pre values, it improves the recall rates
(Rec) by reducing false suppressions. This improves the MOTA. By reducing
false suppression, the models also achieve the higher IDF1, which measures the
continuity of the trajectory. In addition, the slightly slower speed of the model
using ENMS than that of the model using conventional NMS is because ENMS
calculates the appearance similarity. For AJDE, we find the performance with
ENMS is worse than that with conventional NMS. The reason is that the label
ambiguity of embeddings in the training process of AJDE leads to a confusing of
the targets in the crowded scenes. This reduces the performance of the ENMS.
On the contrary, our model overcomes the label ambiguity, which facilitates
ENMS to further improve tracking performance.

4.3 Evaluation on MOT Benchmark
The proposed method is compared with several state-of-the-art trackers under
private detectors, such as DeepSORT 2 [24], RAR16wVGG [5], TAP [31],
CNNMTT[14], POI [27] and AJDE [23], on the test sets of MOT16. Their
configurations and performances are summarized in Table 6. It can be seen
from Table 6 that the joint models (AJDE and the proposed AFOS) run at least
3× faster than existing methods while achieving comparable overall tracking
accuracy, e.g., as measuted by the MOTA metric.

Compared with AJDE, the proposed method AFOS obtains better IDs and
IDF1 as it extracts more discriminative features and avoids the label ambiguity.
With the enhanced NMS, AFOS also suppress more false negatives. Note we
didn’t compare APOS with the performance of AJDE with ENMS because the
feature ambiguous in AJDE reduces the performance of ENMS which analyzed
in sec. 4.2. As AFOS is an anchor-free model while AJDE is an anchor-based
model, AFOS is faster than AJDE. AFOS reaches a real-time speed, i.e., 26.5
FPS for images of size 1088× 608. When the image resolution is down-sampled
to 864 × 480, the speed of AFOS can be further increased to 34.3 FPS with
only a minor performance drop (∆ = −1.6% MOTA). All the experiments are
performed on an NVIDIA Tesla V100 GPU.
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Analysis of tracking failures. One may notice that AFOS has a much better
FN but a worse FP compared to other methods. We analyze the performance of
each subset in Table 5 and find that the FP and FN mainly come from MOT16-
03 (75.3% and 31.2% respectively). This is because the targets in MOT16-03
are densely distributed with severe occlusions. Many targets are assigned to the
same pyramid level, making them difficult to distinguish.

5 Conclusion and Future Work

In this paper, we have proposed a new MOT tracker named AFOS, which allows
target detection and appearance embedding to be learned in an anchor-free joint
model. AFOS achieves real-time tracking speed with a tracking performance
comparable to that of state-of-the-art MOT trackers. Moreover, in order to
benefit from the anchor-free joint detection and embedding model, we introduce
an appearance enhanced NMS, which combines the appearance similarity with
the conventional NMS to prevent over-suppression. We analyze the tracking
failures in the proposed model, and plan to perform occlusion model in AFOS
to further improve its performance in densely crowded scenes in future work.
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