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Abstract— The multi-agent reinforcement learning (MARL)
suffers from several issues when it is applied to large-scale envi-
ronments. Specifically, the communication among the agents is
limited by the communication distance or bandwidth. Besides,
the interactions among the agents are complex in large-scale
environments, which makes each agent hard to take different
influences of the other agents into consideration and to learn
a stable policy. To address these issues, a soft graph attention
reinforcement learning (SGA-RL) is proposed. By taking the ad-
vantage of the chain propagation characteristics of graph neural
networks, stacked graph convolution layers can overcome the
limitation of the communication and enlarge the agents’ recep-
tive field to promote the cooperation behavior among the agents.
Moreover, unlike traditional multi-head attention mechanism
which takes all the heads into consideration equally, a soft
attention mechanism is designed to learn each attention head’s
importance, which means that each agent can learn how to treat
the other agents’ influence more effectively during large-scale
environments. The results of the simulations indicate that the
agents can learn stable and complicated cooperative strategies
with SGA-RL in large-scale environments.

I. INTRODUCTION

Cooperation in a multi-agent system has shown great
successes in various fields, such as smart grid control [1],
resource management [2], and games [3]. Multi-agent re-
inforcement learning (MARL) has been studied for a long
time to promote the cooperation behavior in the multi-agent
systems.

The huge potential indicated by deep reinforcement learn-
ing (DRL) [4]–[8] promotes the combination between DRL
and MARL to solve complex problems in realistic large-scale
environments. However, when these algorithms are applied
to realistic environments, there are some limitations. First,
the large number of agents causes the curse of dimensional-
ity and the difficulty of learning a stable policy. Second,
the information obtained from other agents is limited by
the communications bandwidth and detective range, which
especially affects the agents’ cooperation behavior in large-
scale environments. Finally, the number and the connection
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status of the agents keep changing over time, which leads to
the issue of transferability.

Although a variety of MARL algorithms have been pro-
posed to solve the issues above, they still suffer from
different limitations. Some MARL algorithms [9], [10] fol-
low a common paradigm of centralized learning with de-
centralized execution (CTDE) to promote the cooperation
behavior among the agents. These algorithms suffer from
the difficulty of transferability and scalability because they
directly use the state or observation in constructing critic
networks. Besides, the Mean-Field [11] can adapt to large-
scale environments, but it ignores the fact that different
agents’ observation has different influences on their center
agent. To address the limitation, the algorithms based on
attention mechanisms [12]–[14] are proposed. They can ef-
fectively extract valuable information via the communication
control. However, they are still limited by the communication
bandwidth and ignore the underlying structure of the multi-
agent system. Considering the structure of the multi-agent
system, the algorithms based on graph network [15]–[17]
take the graph structure into consideration, but they do not
focus on the complex interaction among the agents, which
makes them difficult to acquire satisfying performance in the
large-scale environments.

To address the limitations mentioned above, a soft graph
attention reinforcement learning (SGA-RL) is proposed. The
key feature of SGA-RL lies in a communication enhanced
network and a soft attention mechanism. The communication
enhanced network mainly focuses on enlarging the com-
munication field of the agents and obtaining more agents’
information. It is designed based on graph attention networks
(GAT) [18] to enlarge the agents receptive field or commu-
nication field through the chain propagation characteristics
of graph neural networks. The soft attention mechanism
mainly focuses on assigning different importance to different
heads of GAT. Unlike traditional multi-head attention mech-
anism [19], a virtual head is designed to aggregate the states
learned by the real heads. During the process of aggregation
of the heads, each head is assigned with a specific importance
weight, which can promote the cooperation behavior among
the agents in large-scale environments.

SGA-RL is evaluated in different environments including
formation control and obstacles avoidance. The simulation
results demonstrate that the agents can learn stable and com-
plicated cooperative strategies in large-scale environments.
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II. PRELIMINARIES

A. Problem Definition

Let St denote the state of a two-dimensional environment
at time t and ot

i denote the local observation of agent i
including its position, velocity. There are N agents and M
obstacles in this environment. We assume that at time t, the
position of agent i pt

i = [ptx

i , pty

i ], the velocity of agent i
vt

i = [vtx

i ,v
ty

i ], the formation center position pt
c = [ptx

c , pty
c ] and

the position of obstacle j pt
o j = [ptx

o j, pty

o j]. Besides, the action
space for each agent is discretized. The agent can move one
step in both X and Y directions.

Moreover, the connected status among the agents can be
represented in an undirected graph G = (V,E). Specifically,
V = {1, . . . , N} denotes the nodes consisting of the agents.
E ⊆V ×V denotes the edge set consisting of communication
status among the agents where an edge from node i to node
j is denoted as (i, j)∈ E. Besides, h is a set of node features,
h =

{−→
h 1,
−→
h 2, ...,

−→
h N

}
,
−→
h i ∈ RF , where F is the number of

features in each node. Moreover, Ni is a set of neighbours
communicating with node i in the graph. Only when the
distance between agent i and agent j is less than c, agent j
belongs to the set of neighbours Ni. As indicated by (1), there
is an adjacency matrix A where ai j = 1 if j ∈ Ni otherwise
ai j = 0. Besides, the cooperation behavior is decided not
only by its neighbourhoods’ information but also by its own
information. Therefore, there is a self-loop for each agent.

ai j =

{
1
0

i f dist (ai,a j)≤ c or i = j
i f dist (ai,a j)> c (1)

where dist is a 2-dimensional Euclidean norm to calculate
the distance between agent i and agent j, and c represents
the predefined communication threshold.

B. Reinforcement Learning

The problem in this paper is regarded as partially observ-
able Markov Games which is an extension of the framework
of Markov Games [20]. It is defined by a global state S,
a set of actions A1, · · · ,AN , and a set of local observations
O1, . . . ,ON . To choose actions, each agent uses a learnable
policy πi : Oi→Pa (Ai), which produces the next state accord-
ing to the state transition function T : S×A1× ·· ·×AN →
Pt(S

′
). T defines the probability distribution over possible

next states based on current states and actions for each agent.
Each agent obtains rewards Ri from the environment after all
agents take actions: S×A1× . . .×AN → R. The agents aim
to learn a policy that maximizes their expected discounted
returns:

Ji(πi) = Ea1∼π1,...,aN∼πN ,s∼T

[
∑

∞

t=0 γ
trit (st ,a1t , . . . ,aNt)

]
(2)

where rit is the reward that agent i obtains at time t, ait is
the action that agent i takes at time t and st represents the
global state S at time t. γ ∈ [0,1] is the discount factor that
determines how much the policy favors immediate reward
over long-term gain.

C. Proximal Policy Optimization (PPO)

Most policy gradient methods perform one gradient up-
date per sampled trajectory, which results in high sam-
ple complexity. The proximal policy optimization algorithm
(PPO) [21], which is parameterized by neural networks, is
presented to address the problem. Let

lt(θ) =
πθ (at |st )

π
θ k(at |st )

(3)

denote the likelihood ratio. θ represents the parameterized
neural networks and π

θ k represents the agent policy before
k steps. Then PPO optimizes the objective function in the
following term to learn a policy:

L(θ) = E[min(lt(θ)Âθ k
t (st ,at),

clip(lt(θ),1− ε,1+ ε)Âθ k
t (st ,at)]

(4)

where Âθ k
t (st ,at) is the generalized advantage estimate

and clip(lt (θ) ,1− ε,1+ ε) clips lt (θ) in the interval
[1− ε,1+ ε].

III. METHOD

In this section, as shown in Fig. 1, SGA-RL, which is
composed of three modules: graph generation, communica-
tion enhanced network (CEN) and policy optimization. As
shown in Fig. 1, the observations of all the agents are fed into
the multi-layer perception (MLP) to generate the basic graph.
Then three CEN layers are stacked to enlarge each agent’s
receptive field to overcome the limitation of communication.
It’s worth noting that each agent takes its neighbor agents’
information into consideration according to the importance
learned from CEN. Finally, the obtained latent information
for each agent is subsequently used to evaluate the critic
network and update the actor network.

A. Communication Enhanced Network

Usually, each agent should require all the other agents’
information about their observations and actions to behave
cooperatively better. However, it is not always true for each
agent to get information of all the other agents in large-
scale environment. To address the issue, multiple graph
convolution layers are stacked to enlarge the agent’s receptive
field. Taking agent 4 in Fig. 2 as an example, an agent can
obtain the hidden states obtained from convolution layers of
its neighbours by stacking one convolution layer. By stacking
two layers, the agent can get the hidden states of its neigh-
bours’ neighbours. Therefore, multiple graph convolution
layers can be utilized to enlarge agent 4’s reception field.
In this paper, the number of graph convolution layers is set
to 3.

In addition to enlarging the receptive fields of agent i, the
neighbour agents need to be treated differently by agent i for
promoting cooperation. In the large-scale environment, the
complex interaction between agent i and its nearby agents
makes agent i hard to learn a stable policy. Therefore, the
communication enhanced network based on [18] is designed
to allow agent i to treat the other agents’ states differently. It
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Fig. 2. Enlarging respective fields

operates on graph-structured data and computes the features
of each graph node by assigning the different attentions
to its neighbors, following a self-attention strategy. The
hidden states of the agents are used to calculate the attention
coefficients ei j from agent j to agent i and its normalized
form αi j :

ei j = ak
G

(
W k

Ghi,W k
Gh j

)
(5)

αi j = softmax(ei j) =
exp(LeakyReLU(ei j))

∑k∈Ni exp(LeakyReLU(ei j))
(6)

where ak
G is a single-layer feedforward neural network, W k

G
is a learnable weight matrix and LeakyReLU is a nonlinear
activation function. After getting the normalized attention
coefficients, the output of one graph attention layer for node
i at t is given by:

ht
′

i = σ

(
∑ j∈Ni

αi jWht
i

)
(7)

where σ represents a nonlinear function. Equations (6)-(7)
show how a single graph attention layer works.

Besides, after the final attention layer CEN3, the hidden
states are concatenated and fed into FC3 as shown in Fig.
1. Since the hidden state could disappear during the process
of graph convolution, these hidden states are concatenated in
the final layer to stabilize the training process.

ht5

s = σ

([
ht5

s

∥∥∥ht2

s

∥∥∥ht0

s

]
W 3

F +b3
F

)
(8)
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Fig. 3. Soft attention mechanism

where || represents the concatenation, W 3
F and b3

F are weight
matrix and bias of fully-connected layer 3 (FC3) to learn.

B. Soft Attention Mechanism

In a large-scale environment, it’s important for an agent to
take the information of the other agents’ into consideration
according to their different importance. [18] indicates that
the import of multi-head attention is beneficial to stabilize
the learning process of the attention. Moreover, an agent
can extract different state representation of the nearby agents
from different representation subspace with multi-head set-
ting. The output of one graph attention layer with multi-head
attention for node i at t is changed from (7) to the following
equation:

ht
′

i =
∥∥K

m=1 σ

(
∑ j∈Ni

α
m
i jW

mht
i

)
(9)

where K represents the number of the heads, αm
i j represents

the normalized attention coefficient of the m-th attention
mechanism, and W m represents the weight matrix of the m-th
linear transformation. In this paper, the number of the heads
is set to 3.
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Although the multi-head attention mechanism has the
ability to explore multiple representation subspaces between
each agent and its neighborhoods, some subspaces may not
even exist for certain nodes and not all of these subspaces are
equally important. Feeding the output of an attention head
that captures a useless representation can mislead the final
learned policy of the agents. And the situation will be worse
for the agents in a large-scale environment.

Therefore, a soft attention mechanism is proposed to
assign different importance to each head in CEN for helping
the agents to learn a stable policy effectively. Different
from GAT and [19], a virtual head H0 and a soft attention
adjacent matrix C are constructed, which can obtain better
assignment of importance for the heads. As shown in Fig.
3 (a), H0 is the virtual head and the rest heads are the real
heads. Ci j = 0 represents that there is no connection between
head i and head j, otherwise there exists connection. It is
observed that only H0 is connected with the other heads
and there is no connection among the real heads. Moreover,
Cii = 0 represents that head i does not take its own state into
consideration, which means the final output is only related
to the real heads and not influenced by the virtual head H0.

The details of the soft attention gate is shown in Fig. 3
and (10)-(13). The hidden state hi of the agent are set as the
input of the heads. They are first transformed to a different
spaces including queries Qi, keys Ki and values Vi by using
linear projections matrices W Q, W K and WV . After receiving
query-value pair from the other heads, the soft attention
coefficients α

i j
so f t for head j to head i is computed. Finally,

all the states of the real heads are aggregated according to
the soft attention coefficients α

i j
so f t .

Qi =W Qhi
Ki =W Khi
Vi =WV hi

(10)

ei j
so f t =

((
W Qh j

)(
W Khi

)T

dK

)
(11)

α
i j
so f t =

exp
(

ei j
so f t

)
T
∑

k=1
exp
(

eik
so f t

) (12)

ht
′

s = σ

(
M

∑
j=1

α
0 j
so f tVj

)
(13)

where hi is the hidden state obtained by i-th head according
to (7), dK is the dimensionality of keys and M represents the
number of the heads.

C. Policy Optimization

After the states are extracted, they are utilized to optimize
the policy of the agents. As shown in Fig. 1, all the agents’
information is extracted as ht6

s which is a function related
to all the other agents’ states and its own state. After ht6

s is
obtained, PPO is implemented in an actor-critic framework.
According to the objective function of PPO as shown in (3),

Formation center
Agent
Communication range
Detective range

(a) Formation control - 6 agents

Formation center
Agent
Communication range
Detective range

(b) Formation control - 10 agents

Formation center

Agent
Communication range
Detective range

Obstacle

(c) Obstacles avoidance - 6 agents

Formation center

Agent
Communication range
Detective range

Obstacle

(d) Obstacles avoidance - 10 agents

Fig. 4. The illustration of the simulation environments

it is changed as (15) after the concatenation of all the states.
The changed objective function is used to optimize the policy
network. Although the agents are trained with information
from their nearby agents, they can obtain the information
of all the other agents to promote the cooperation behaviour.
Moreover, to scale up to more agents, the parameters sharing
method is applied to train all the agents in a decentralized
framework.

lt(θ) =
πθ (at

∣∣∣ht6
s (O1,O2, · · · ,ON) )

π
θ k(at

∣∣ht6
s (O1,O2, · · · ,ON) )

(14)

L(θ) = E[min(lt(θ)Âθ k
t (ht6

s (O1,O2, · · · ,ON)),

clip(lt(θ),1− ε,1+ ε)Âθ k
t (ht6

s (O1,O2, · · · ,ON))]
(15)

IV. SIMULATIONS

A. Simulation Settings

In this section, the performance of SGA-RL is evaluated in
four different scenarios as shown in Fig. 4. Scenarios (a)-(b)
focusing on the formation control are designed to evaluate
the effectiveness of SGA-RL. Moreover, scenarios (c)-(d)
focusing on the formation control with obstacles avoidance
are designed to verify the robustness of SGA-RL. For all the
scenarios, the detective range for an agent is set as 0.5 and
the communication range is set as 0.6. Besides, the agents
can only obtain the other agents’ information through the
limited communication. These scenarios are implemented
based on [9]. As baseline algorithms for comparing the
performance, MADDPG [9] and TRANSFER [17] are taken
into consideration. The former algorithm MADDPG relies
on access to the states of all the agents during training
instead of the partial observation state and the communi-
cation among the agents. The later algorithm ignores the
complex interaction among the agents. In contrast, the partial
observation state, the communication, the graph structure and
the complex interaction are included in SGA-RL.
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(a) Rewards of scenario (a) (b) Rewards of scenario (b)

Fig. 5. The curves of training process

TABLE I
EVALUATING RESULTS OF SCENARIO (a)

Evaluated Metrics
Algorithms Success(%)a Stepsb Rewards Collision(%)
MADDPG 0 60 -1.52 25.8

TRANSFER 98.70 13.52 -0.63 2.6
SGA-RL 100 11.24 -0.48 0

aThe percentage of this task completed in defined steps
bThe number of steps to finish the task.

B. Formation Control for Scenarios (a)-(b)

For the formation control tasks, all the agents are required
to form the designated formation without colliding with each
other. The reward for each agent is composed of the distance
reward and the collision reward. Specifically, the distance re-
ward is related to the distance from the agent to the formation
center. Besides, if an agent collides with the other agents,
the reward it obtains is -10. All the agents only observe the
formation center location and their own states. The only way
to obtain the other agents’ states is through communication.
Given the limitation of communication in reality, each agent
communicates with up to two nearest neighboring agents
only if their distance is less than a predefined threshold.
SGA-RL is compared with the two algorithms mentioned
above in two different formation control environments which
includes scenario (a) with 6 agents and scenario (b) with 10
agents.

The learning curves of all the approaches in terms of mean
rewards are presented in Fig. 5. The bigger mean rewards
means that the formation formed by the agents is closer to the
designated formation and fewer collisions with other agents.
During the training process of scenario (a), it is observed
that SGA-RL converges faster than TRANSFER with higher
rewards than TRANSFER. MADDPG converges faster to the
lowest value, which means that MADDPG cannot handle the
complex interaction among the agents and falls into a locally
optimal situation due to its need for the global state. During
the training process of scenario (b), SGA-RL performs better
than the other algorithms. The case in TRANSFER still does
not learn a stable strategy when SGA-RL converges to a
stable state. Moreover, the rewards of TRANSFER obtains
is twice as much as SGA-RL (value of rewards is negative),
which means that SGA-RL is more effective in large-scale
environments.

In addition to the curves of the training process, the

TABLE II
EVALUATING RESULTS OF SCENARIO (b)

Evaluated Metrics
Algorithms Success(%) Steps Rewards Collision(%)
MADDPG 0 100 -4.06 38.40

TRANSFER 82.60 24.68 -1.78 10.20
SGA-RL 100 14.36 -0.62 2

evaluation results in Table II and III present the similar
results to Fig. 5. The agents trained by SGA-RL have higher
rewards than MADDPG and TRANSFER in scenario (b).
It is worth noting that the success rate of MAPPDG is 0
in scenarios (a) and (b), which means that the paradigm of
centralized learning with decentralized execution is not suit-
able for the scenarios with the large number of agents. The
performance difference between SGA-RL and the other algo-
rithms demonstrates that SGA-RL can handle the complex
interaction among the agents and promote the cooperation
behavior.

C. Formation Control with Obstacles Avoidance for Scenar-
ios (c)-(d)

For the formation control with obstacles avoidance tasks,
the agents need to learn how to avoid dynamic obstacles rep-
resented by black circles and form the designated formation
without collision. The reward is -5 for the collision between
the agents and -10 for the collision between the agents and
the obstacles. The other environments setting are the same
with scenarios (a)-(b). The agents can obtain the position of
obstacles’ when they enter the detective range.

As shown in Table IV and V, SGA-RL has better results
than all the baselines. Especially in scenario (d), SGA-RL
converges twice faster than TRANSFER and obtains 50%
higher rewards than the other methods.

To better illustrate the policy learned with SGA-RL, the
process of formation is presented in Fig. 6. The final result
shows that the agents have learned a reasonable cooperative
strategy through SGA-RL. Moreover, the attention value
distribution of different agents can be obtained in Fig. 6.

TABLE III
EVALUATING RESULTS OF SCENARIO (c)

Evaluated Metrics
Algorithms Success(%) Steps Rewards Collision(%)
MADDPG 0 80 -2.78 30.40

TRANSFER 92.6 15.26 -0.84 4.80
SGA-RL 100 11.24 -0.53 0

TABLE IV
EVALUATING RESULTS OF SCENARIO (d)

Evaluated Metrics
Algorithms Success(%) Steps Rewards Collision(%)
MADDPG 0 120 -4.06 40.6

TRANSFER 73.4 44.20 -1.78 10.2
SGA-RL 97.8 20.60 -0.87 3.4
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(a) Step = 1 (b) Step = 7 (c) Step = 13 (d) Step = 19

(e) Attention value at step 1 (f) Attention value at step 7 (g) Attention value at step 13 (h) Attention value at step 19

Fig. 6. The illustration of the cooperative strategy for agent 4

For agent 4, at the beginning, it focuses on its own state
as well as agent 5’s state. After 6 steps, agent 4 gets close
to agent 1,which means agent 4 starts taking agent 1 into
consideration. Then agent 5 moves away from agent 4. The
attention from agent 4 to agent 5 decrease to 0 and the
attention from agent 4 to agent 1 increase from 0 to 0.42.
Finally, all the agents pay more attention on itself and take
the connected agents into consideration equally. It can be
concluded that SGA-RL can enhance the agents’ cooperative
ability by assigning importance to its nearby agents properly.

V. CONCLUSIONS

In this paper, we present a novel reinforcement learn-
ing algorithm for multi-agent cooperation in large-scale
environments with restricted topology. With SGA-RL, the
agents’ communication range is enlarged and the complex
interaction among the agents is handled as well. SGA-RL is
shown to perform a satisfying strategy and adapt to large-
scale environments. Future work will take the time-delay
phenomenon into consideration.
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[18] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò,
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