
algorithms

Article

Multiagent Hierarchical Cognition Difference Policy for
Multiagent Cooperation

Huimu Wang 1,2, Zhen Liu 2,*, Jianqiang Yi 1,2 and Zhiqiang Pu 1,2

����������
�������

Citation: Wang, H.; Liu, Z.; Yi, J.;

Pu, Z. Multiagent Hierarchical

Cognition Difference Policy for

Multiagent Cooperation. Algorithms

2021, 14, 98. https://doi.org/

10.3390/a14030098

Academic Editor: Mehmet Aydin

Received: 22 February 2021

Accepted: 18 March 2021

Published: 21 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China;
wanghuimu2018@ia.ac.cn (H.W.); jianqiang.yi@ia.ac.cn (J.Y.); zhiqiang.pu@ia.ac.cn (Z.P.)

2 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
* Correspondence: liuzhen@ia.ac.cn

Abstract: Multiagent cooperation is one of the most attractive research fields in multiagent sys-
tems. There are many attempts made by researchers in this field to promote cooperation behavior.
However, several issues still exist, such as complex interactions among different groups of agents,
redundant communication contents of irrelevant agents, which prevents the learning and conver-
gence of agent cooperation behaviors. To address the limitations above, a novel method called
multiagent hierarchical cognition difference policy (MA-HCDP) is proposed in this paper. It includes
a hierarchical group network (HGN), a cognition difference network (CDN), and a soft communi-
cation network (SCN). HGN is designed to distinguish different underlying information of diverse
groups’ observations (including friendly group, enemy group, and object group) and extract different
high-dimensional state representations of different groups. CDN is designed based on a variational
auto-encoder to allow each agent to choose its neighbors (communication targets) adaptively with
its environment cognition difference. SCN is designed to handle the complex interactions among
the agents with a soft attention mechanism. The results of simulations demonstrate the superior
effectiveness of our method compared with existing methods.

Keywords: multiagent system; deep reinforcement learning; variational autoencoder; attention
mechanism

1. Introduction

Grouping and effective communication are important methods to promote multia-
gent cooperative behavior. Agents in nature such as ants, social animals, and humans tend
to cooperate and generate complex cooperative strategies by grouping and exchanging
information. Naturally, the behaviors of grouping and exchanging information also apply
to multiagent systems, especially in scenarios that require cooperation, such as smart grid
control [1], resource management [2], and games [3,4].

Recently, deep reinforcement learning (DRL) has shown great potential in many
domains, such as games [5,6] and robotics [7,8]. Inspired by the powerful perception
and learning ability of DRL, researchers have made continuous attempts to apply DRL to
multiagent reinforcement learning (MARL) to promote multiagent cooperative behaviors
in environments with many agents [9–15]. Based on the common paradigm of centralized
learning with decentralized execution, some MARL algorithms learn centralized critics for
multiple agents and determine the decentralized action. However, when these methods
are applied to environments with a large number of agents, they have their limitations.
Some MARL algorithms [9,10] ignore different underlying influences brought by different
groups of observation. Although some algorithms based on attention mechanism [16–18]
partially consider the influences of groups, they do not take communication relationship
among the agents into consideration. Furthermore, some algorithms [14,19,20] deal with
the communication relationship between agents, but they do not consider the problem of

Algorithms 2021, 14, 98. https://doi.org/10.3390/a14030098 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-3268-9482
https://doi.org/10.3390/a14030098
https://doi.org/10.3390/a14030098
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14030098
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14030098?type=check_update&version=2

Algorithms 2021, 14, 98 2 of 20

communication redundancy, making it unsuitable for environments with a large number
of agents.

To address the limitations above, we propose a novel method called multiagent hierar-
chical cognition difference policy (MA-HCDP) to handle state representations of different
group of agents and filter irrelevant agents to promote agents’ cooperation behavior. In gen-
eral, MA-HCDP can divide agents into different groups, filter out irrelevant agents in these
groups, and handle the interactions among the remaining agents, in that order. Corre-
sponding to the three functions is three networks in MA-HCDP, including a hierarchical
group network (HGN), a cognition difference network (CDN), and a soft communication
network (SCN). Specifically, HGN is responsible for extracting high-dimensional state
representations of different groups including friend groups, enemy groups, and object
groups. Then, the agents’ understanding of the environment is extracted based on the
group-level state representations obtained from SCN and posterior distributions of vari-
ational autoencoder (VAE) [21] in CDN. Next, the differences between distributions of
the agents are calculated with Kullback–Leibler (KL) divergence [22]. If the difference is
large, these agents are defined as irrelevant agents and filtered out. SCN is responsible
for the weight distribution of the agents to handle the influence of different neighbors.
SCN expands the agents’ communication field with the chain propagation characteristics
of graph neural networks (GNN). The main contributions and novelties are summarized
as follows:

• A novel method, called MA-HCDP, is proposed to promote cooperation behaviors in
environments with many agents.

• A hierarchical group network based on prior knowledge is designed to extract high-
dimensional group-level state representation.

• A cognition difference network based on a variational autoencoder is designed to
allow each agent to choose its neighbors adaptively to communicate.

• The effectiveness of MA-HCDP is evaluated in different tasks including cooperative
navigation and group containment. Compared with existing methods, MA-HCDP
shows a significant improvement in all the tasks, especially for the tasks with numer-
ous agents.

The rest of this paper is organized as follows. In Section 2, we present the related
works. In Section 3, we describe the background. In Section 4, we give the design proce-
dure of the proposed method MA-HCDP, including HGN, CDN, and SCN. In Section 5,
representative simulations are carried out in several scenarios. In Section 6, the discussion
for the simulation results is presented. Finally, conclusions are summarized in Section 7.

2. Related Works

The multiagent deep deterministic policy gradient (MADDPG) [9] is extended from the
deep deterministic policy gradient (DDPG) [7] to multiagent systems for mixed cooperative–
competitive environments. A counterfactual multiagent (COMA) [10] computes a counter-
factual advantage function to handle the problem of multiagent credit assignment. They
adopt a common paradigm of centralized learning with decentralized execution (CTDE) to
enhance cooperative behaviors of agents. Although MADDPG and COMA can improve the
agents’ cooperation ability, they do not consider the complex interactions among the agents.
They aggregate observations of all the agents and never distinguish different groups of
agents, thus limiting the cooperation of agents.

To address the limitation, the agent grouping method [12] employs a two-level graph
neural network to model the interagent and intergroup relationships effectively. However,
it ignores the communication relationship between the agents in the same group. The
authors of [13] designed a two-level attention network to distinguish the different semantic
meanings of observation. Nonetheless, it does not consider the communication contents.

To deal with the problem of communication, a feedforward deep neural network
is adopted in [14] to map all agents’ inputs to their actions. Each agent can have access
to an implicit communication channel to receive other agents’ states. A bidirectionally

Algorithms 2021, 14, 98 3 of 20

coordinated network (BiCNet) [19] based on the actor–critic model adopts bidirectional
recurrent networks to achieve mutual communication between agents. Master–slave [20]
is a communication architecture for real-time strategy games, where the action of each
slave agent consists of information from the slave agents and master agent. Although
these methods can promote cooperation behaviors of agents, they need the global states
of the environment during the training, which is not applicable in partially observable
environments. Furthermore, these methods take all the communication among the agents
into consideration, but they ignore the influence of redundant communication caused by
too many communication objects.

To address this issue, some methods based on the attention mechanism appeared [15–18].
Nonetheless, each agent within the communication range will be assigned an attention
coefficient with attention mechanism. The total amount of communication is not decreased
since irrelevant agents can still obtain the attention coefficients and be included in the total
communication amount. The soft attention mechanism usually assigns small but nonzero
attention coefficients to irrelevant agents, which weakens the attention assigned to the
significant agents.

Based on the above analyses, MA-HCDP is proposed to handle state representations
of different group of agents and filter irrelevant agents to promote agents’ cooperation
behavior. To the best of our knowledge, none of existing work in MARL tackles simultane-
ously the problem of agents grouping, redundant communication information processing,
and agent interaction processing like our MA-HCDP.

3. Background

In this section, the definition of partially observable Markov games (POMG) is pre-
sented firstly to describe the decision process of agents in partially observable environments.
Then, the preliminary of reinforcement learning (RL) methods applied in MA-HCDP is
introduced, including basic concepts and the actor–critic framework of RL and PPO. More-
over, the attention mechanism for handling the interaction among the agents is presented.
Finally, the basic idea of variational autoencoding is introduced.

3.1. Partially Observable Markov Games

In this paper, agents need to cooperate with each other to complete different tasks in
partially observable environments, which are considered as partially observable Markov
games that are an extension of Markov games [23]. They are defined by environment
state St, action spaces At=

[
at

1, · · · , at
N
]

where N is the number of agents, at
i is the action

of agent i at time t, and observation spaces Ot =
[
ot

1, . . . , ot
N
]
. Each agent i learns a

policy πi : ot
i → Pa

(
at

i
)
, which maps each agent’s observation to a distribution over its

set of actions. Then, the next states are produced according to the transition function
T : St × at

1 × · · · × at
N → Pt(S

′
). Each agent i obtains rewards ri as a function of the state

space and action spaces: St × at
1 × . . .× at

N → R. The goal of each agent is to maximize
following expected discounted returns with the policy πi:

Ji(π
i) = Ea1∼π1,...,aN∼πN ,s∼T

[
∑∞

t=0 γtrt
i
(
St, at

1, . . . , at
N
)]

(1)

where E[·] represents the expectation. rt
i represents the reward that agent i obtains at time t

and γ ∈ [0, 1] denotes the discount factor determining the importance of future rewards.
If γ = 0, the agent will be completely myopic and only learn about actions that produce an
immediate reward. If γ = 1, the agent will evaluate each of its actions based on the sum
total of all of its future rewards.

3.2. Reinforcement Learning

Reinforcement learning [24] is adopted to solve special POMG problems where N = 1.
It is a machine learning approach to solve sequential decision-making problems. Policy gra-
dient methods are the popular choice for a variety of RL tasks. The policy π realized by

Algorithms 2021, 14, 98 4 of 20

a neural network with parameters θ is denoted as a policy πθ . Its objective is to directly
adjust the parameters θ of the policy in order to maximize the objective Ji

(
πi

θ

)
by taking

steps in the direction of ∇θ Ji
(
πi

θ

)
:

∇θ Ji(π
i
θ) = ∇θ log

(
πi

θ(at|St)
)

∑∞
t′=t γt

′−trt
′

i

(
st
′

i , at
′

i

)
(2)

The actor–critic framework is one of the most effective RL frameworks. The key fea-
ture of the framework lies in two functions: policy function and value function. The policy
function is known as the actor function, because it is used to select actions. The value func-
tion is known as the critic, because it criticizes the actions made by the actor. They reinforce
each other. Specifically, the actor selects actions, then the actions is evaluated by the critic.
Then, the critic updates the actor toward the right direction. This mutual reinforcement
behavior enables policies to converge faster.

The proximal policy optimization algorithm (PPO) [25] is a novel policy gradient
method. Considering the advantage of the actor–critic framework, we adopt PPO based
on the actor–critic framework as the basic training algorithm in this paper. The objective
function of PPO changes from (2) to (4) for a single-agent environment:

lt(θ) =
πθ(at|st)

πθk (at|st)
(3)

lt(θ) denotes the likelihood ratio. πθk denotes the policy of the agent before k steps.
Then, the objective function is optimized according to the following equations:

Lπ(θ) = E[min(lt(θ)Âθk
t (st, at), clip(lt(θ), 1− ε, 1 + ε)Âθk

t (st, at)] (4)

where Âθk
t (st, at) is the generalized advantage estimate (GAE) and clip(lt(θ), 1− ε, 1 + ε)

clips lt(θ) in the interval [1− ε, 1 + ε].
To train agents to learn cooperative behaviors, PPO is extended to multiagent environ-

ments in MA-HCDP, and the details are introduced in Section 4.4.

3.3. Attention Mechanism

The attention mechanism has been adopted in many fields [26–28]. For the attention
mechanism, its inputs are composed of several input vectors [B1, B2, · · · , Bi, · · · , BK] and a
target vector YV . The attention weight is related to a user-defined function f

(
YV , Bi

)
. P is

a weighted sum of each vector Bi according to the normalized attention weight wi:

wi =
exp(f (YV ,Bi))

∑K
i=1 exp(f (YV ,Bi))

P = ∑K
i=1 wiBi

(5)

Note that since
∑K

i=1 wi = 1,

the attention weight vector W ∆
=
[
w1, w2, · · · , wi, · · · , wK] denotes a probability distribution.

In this paper, the attention mechanism is enhanced to handle the relationship among
the agents. The input vectors are the hidden states of the neighbor agents. The target
vectors are the states of the center agent. The user-defined function is a feedforward neural
network. The details are presented in Section 4.

3.4. Variational Autoencoder

The variational autoencoder [21] is a probabilistic latent variable model that relates
an observed variable vector x to a latent variable vector z by a posterior distribution
q(z|x). In this paper, the posterior distribution q(z|x) represents the understanding of the

Algorithms 2021, 14, 98 5 of 20

environment for agents. It can be adopted as a basis to judge whether communication is
needed between agents. The details are presented in Section 4.

4. Multiagent Hierarchical Cognition Difference Policy

In this section, a multiagent hierarchical cognition difference policy (MA-HCDP) is
proposed as shown in Figure 1, including a hierarchical group network (HGN), a cognition
difference network (CDN), and a soft communication network (SCN). First, HGN uses prior
knowledge or data to cluster all the agents into different groups (including a friendly group,
enemy group, and object group) and adopts attention mechanism [27] to extract different
high-dimensional state representations of different groups. Then, CDN is responsible for
filtering irrelevant agents to reduce redundant information. Next, the filtered communica-
tion status among the agents is modeled as a graph G according to the CDN results. SCN is
responsible for the weight distribution of the filtered agents to handle different neighbors’
influence. Finally, the captured states of different groups are subsequently used to update
the critic and actor network.

ℎ𝑖𝑖1

ℎ𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

1

2

3

4

6

5

7

ℎ𝑖𝑖2

8
9ℎ𝑖𝑖3

ℎ𝑖𝑖1

ℎ𝑖𝑖2

ℎ𝑖𝑖3

ℎ𝑖𝑖11

ℎ𝑖𝑖31

ℎ𝑖𝑖21

ℎ𝑖𝑖𝑖2 ℎ𝑖𝑖𝑖2

ℎ𝑖𝑖𝑖2ℎ𝑖𝑖𝑖2

ℎ𝑖𝑖𝑖3ℎ𝑖𝑖𝑖3

ℎ𝑖𝑖1

ℎ𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

1

2

3

4

6

5

7

ℎ𝑖𝑖2

8
9ℎ𝑖𝑖3

ℎ𝑖𝑖1

ℎ𝑖𝑖2

ℎ𝑖𝑖3

ℎ𝑖𝑖11

ℎ𝑖𝑖31

ℎ𝑖𝑖21

ℎ𝑖𝑖𝑖2 ℎ𝑖𝑖𝑖2

ℎ𝑖𝑖𝑖2ℎ𝑖𝑖𝑖2

ℎ𝑖𝑖𝑖3ℎ𝑖𝑖𝑖3

SCN

𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶𝑅𝑅𝐶𝐶

Subgraph

Soft Communication
Network

ℎ𝑖𝑖1

ℎ𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

1

2

3

4

6

5

7
ℎ𝑖𝑖2

8 9ℎ𝑖𝑖3

ℎ𝑖𝑖1

ℎ𝑖𝑖2

ℎ𝑖𝑖3

ℎ𝑖𝑖11

ℎ𝑖𝑖31

ℎ𝑖𝑖21

ℎ𝑖𝑖𝑖2 ℎ𝑖𝑖𝑖2

ℎ𝑖𝑖𝑖2ℎ𝑖𝑖𝑖2

ℎ𝑖𝑖𝑖3ℎ𝑖𝑖𝑖3

……
𝒉𝒉𝒋𝒋
𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈

�̂�𝐶𝑗𝑗

�̂�𝐶𝑖𝑖

𝑎𝑎𝑎𝑎𝑎𝑎……

ℎ𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

ℎ𝑗𝑗
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

KL

Gum-
Softmax

Cognition Difference Network

𝑞𝑞 𝐶𝐶𝑖𝑖 ℎ𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑞𝑞 𝐶𝐶𝑗𝑗 ℎ𝑗𝑗
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ℎ𝑖𝑖𝑠𝑠

ℎ𝑖𝑖𝑠𝑠

𝐶𝐶𝑖𝑖

Hierarchical Group Network

KL: Kullback-Leibler divergence

adj: adjcaent

Figure 1. Architecture of MA-HCDP. Suppose there are nine entities around agent i. HGN divides
the entities into different groups and adopts attention mechanism to extract high-dimensional
state representations. Then, CDN is responsible for filtering irrelevant agents to reduce redundant
information. Next, the remaining agents are modeled as a graph G. SCN is responsible for the weight
distribution of the remaining agents. Finally, the captured states of different groups are subsequently
used to update critic and actor networks.

4.1. Hierarchical Group Network

In this part, the influence of neighbor agents is analyzed firstly. Then, details of the
hierarchical group network are presented.

In partially observable environments with many agents, there are many neighbors
within the agents’ observation range. In general, these neighbors can be divided into
different groups based on prior knowledge, including a friend group, enemy group, and
object group (obstacles or common goal). For instance, agents can be categorized into
two groups, the friend group (agents) and the object group (obstacles or common goals),
in a cooperative task. Different state representations of different groups have different
influences on agents’ policies. If an agent does not distinguish between states of the
different groups, the influence of the states of different groups on the agent will be stacked
together, thereby affecting its policy. Therefore, a hierarchical group network (HGN) is
proposed to handle the different influences of state representations of different groups on
the agent, which is shown in Figure 1.

Algorithms 2021, 14, 98 6 of 20

In this paper, the other entities such as agents or obstacles within observation range of
each agent i (i = 1, . . . , N) are categorized into H groups, and agent i is set as the center
of each group. Note that agent i has a local observation ot

i =
[
ot1

i , . . . , oth
i , . . . , otH

i

]
where

oth
i =

[
oth

i0 , oth
i1 , . . . , oth

ij , . . . , oth
iNh

]
, Nh is the number of entities in group h, and h = 1, . . . , H.

oth
i0 is the own state of agent i.

Then, the attention mechanism is adopted by agent i to obtain different state repre-
sentations hh

i of different groups. It can enable agents to handle the states of the other
entities in a group effectively. As shown in Figure 2, by using linear weight matrices WQ,
WK, WV , the states oth

ij of entity j in group h for agent i are transformed to a different space

including query Qj = WQoth
ij , key Kj = WKoth

ij and value Vj = WVoth
ij . After receiving the

(query, value) pair from the entities in group h, the attention coefficient ah
ij from entity j in

group h to agent i is computed. Then, the state representations of entities in group h for
agent i are aggregated according to attention coefficients ah

ij:

eh
ij =

(
WQoth

ij

)(
WKoth

i0

)
dK

, ah
ij =

exp
(

eh
ij

)
∑j∈Nh exp

(
eh

ij

) (6)

hh
i = σ

 ∑
j∈Nh

ah
ijVj

 (7)

where dK is the dimensionality of key and hh
i is the aggregated states from other entities in

group h with nonlinear activation function σ.

State of agent 1 State of agent 2 State of agent 3

𝑊𝑊𝑄𝑄
𝑊𝑊𝐾𝐾

𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄
𝑊𝑊𝐾𝐾

𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄
𝑊𝑊𝐾𝐾

𝑊𝑊𝑉𝑉

𝑄𝑄1
𝐾𝐾1
𝑉𝑉1

𝑄𝑄2
𝐾𝐾2
𝑉𝑉2

𝑄𝑄3
𝑉𝑉3
𝐾𝐾3

𝑎𝑎𝑖𝑖1𝑉𝑉1 𝑎𝑎𝑖𝑖2𝑉𝑉2 𝑎𝑎𝑖𝑖3𝑉𝑉3

ℎ𝑖𝑖ℎ

Figure 2. Architecture of one group attention. Suppose there are three agents around agent i in a
group. State representations of agents in group h for agent i are aggregated according to attention
coefficients aij.

Algorithms 2021, 14, 98 7 of 20

After state representation of all groups are obtained, they are aggregated to form a
high-dimensional group-level state representation for agents’ policy learning.

hgroup
i = ∑H

h=1 hh
i (8)

With HGN, the entities are divided into different groups, which enables the agents to
handle the state of different groups separately. The attention mechanism in HGN allows
the agents to process the different influence of the other entities in a group, which helps
the agents to understand the environment more effectively.

4.2. Cognition Difference Network

In this part, we first analyze the importance of redundant agents. Then, the design
process of the cognition difference network is presented.

In environments with a large number of agents, if an agent communicates with all of its
neighbors of the groups, redundant information will affect the agent’s decision. When the
number of agents in the environment increases, the communication among agents become
more complicated, which makes the influence of redundant information more serious.
Therefore, it is necessary for the agents to process redundant information.

Artificial rules [11] or a soft attention mechanism [15–18] are often used to process
communication among the agents. The methods with artificial rules require strong prior
knowledge of the environment and may not be suitable for application in complex envi-
ronments. The methods with a soft attention mechanism assign attention coefficients to
all agents within the communication range. The total amount of communication is not
decreased since irrelevant agents can still obtain the attention coefficient and be included in
the total communication amount. The soft attention mechanism usually assigns small but
nonzero attention coefficients to irrelevant agents, which essentially weakens the attention
assigned to the significant agents. Therefore, a cognition difference network (CDN) is
designed to filter redundant agents to reduce redundant information.

First, we construct the communication status between agents as a graph, where each
node represents a single agent, and all nodes are connected in pairs by default. Gt =

(
V, Et)

represents the communication status between the agents. In particular, V = {1, . . . , N} is
a set of the agents. Et ⊆ V ×V denotes the edge set at time t. ht,group is a set of group state

representations at time t, ht,group =
{
~ht,group

1 ,~ht,group
2 , ...,~ht,group

N

}
,
−−−−→
ht,group

i ∈ RL, where L

represents the state representation dimension of each node. Moreover, Nt
i represents a set

of neighbors of node i at time t in the graph. Agent j ∈ Nt
i if
∥∥∥pt

i − pt
j

∥∥∥
2
< rc where rc is

communication range and ‖·‖2 is a two-dimensional Euclidean norm. As indicated by (9),
there is a time-varying adjacency matrix At where at

ij = 1 if j ∈ Nt
i otherwise at

ij = 0.

at
ij =

 1
0

i f dist
(

pt
i , pt

j

)
≤ rc or i = j

i f dist
(

pt
i , pt

j

)
> rc

(9)

where dist denotes a two-dimensional Euclidean norm that can calculate the distance
between two agents.

Then, we introduce definitions of cognitive difference based on an assumption below
to filter neighbor agents more effectively.

Definition 1. The cognition of an agent is its understanding of the local environment. It contains
the states of all entities within its observation range, or the high-level hidden states or distributions
extracted from these states (e.g., learned with deep neural networks (DNNs)).

Definition 2. The cognition difference is the difference of high-level hidden states or distributions
between the agents measured by n-dimensional norm or distribution measures.

Algorithms 2021, 14, 98 8 of 20

Assumption 1. The cognition of each agent can be represented by a vector C=[c1, . . . , ck] or a
distribution p

(
Ci

∣∣∣hgroup
i

)
obeying Gaussian distribution.

Under the above definitions and assumption, if the cognition difference between
agent i and agent j is relatively large, agents’ perceptions of the environment are quite
different. In other words, the state of agent j is noise or disturbance to agent i, which will
affect the policy of agent i, so agent i does not need to communicate with agent j.

After analyzing the role of the cognition difference, we need to solve two prob-
lems, including the representation of the cognition and the measurement of the cognition
difference.

The representation of the cognition of agent i is denoted as cognition vector Ci; it is
based on the states of all entities within its observation range. The common methods
are to adopt directly multilayer perception (MLP) [9–11] or a graph convolution network
(GCN) [15,29,30] to extract features of the observations as the cognition vector Ci. However,
the cognitive vectors extracted by these methods are essentially the result of single-valued
mapping from vector to vector. These methods cannot fully decouple the observations’
factors, such as position or velocity. Therefore, the cognition vector extracted by MLP or
GCN is not appropriate for the cognition of the environment.

In order to effectively represent the cognitive vector, we adopt a probability distribu-
tion method. Specifically, the cognition vector Ci is sampled with posterior distribution
from group states hgroup

i and Ci is inferred with:

p
(

Ci

∣∣∣hgroup
i

)
=

p
(

hgroup
i |Ci

)
p(Ci)

p
(

hgroup
i

) =
p
(

hgroup
i |Ci

)
p(Ci)∫

p
(

hgroup
i |Ci

)
p(Ci)dCi

(10)

where p
(

hgroup
i |Ci

)
is a reconstruction process from the cognition vector Ci. p

(
Ci

∣∣∣hgroup
i

)
is the cogniton representation for agent i.

However, the above equation is diffcult to calculate directly. Hence, we approxi-
mate p

(
Ci

∣∣∣hgroup
i

)
by another tractable distribution q

(
Ci

∣∣∣hgroup
i

)
. The restriction is that

q
(

Ci

∣∣∣hgroup
i

)
needs to be close to p

(
Ci

∣∣∣hgroup
i

)
. We achieve it by minimizing the following

KL divergence:
min KL

(
q
(

Ci

∣∣∣hgroup
i

)∥∥∥p
(

Ci

∣∣∣hgroup
i

))
(11)

which is equal to the maximum of the evidence lower bound (ELBO) [31]:

max Eq(Ci|hgroup
i) log p

(
Ci

∣∣∣hgroup
i

)
− KL

(
q
(

Ci

∣∣∣hgroup
i

)
‖p(Ci)

)
(12)

Note that the former is the reconstruction likelihood, and the latter is used to en-
sure that q

(
Ci

∣∣∣hgroup
i

)
and the true prior distribution p(Ci) are as similar as possible.

This process can be modeled as a VAE [21] as shown in Figure 3. Specifically, a mapping
q
(

Ĉi

∣∣∣hgroup
i ; χ

)
from hgroup

i to Ĉi is obtained in the encoder of VAE where χ are the param-
eters of DNNs. Next, we adopt the “reparameterization trick” to sample ε from a unit
Gaussian. Then, Ĉi with mean µCi and variance σCi is generated: Ĉi = µCi + σCi � ε where

ε ∼ N(0, 1). A distribution mapping p
(

ĥgroup
i

∣∣∣Ĉi; χ

)
from Ĉi back to ĥgroup

i is learned in

the decoder of the VAE. Based on the above analyses, the loss function for training the
VAE is:

min L2
(

hgroup
i , ĥgroup

i ; χ

)
+ KL

(
q
(

Ĉi

∣∣∣hgroup
i ; χ

)
‖p(C)

)
(13)

where Ĉi is the result of the cognition representation of agent i and the learned distribution
q
(

Ĉi

∣∣∣hgroup
i ; χ

)
is an approximation of p

(
Ci

∣∣∣hgroup
i

)
.

Algorithms 2021, 14, 98 9 of 20

4

ℎ𝑖𝑖′
𝜇𝜇ℎ𝑖𝑖

𝜎𝜎ℎ𝑖𝑖
𝜀𝜀

�𝐶𝐶𝑖𝑖 = 𝜇𝜇ℎ𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝜎𝜎ℎ𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ⊙ 𝜀𝜀

𝐶𝐶𝑖𝑖

�ℎ𝑖𝑖′

L2-loss

KL-loss

FC
FC

FC

MLPFC

Encoder

Decoder

ℎ𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

�ℎ𝑗𝑗
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

MLP: Multi-layer perceptron
FC: fully-connected layed

Figure 3. Architecture of variational autoencode. The agent understanding for the environment is
obtained via variational autoencoder (VAE). L2-loss is the reconstruction loss function and KL-Loss
is the loss function for VAE training.

For the measurement of difference, since Ĉi is sampled from the learned distribu-
tion, the distribution is more general in the environment’s cognition than Ĉi. Therefore,
we choose the difference between the distributions as the cognition difference. To calculate
the cognition difference between agent i and agent j, KL divergence is adopted to calculate
a score Cij

d that measures the difference.

Cij
d = KL

(
q
(

Ĉi

∣∣∣hgroup
i ; χ

)∥∥∥q
(

Ĉj

∣∣∣hgroup
j ; χ

))
(14)

We need to output a one-hot vector based on the cognition difference to determine
whether the edge between agent i and j exist in the graph Gt or which agents need to
be communicated. However, the backpropagation of gradients cannot be achieved in
the process of outputting the one-hot vector due to the sampling process. Therefore,
the Gumbel-Softmax function [32] is adopted to solve it:

Wi,j
c = gum(f

(
KL
(

q
(

Ĉi

∣∣∣hgroup
i ; χ

)∥∥∥q
(

Ĉj

∣∣∣hgroup
j ; χ

)))
(15)

where gum(·) represents the Gumbel-Softmax function.
With the cognition difference and the sample process of Gumbel-Softmax, we can get a

subgraph G
′
i for agent i, where agent i only connects with agents that need to communicate.

With CDN, the agent understanding for the environment is obtained via VAE. Then, agents
that have different understanding for the environment are defined as irrelevant agents and
filtered out, which can reduce redundant information to enable agents to cooperate better.

4.3. Soft Communication Network

In this part, the influence of filtered neighbor agents is analyzed. Then, details of
the soft communication network are presented. Furthermore, the process of enlarging the
communication field is described.

Actually, in addition to processing redundant agents, the filtered neighbor agents of
agent i need to be treated differently to promote cooperation. Different neighbors have
different cognition of the environment, and this will have different influences on agent i.
For instance, to an agent, agents closer to it may have more influence than agents further

Algorithms 2021, 14, 98 10 of 20

away, which means the agent should take into the influence of different agents. Therefore,
the graph attention mechanism [33] is adopted in SCN to enable agents to handle the
filtered neighbor agents’ states differently.

Specifically, SCN operates on graph-structured data and obtains the features of each
graph node by aggregating the states of its neighbors. As shown in Figure 4, the attention
coefficient eij from agent j to agent i and its normalized form αij are calculated with the
hidden states of the agents:

eij = ak
G

(
Wk

GĈi, Wk
GĈj

)
(16)

αij = softmax(eij) =
exp(LeakyReLU(eij))

∑k∈Ni
exp(LeakyReLU(eij))

(17)

where Wk
G is a linear learnable matrix, ak

G is a single-layer feedforward neural network,
and LeakyReLU is a nonlinear activation function. [33] shows that the import of multihead
attention is helpful to stabilize the learning process of the attention coefficients. Therefore,
the aggregation states of agent i with multihead attention at t is given by:

hs
i =

∥∥∥M
m=1 σ

(
∑j∈Ni

αm
ij WmĈj

)
(18)

where Ni denotes the filtered neighbor agents for agent i. || is the concatenation operator
and M denotes the number of the heads. Wm is the weight matrix of the mth linear
transformation and αm

ij is the normalized attention coefficient of the mth attention head.

5

�̂�𝐶𝑖𝑖

�̂�𝐶𝑗𝑗

�̂�𝐶𝑘𝑘

�̂�𝐶𝑙𝑙

�̂�𝐶𝑚𝑚

Softmax

𝛼𝛼𝑖𝑖𝑗𝑗

𝛼𝛼𝑖𝑖𝑘𝑘

𝛼𝛼𝑖𝑖𝑙𝑙

𝛼𝛼𝑖𝑖𝑚𝑚

𝑒𝑒𝑖𝑖𝑗𝑗

𝑒𝑒𝑖𝑖𝑚𝑚

𝑒𝑒𝑖𝑖𝑘𝑘

𝑒𝑒𝑖𝑖𝑙𝑙

Figure 4. Architecture of attention. Different states of neighbors of agent i (Ĉj, Ĉk, Ĉl , Ĉm) are
concentrated with agent i; then, the attention coefficient eij is calculated. The normalized form of eij

is αij, and it is used as the weight of state concentration.

Moreover, the chain propagation characteristic of the graph convolution is adopted
in SCN to enlarge the communication field. As described in Figure 5, agent 4 can get the
states from its neighbors (agent 3 and agent 5) with one SCN layer. With two layers, agent 4
further obtains the states of its neighbors’ neighbors (agent 1 and agent 6). By stacking a
third layer, agent 4 can finally obtain all the agents’ states. Therefore, multiple SCN layers
can be utilized to enlarge the communication field of agent 4. Although multiple stacked
SCN layers can take more additional structure information from the neighbor nodes of

Algorithms 2021, 14, 98 11 of 20

the center node into consideration, the cost of computing is greatly increased. Therefore,
the number of SCN layers is set to three in this paper.

1

2

3

4

6

5

1

2

3

4

6

5

1

2

3

4

6

5

Figure 5. Enlarging respective fields. With stacked layers, agent 4 first obtains the information
of agents 3 and agent 5, then obtains the information of agents 1 and 6, and finally obtains the
information of agent 2.

With SCN, each agent can handle different cognition of different neighbor agents.
The communication field is enlarged with the chain propagation characteristic of graph,
which promotes cooperation behaviors of the agents.

4.4. Training Method

After extraction by SCN, hs
i is utilized to optimize the policy of agents. PPO is adopted

to train the agents based on an actor–critic framework. With HGN, the agent can obtain
high-dimensional state representation of different groups. Owing to CDN and SCN, each
agent can choose the agents to communicate with and assign different weights to them.
The objective function of PPO as shown in (4) is changed as (21) after hs

i extracted from
CDN and SCN. Then, PPO is trained by minimizing a total loss Ltotal , which is conducted
by the weighted summation of value loss LV(w), action loss Lπ(θ), action entropy H(θ),
and cognition difference loss Lcd(χ):

LV(w) = E

[(
Q(O1, O2, · · · , ON , a)
−Q(O1, O2, · · · , ON , a; w)

)2
]

(19)

lt(θ) =
πθ(at|(O1,O2, · · · , ON))

πθk (at|(O1,O2, · · · , ON))
(20)

Lπ(θ) = E[min(lt(θ)Âθk
t (O1, O2, · · · , ON), clip(lt(θ), 1− ε, 1 + ε)Âθk

t (O1, O2, · · · , ON)] (21)

H(θ) = −∑ πθ(at|O1, O2, · · · , ON) log(πθ(at|O1, O2, · · · , ON)) (22)

Lcd(χ) = E
[(

L2
(

hgroup
i , ĥgroup

i ; χ

)
+ KL

(
q
(

Ĉi

∣∣∣hgroup
i ; χ

)
‖p(C)

))]
(23)

Ltotal = β1LV(w) + β2Lπ(θ)− β3H(θ) + β4Lcd(χ) (24)

where βi is the weight coefficient of the loss function. The action entropy H(θ) is spe-
cially designed to encourage exploration for agents by penalizing the entropy of actor
πθ(at|O1, O2, · · · , ON). The implementation details are presented in Algorithm 1.

Algorithms 2021, 14, 98 12 of 20

Algorithm 1 MA-HCDP.
Input: agent’s state oi
Initialization: Initialize actor θa, critic θc, and old actor θold

a network
1: for Episode 1 to M do
2: Run policy πθa(o1, . . . , oN) for T time-steps for each agent, collecting {o, a, r} where

o = (o1, · · · , oN), a = (a1, · · · aN) and r = (r1, · · · , rN)
Estimate advantages function At
πθold

a
← πθa

3: for k = 1 to 4 do
4: Calculate value loss: Lv(w)

Lv(w) =
(

Q−Qt
f inal(w)

)2

Calculate action loss: Lπ(θ)
Lπ(θ) = E[min(lt(θ)Âw

t (x, a1, . . . , aN),
clip(lt(θ), 1− ε, 1 + ε)Âw

t (xt,1, . . . , aN)]
Calculate entropy loss: H(θ)
H(θ) = −∑ πθ log(πθ)
Calculate cognition difference loss: Lcd(χ)

Lcd(χ) = E
[(

L2
(

hgroup
i , ĥgroup

i ; χ

)
+ KL

(
q
(

Ĉi

∣∣∣hgroup
i ; χ

)
‖p(C)

))]
Calculate total loss: Ltotal
Ltotal = β1LV(w) + β2Lπ(θ)− β3H(θ) + β4Lcd(χ)
Update actor and critic network by minimizing Ltotal

5: end for
6: end for

5. Simulation Results and Analysis
5.1. Simulation Settings

In this section, the performance of MA-HCDP is evaluated in two tasks, including
cooperative navigation and group containment. The cooperative navigation task is de-
signed to evaluate the effectiveness of MA-HCDP in handling states of differnt groups of
agents. The group containment tasks is designed to verify the performance of MA-HCDP
in reducing redundant communication information.

For all the tasks, the only way to obtain more information from the other agents
is through limited communication. The map side length is 2 m, the detection range is
0.5 m, and the communication range is 1 m. The radius of an agent is 0.05 m and the
radius of an obstacle is 0.1 m. The action space is discrete and each agent is able to
control unit acceleration or deceleration in X and Y directions. The boundary condition
for the environment is the four sides of the map. Each agent obtains Rcross for crossing
the boundary.

Rcross =

0 i f x < 1.8
10(x− 1.8) i f 1.8 ≤ x < 2

min
(
e2x−1.8, 10

)
i f x ≥ 2

(25)

where x is the abscissa or ordinate of the agent.
These tasks are implemented based on [9], where the agents can move around with

a double integrator dynamics model. The details of the tasks will be presented in the
following sections.

As baseline algorithms for comparing the performance, MADDPG [9] and TRANS-
FER [15] are taken into consideration to compare with our method MA-HCDP. MADDPG
needs the state of all the agents during training to construct its critic network. It neither
considers the influence of different groups nor the influence of redundant communication
contents. TRANSFER adopts GCN and the soft attention mechanism to deal with the differ-
ent influence of agents, but it ignores the influence of redundant communication contents.

A workstation is utilized for training and testing throughout the simulations, in
which the processor is Intel(R) Xeon 8280L(2.6 GHz), the graphics card is Nvidia TITAN

Algorithms 2021, 14, 98 13 of 20

RTX GPU(24 G), and the RAM size is 128 GB. These simulations are implemented in
the multiagent particle environment (MAPE) [9], and these algorithms are trained with
PyTorch 1.0. The parameters of the training process, the network, and MA-HCDP are
given in Table 1. Specifically, the learning rate is a hyperparameter used in the training
of neural networks. The max gradient normalization is used to clip the gradient to avoid
exploding gradients. The episode, batch size, PPO epoch, the coefficient of value loss, policy
loss, entropy, and VAE are hyperparameters used in the training of PPO. The number of
attention heads in HGN is a hyperparameter used for the multihead attention mechanism
of HGN.

Table 1. Parameters of training.

Parameters Value

Learning rate 0.0001

Max gradient normalization 2

Discount factor γ 0.99

Coefficient of value loss function β1 0.5

Coefficient of policy loss function β1 1

Coefficient of entropy β3 0.01

Coefficient of VAE loss function β4 0.01

Episode 20,000

Batch size 64

PPO epoch 4

Number of attention heads in HGN 3

5.2. Cooperative Navigation

For the cooperative navigation, there are N agents and N landmarks in the environ-
ment as shown in Figure 6a. The objective is for the agents to deploy themselves in a
manner such that every agent reaches a distinct landmark. Note that we do not assign a
particular landmark to each agent, but instead let the agents communicate with each other
and develop a consensus as to who goes where. The compound reward function for this
task is defined as follows:

Ri
total = Ri

dist + Ri
collision + Rcross

Ri
dist = −dist

(
pt

i , pg
i

)
Ri

collision =

{
0 i f dist(pt

i , pt
j) > ri + rj

−1 else

(26)

where Rdist is the distance reward and Rcollision is the collision reward. ri represents the
radius of agent i and pg

i represents the goal position of agent i. The closer the agent is to
the goal point, the greater Rdist is.

In this paper, there are four different scenarios with different numbers of agents.
Specifically, these scenarios include scenario (a) with 6 agents, scenario (b) with 15 agents,
scenario (c) with 20 agents, and scenario (d) with 29 agents. MA-HCDP is compared with
MADDPG and TRANSFER in these scenarios.

Algorithms 2021, 14, 98 14 of 20

Landmark
Agent
Communication range
Detective range

(a) Cooperative navigation

Target point
Obstacle
Agent
Communication range
Detective range

(b) Group containment

Figure 6. The illustration of simulation tasks.

The learning curves of all the approaches in terms of mean rewards are presented in
Figure 7. The coordinate name of the x-axis indicates the time spent in training. The longer
the time, the slower the method will converge. The coordinate name of the x-axis represents
the reward obtained in an episode. The higher the reward, the better the performance
of the method. As shown in Figure 7, MA-HCDP has a higher convergence rate and
higher performance than MADDPG and TRANSFER. The results indicate that different
influences of observations of different groups of agents can be handled by MA-HCDP.
It demonstrates that the redundant communication information can be filtered effectively
by MA-HCDP, which enable agents to learn more appropriate policy in fewer training
episodes. Note that MADDPG converges faster than TRANSFER but converges to a
minimum value. As a comparison, TRANSFER converges slower but obtain higher rewards
than MADDPG. Although TRANSFER considers the influence of communication among
different agents, it ignores the influence of redundant communication, which make agents
trained with TRANSFER obtain higher rewards and converge slower than MADDPG. Due
to the ignorance of the influence of redundant communication, although the agent trained
by TRANSFER can learn appropriate policy, its performance and convergence speed are
both weaker than MA-HCDP. The above analysis shows the effectiveness of our method in
dealing with the influence of different groups of agents and redundant communication.

In addition to the training process data, the simulation results of 100 independent
simulations for each scenario are presented in Table 2. The t-test value is adopted to
evaluate the effectiveness of our method statistically. According to the mean value, standard
deviation and the sample data for 100 tests, we calculate the t value of MA-HCDP and
the other methods on the same test scenario. “+” and “=” indicate that the index values
obtained by the algorithm in this paper are superior and equal to the results of the other
methods in the same test scenario in the two-tailed t-test with a significance level of %5.

Algorithms 2021, 14, 98 15 of 20

0 4000 6000 8000 10000 12000

Episodes

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Re
wa
rd
s

Training rewards

MADDPG

MA-HCDP

TRANSFER

Figure 7. Simulation result in cooperative navigation with six agents.

As indicated by Table 2, our method obtains 18 optimal measurements during all the
test scenarios. Note that the success rate of MADDPG in four scenarios is zero. This is
because MADDPG does not consider the communication relationship among the agents
and cannot handle partially observable environments. There is no significant performance
difference between our method and TRANSFER in terms of success rate. The reason
is that the task is simple, so TRANSFER and MA-HCDP can successfully complete the
task. Despite this, our method is better than TRANSFER in terms of rewards and steps
in scenarios with large number of agents. When the number of agents is equal to six, all
methods except MADDPG present a similar performance. When the number of agents
increases, our proposed MA-HCDP can obtain more rewards and take fewer steps than
TRANSFER to complete the task. The reason is that agents need to communicate with more
neighbor agents as the number of agents increases, and MA-HCDP can filter out redundant
agents to promote multiagent cooperation behavior.

5.3. Group Containment

For the group containment, there are n agents and m landmarks in the environment as
shown in Figure 6b. The relationship between n and m is defined as n

m = k, k ∈ Z where Z
represents a set of positive integers. Based on the above restriction, two scenarios including
6 agents with 2 landmarks and 10 agents with 2 landmarks are designed to evaluate the
performance of our scheme. In these scenarios, all the agents must be divided into two
groups and distributed evenly around the two landmarks without collision. The compound
reward function for this task is defined as follows:

Ri
total = Ri

dist + Ri
collision + Rcross

Ri
dist = −Hungarian

(
pt

i , pg
i

)
Ri

collision =

{
0 i f dist(pt

i , pt
j) > ri + rj

−1 else

(27)

Algorithms 2021, 14, 98 16 of 20

where pt
i is the position of agent i and pg

i is the position of goal. Hungarian represents the
Hungarian algorithm, which is a combination optimization algorithm. The Hungarian
algorithm is adopted to calculate the mean distance between the agents and the goal
positions. With the reward setting, the distance reward for each agent is related to the
other agents.

In this paper, there are two different scenarios with different number of agents for the
group containment tasks. Specifically, these scenarios include scenario (a) with 6 agents
and scenario (b) with 10 agents. MA-HCDP is compared with MADDPG and TRANSFER
in these scenarios.

Table 2. Evaluation results of cooperative navigation.

Method
Scenario (a) with 6 Agents Scenario (b) with 15 Agents

Success Rate Steps Rewards Success Rate Steps Rewards

MADDPG
mean 0 50 −1.34 0 50 −2.2

t-test N/A(+) −557.9873(+) 94.2665(+) N/A(+) −522.7875(+) 181.5395(+)

TRANSFER
mean 100 14.2 −0.52 97 17.18 −0.61

t-test N/A(=) −1.2035(=) 1.2131(=) 1.0801(=) −5.7893(+) 6.3189(+)

MA-HCDP
mean 100 14.01 −0.49 99 14.82 −0.53

t-test N/A N/A N/A N/A N/A N/A

Method
Scenario (c) with 20 agents Scenario (d) with 29 agents

Success rate Steps Rewards Success rate Steps Rewards

MADDPG
mean 0 50 −3.48 0 50 −3.91

t-test N/A(+) −472.6488(+) 322.5309(+) N/A(+) −413.4042(+) 373.1337(+)

TRANSFER
mean 98 20.11 −0.72 96 25.2 −0.86

t-test 0.9201(=) −21.1968(+) 9.2276(+) 1.1241(=) −38.0417(+) 42.0352(+)

MA-HCDP
mean 99 17.05 −0.64 98 20.06 −0.69

t-test N/A N/A N/A N/A N/A N/A

The simulation results of MA-HCDP and TRANSFER are presented in Table 3. MA-
HCDP obtain 12 optimal measurements during four scenarios and outperforms than
TRANSFER and MADDPG in terms of steps and rewards. In this kind of competitive
scenario, where there is a high demand for communication effectiveness, CDN in MA-
HCDP can filter out unrelated agents, and SCN can process the information of filtered
agents with attention weights to promote cooperation.

To further demonstrate the effectiveness of our method, we present the attention value
distribution of agents in Figure 8. Take agent 2 and agent 5 in Figure 8a as an example. As
shown in Figure 8, we can obtain the attention value distribution for agent 2 (Figure 8c) and
agent 5 (Figure 8d). Note that agent 2 only communicates with agent 1 and agent 3, and
agents 5 communicates with agent 6. The reason why agents 2 and 5 do not communicate
is that agent 2 needs to go around landmark 1, while agent 5 needs to go around landmark
2. They have different perceptions of the environment and goals, so there is no need
for communication. Based on the communication status, the attention coefficients are
only assigned to those agents communicating with agent 2 and agent 5. Moreover, since
different agents have different influences, they are assigned different attention coefficients.
It demonstrates that MA-HCDP can filter out unrelated agents and process the information
of different agents to promote cooperation.

Algorithms 2021, 14, 98 17 of 20

Table 3. Evaluation results of group containment.

Method
Scenario (a) with 6 Agents Scenario (b) with 10 Agents

Success Rate Steps Rewards Success Rate Steps Rewards

MADDPG
mean 0 80 −1.68 0 80 −4.12

t-test N/A (+) −583.7586 (+) 252.3061 (+) N/A (+) −662.4380 (+) 749.1802 (+)

TRANSFER
mean 93 16.3 −0.66 91 14.28 −0.82

t-test 87.3064 (+) −38.9224 (+) 32.3495 (+) 103.8512 (+) −33.4683 (+) 36.2515 (+)

MA-HCDP
mean 100 14.2 −0.56 100 12.9 −0.68

t-test N/A N/A N/A N/A N/A N/A

(a) The cooperation strategy in process. (b) The cooperation strategy at the end.

0 1 2 3 4 5 6 7 8 9
Agents number

0.0

0.1

0.2

0.3

0.4

0.5

At
te

nt
io

n
va

lu
e

Attention distribution

(c) Attention distribution for agent 2.

0 1 2 3 4 5 6 7 8 9
Agents number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

At
te

nt
io

n
va

lu
e

Attention distribution

(d) Attention distribution for agent 5.

Figure 8. Attention distribution.

Algorithms 2021, 14, 98 18 of 20

6. Discussion

In addition to the analyses above, there are some phenomena worth analyzing. Note
that MADDPG converges faster than TRANSFER but converges to a minimum value.
As shown in Table 2, the success rate of MADDPG is zero. This phenomenon may be
caused by the limitation of MADDPG. Although MADDPG can obtain the state of all the
agents during training, too much information makes the agents fall into a locally optimal
situation and unable to learn appropriate policy. As a comparison, TRANSFER converges
slower but obtains higher rewards than MADDPG. Although TRANSFER considers the
influence of communication among different agents, it ignores the influence of redundant
communication, which makes agents trained with TRANSFER obtain higher rewards and
converge slower than MADDPG. Therefore, although the agents trained by TRANSFER
can learn appropriate policy, its performance and convergence speed are both worse than
our MA-HCDP.

As shown in Figure 8, agent 2 and agent 5 are both within the communication range of
each other, but due to inconsistent cognition of the environment, there is no communication
between them. Although agent 2 can obtain information from agent 0 and agent 4 and be
influenced by them, the attention value from agent 0 and agent 4 to agent 2 is zero because
the information and influence are obtained indirectly. Specifically, the adjacent matrix for
agent 2 is:

Index 0 1 2 3 4 5 6 7 8 9
2 0 1 1 1 0 1 0 0 0 0

The state of agent 2 after stacked SCN layers are related to agent 0, agent 1, agent 3,
and agent 4. Agent 2 communicates with agents outside the communication range indi-
rectly through stacked SCN layers, rather than directly communicating with those agents.
Therefore, the attention value from agent 0 and agent 4 to agent 2 is zero.

In addition to the above discussions, there are several limitations and possible vali-
dations for this study that may be addressed as future directions. HCN is responsible for
dividing agents into different groups, but the grouping of the agents depends on prior
knowledge. When the environment becomes too complex, it is a challenge to group the
agents with prior knowledge. There is a certain difference between simulation environ-
ments and realistic environments. How to make methods that perform well in simulation
environments also work well in realistic environment is a problem that we are working
hard to study.

7. Conclusions

In this paper, we present a novel reinforcement learning method MA-HCDP for
multiagent cooperation in environments with a large number of agents. Its key feature lays
in a hierarchical group network (HGN), a cognition difference network (CDN), and a soft
communication network (SCN). Specifically, HGN is responsible for dividing agents into
different groups and extracting high-dimensional state representations of these groups.
CDN is designed to extract the agents’ understanding of the environment with VAE and
filtering out irrelevant agents with KL divergence. SCN is responsible for handling different
cognition of different neighbor agents with the attention mechanism and enlarging the
communication field. Simulation results indicate that MA-HCDP can handle influences
of different groups of agents and redundant communication and perform a satisfying
strategy and adapt to environments with many agents. Our method has a considerable
increase in terms of rewards and convergence compared with MADDPG and TRANSFER.
The proposed method can handle the redundant information well. As shown in Figure 8,
if the agents’ information is redundant, there is no communicate between them, even if
they are within the communication range of each other. Future work will take the adaptive
grouping based on cognitive differences into consideration.

Algorithms 2021, 14, 98 19 of 20

Author Contributions: Conceptualization, H.W.; methodology, H.W.; software, H.W.; validation,
H.W.; formal analysis, H.W.; investigation, H.W.; resources, H.W.; data curation, H.W.; writing—
original draft preparation, H.W.; writing—review and editing, H.W., Z.L., J.Y., and Z.P.; visualization,
H.W.; supervision, Z.L.; project administration, Z.L.; funding acquisition, J.Y. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China under Grant 2018AAA0102402, in part by the external cooperation key project of the Chinese
Academy of Sciences No. 173211KYSB20200002 and Innovation Academy for Light-duty Gas Turbine,
Chinese Academy of Sciences, No.CXYJJ19-ZD-02 and No.CXYJJ20-QN-05.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MA-HCDP Multiagent hierarchical cognition difference policy
HGN Hierarchical group network
CDN Cognition difference network
SCN Soft communication network
VAE Variational autoencoder
GNN Graph neural networks
PPO Proximal policy optimization
POMG Partially observable Markov games
RL Reinforcement learning

References
1. Yang, Y.; Hao, J.; Sun, M.; Wang, Z.; Fan, C.; Strbac, G. Recurrent Deep Multiagent Q-Learning for Autonomous Brokers in Smart

Grid. IJCAI 2018, 18, 569–575.
2. Li, X.; Zhang, J.; Bian, J.; Tong, Y.; Liu, T.Y. A Cooperative Multi-Agent Reinforcement Learning Framework for Resource Balancing

in Complex Logistics Network. In Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent
Systems. International Foundation for Autonomous Agents and Multiagent Systems, Montreal, QC, Canada, 13–17 May 2019;
pp. 980–988.

3. Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.; Georgiev, P.;
et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019, 575, 350–354. [CrossRef] [PubMed]

4. Ye, D.; Chen, G.; Zhao, P.; Qiu, F.; Yuan, B.; Zhang, W.; Chen, S.; Sun, M.; Li, X.; Li, S.; et al. Supervised Learning Achieves
Human-Level Performance in MOBA Games: A Case Study of Honor of Kings. IEEE Trans. Neural Netw. Learn. Syst. 2020, 1–11.
[CrossRef] [PubMed]

5. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

6. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep
reinforcement learning. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 20–22 June
2016; pp. 1928–1937.

7. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous Control with Deep
Reinforcement Learning. arXiv 2015, arXiv:1509.02971.

8. Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy
Updates. arXiv 2016, arXiv:cs.RO/1610.00633.

9. Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, O.P.; Mordatch, I. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive
Environments. arXiv 2017, arXiv:1706.02275.

10. Foerster, J.N.; Farquhar, G.; Afouras, T.; Nardelli, N.; Whiteson, S. Counterfactual multi-agent policy gradients. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

11. Yang, Y.; Luo, R.; Li, M.; Zhou, M.; Zhang, W.; Wang, J. Mean Field Multi-Agent Reinforcement Learning. In Proceedings of the
International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5567–5576.

12. Ryu, H.; Shin, H.; Park, J. Multi-agent actor-critic with hierarchical graph attention network. In Proceedings of the AAAI
Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 7236–7243.

13. Wu, S.; Pu, Z.; Yi, J.; Wang, H. Multi-agent Cooperation and Competition with Two-Level Attention Network. In Proceedings
of the International Conference on Neural Information Processing, Bangkok, Thailand, 18–22 November 2020; pp. 524–535.

14. Sukhbaatar, S.; Szlam, A.; Fergus, R. Learning multiagent communication with backpropagation. In Proceedings of the Advances
in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 2244–2252.

http://doi.org/10.1038/s41586-019-1724-z
http://www.ncbi.nlm.nih.gov/pubmed/31666705
http://dx.doi.org/10.1109/TNNLS.2020.3029475
http://www.ncbi.nlm.nih.gov/pubmed/33147150
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670

Algorithms 2021, 14, 98 20 of 20

15. Agarwal, A.; Kumar, S.; Sycara, K.; Lewis, M. Learning Transferable Cooperative Behavior in Multi-Agent Teams. In Proceedings
of the 19th International Conference on Autonomous Agents and MultiAgent Systems, Auckland, New Zealand, 9–13 May 2020;
pp. 1741–1743.

16. Jiang, J.; Lu, Z. Learning attentional communication for multi-agent cooperation. In Proceedings of the Advances in Neural
Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; pp. 7254–7264.

17. Iqbal, S.; Sha, F. Actor-Attention-Critic for Multi-Agent Reinforcement Learning. In Proceedings of the International Conference
on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 2961–2970.

18. Das, A.; Gervet, T.; Romoff, J.; Batra, D.; Parikh, D.; Rabbat, M.; Pineau, J. TarMAC: Targeted Multi-Agent Communication.
In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 1538–1546.

19. Peng, P.; Wen, Y.; Yang, Y.; Yuan, Q.; Tang, Z.; Long, H.; Wang, J. Multiagent bidirectionally-coordinated nets: Emergence of
human-level coordination in learning to play starcraft combat games. arXiv 2017, arXiv:1703.10069.

20. Kong, X.; Xin, B.; Liu, F.; Wang, Y. Revisiting the Master-Slave Architecture in Multi-Agent Deep Reinforcement Learning.
arXiv 2017, arXiv:cs.AI/1712.07305.

21. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2014, arXiv:stat.ML/1312.6114.
22. Kullback, S. Information Theory and Statistics; Courier Corporation: Chelmsford, MA, USA, 1997.
23. Littman, M.L. Markov games as a framework for multi-agent reinforcement learning. In Machine Learning Proceedings 1994;

Elsevier: Amsterdam, The Netherlands, 1994; pp. 157–163.
24. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
25. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,

arXiv:1707.06347.
26. Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent models of visual attention. In Proceedings of the Advances in Neural

Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2204–2212.
27. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you

need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

28. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell: Neural image
caption generation with visual attention. In Proceedings of the International Conference on Machine Learning, Lille, France,
7–9 July 2015; pp. 2048–2057.

29. Liu, Y.; Wang, W.; Hu, Y.; Hao, J.; Chen, X.; Gao, Y. Multi-agent game abstraction via graph attention neural network. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 7211–7218.

30. Malysheva, A.; Kudenko, D.; Shpilman, A. MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement Learning.
In Proceedings of the 2019 XVI International Symposium “Problems of Redundancy in Information and Control Systems”
(REDUNDANCY), Moscow, Russia, 21–25 October 2019; pp. 171–176. [CrossRef]

31. Blei, D.M.; Kucukelbir, A.; McAuliffe, J.D. Variational Inference: A Review for Statisticians. J. Am. Stat. Assoc. 2017, 112, 859–877.
[CrossRef]

32. Jang, E.; Gu, S.; Poole, B. Categorical Reparameterization with Gumbel-softmax. arXiv 2016, arXiv:1611.01144.
33. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the

International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

http://dx.doi.org/10.1109/REDUNDANCY48165.2019.9003345
http://dx.doi.org/10.1080/01621459.2017.1285773

	Introduction
	Related Works
	Background
	Partially Observable Markov Games
	Reinforcement Learning
	Attention Mechanism
	Variational Autoencoder

	Multiagent Hierarchical Cognition Difference Policy
	Hierarchical Group Network
	Cognition Difference Network
	Soft Communication Network
	Training Method

	Simulation Results and Analysis
	Simulation Settings
	Cooperative Navigation
	Group Containment

	Discussion
	Conclusions
	References

