
Multi-Agent Cognition Difference Reinforcement
Learning for Multi-Agent Cooperation

1st Huimu Wang
School of Artificial Intelligence

University of Chinese Academy of Sciences
Institute of Automation

Chinese Academy of Sciences
Beijing, China

wanghuimu2018@ia.ac.cn

2nd Tenghai Qiu
Institute of Automation

Chinese Academy of Sciences
Beijing, China

tenghai.qiu@ia.ac.cn

3nd Zhen Liu
Institute of Automation

Chinese Academy of Sciences
Beijing, China

liuzhen@ia.ac.cn

4rd Zhiqiang Pu
Institute of Automation

Chinese Academy of Sciences
University of Chinese Academy of Sciences

Beijing, China
zhiqiang.pu@ia.ac.cn

5th Jianqiang Yi
Institute of Automation

Chinese Academy of Sciences
University of Chinese Academy of Sciences

Beijing, China
jianqiang.yi@ia.ac.cn

6th Wanmai Yuan
China Academy of Electronics
and Information Technology

Beijing, China
yuanwanmai@gmail.com

Abstract—Multi-agent cooperation is one of the most attractive
research fields in multi-agent systems. There are many attempts
made by researchers in this field to promote the cooperation
behavior. However, in partially-observable environments, a large
number of agents and complex interactions among the agents
cause huge difficulty for policy learning. Moreover, redundant
communication contents caused by many agents make effective
features hard to be extracted, which prevents the policy from
converging. To address the limitations above, a novel method
called multi-agent cognition difference reinforcement learning
(MACD-RL) is proposed in this paper. The key feature of
MACD-RL lies in cognition difference network (CDN) and a soft
communication network (SCN). CDN is designed to allow each
agent to choose its neighbors (communication targets) adaptively
with its environment cognition difference. SCN is designed to
handle the complex interactions among the agents with soft
attention mechanism. The results of simulations including mixed
cooperative and competitive tasks demonstrate that the effective-
ness and robustness of the proposed model.

I. INTRODUCTION

Effective communication is a key ability for multi-agent
collaboration. Agents (human or artificial) in the real world
exchange information with each other, which enables them to
coordinate with each other and formulate strategies to imple-
ment complex cooperative behaviors. Similarly, communica-
tion is very important in multi-agent reinforcement learning for
cooperation, especially in scenarios that require cooperation,
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such as smart grid control [1], resource management [2], and
games [3], [4].

Recently, deep reinforcement learning (DRL) has made
exciting progress in many domains, such as games [5], [6]
and robotics [7], [8]. Owing to the huge potential indicated by
these deep learning based approaches, the combination of deep
learning and multi-agent reinforcement learning has also been
widely studied [9]–[11]. However, when these algorithms are
applied to environments with a large number of agents, there
exists some limitations. Multi-agent deep deterministic policy
gradient (MADDPG) [9] and counterfactual multi-agent policy
gradients (COMA) [10] follow a common paradigm of central-
ized learning with decentralized execution (CTDE) to promote
the cooperation behavior among the agents. These methods do
not consider the communication relationship between agents,
which limits the cooperation of agents.

To deal with the problem of communication, some methods
are proposed [12]–[14]. [12] proposes a large feed-forward
neural network that maps inputs of all agents to their actions.
Each agent is controlled by the network, which additionally
has access to a communication channel to receive the summed
information of other agents. Bidirectionally-coordinated net-
work (BiCNet) [14] is based on actor-critic model for con-
tinuous action. It adopts bidirectional recurrent networks to
achieve mutual communication between agents. Master-Slave
[13] is a communication architecture for real-time strategy
games, where the action of each slave agent consists of
information from the slave agents and master agent. However,
the methods above assume that each agent knows the global
states of the environment, which is not applicable in partially
observable environments. Moreover, those methods do not
filter the agents’ communication, so redundant communication



contents caused by a large number of agents will affect the
agents’ policy.

To address this issue, some methods based on attention
mechanism are proposed [15]–[18]. Nonetheless, for those
methods with attention mechanism, all agents within the
communication range will be assigned an attention coefficient.
The total amount of communication is not decreased since
irrelevant agents can still obtain the attention coefficient and
be included in the total amount of communication. Besides,
the soft attention mechanism usually assigns small but nonzero
attention coefficients to irrelevant agents, which weakens the
attention assigned to the significant agents in disguise.

Motivated by the above issues, we propose a multi-agent
cognition difference reinforcement learning (MACD-RL) to
filter communication to promote cooperation behavior of
agents. The key feature of MACD-RL lies in cognition
difference network (CDN) and soft communication netowrk
(SCN). Specifically, the high-dimensional representation of
the agents’ understanding of the environment is extracted
with posterior distribution in CDN. Then unrelated agents are
filtered out with Kullback-Leibler (KL) divergence [19] based
on the difference between the distributions. SCN is responsible
for the weight distribution of the filtered agents to handle
the influence of different neighbors. Besides, SCN expands
communication range of the agents with the chain propagation
characteristics of graph neural networks (GNN).

The effectiveness of MACD-RL is evaluated in different en-
vironments including cooperative navigation and predator-prey
games. The simulation results demonstrate that our methods
can enable agents to learn stable and complicated cooperative
strategies in large-scale environments.

II. BACKGROUND

A. Partially Observable Markov Games

The problem of paper is considered as partially observable
Markov Games (POMG) that is an extension of the Markov
Games [20]. It is defined by environment state St, action
spaces At= [at1, · · · , atN ] where ati is the action F ti of agent
i at time t, and observation spaces Ot = [ot1, . . . , o

t
N ]. Each

agent i learns a policy π : oti → Pa (a
t
i) which maps each

agent’s observation to a distribution over it’s set of actions.
Then the next states are produced according to the transition
function T : St × at1 × · · · × atN → Pt(S

′
). Each agent i

obtains rewards Ri as a function of the state space and action
spaces: St× at1× . . .× atN → R. The goal of the agents is to
maximize their expected discounted returns with a policy:

Ji(πi) = Ea1∼π1,...,aN∼πN ,s∼T

[∑∞

t=0
γtrti

(
St, at1, . . . , a

t
N

)]
(1)

where rti represents the reward that agent i obtains at time
t and γ ∈ [0, 1) denotes the discount factor determining the
importance of future rewards.

B. PPO

Reinforcement learning (RL) [21] is adopted to solve special
POMG problems where N = 1. It is a machine learning
approach to solve sequential decision-making problems. Policy

gradient methods are the popular choice for a variety of RL
tasks. The policy π is parameterized as a policy πθ through
the parameter θ of a neural network. Its objective is to directly
adjust the parameters θ of the policy in order to maximize the
objective J (πθ) = Ea∼πθ,S∼T [

∑∞
t=0 γ

trti (S
t, at1, . . . , a

t
N )]

by taking steps in the direction of ∇θJ (πθ):

∇θJ(πθ) = ∇θ log (πθ (at|St))
∑∞
t′=t γ

t
′
−trt

′

i

(
st

′

i , a
t
′

i

)
(2)

The proximal policy optimization algorithm (PPO) [22]
is a novel policy graditent method based on the actor-critic
framework for RL. We adopt PPO as the basic training
algorithm in this paper. PPO applies DNNs to approximate
the actor (πθ(at |st )) and the critic (Qw (st, at)),respectively.
And they are trained as follows:

lt(θ) =
πθ(at |st )
πθk(at |st )

(3)

lt(θ) denotes the likelihood ratio. πθk denotes the policy of the
agent before k steps. Then the objective function is optimized
according to the following equations:

Lv (w) = E
[
(Q (st,at)−Qw (st, at))

2
]

(4)

Lπ(θ) = E[min(lt(θ)Â
θk

t (st, at),

clip(lt(θ), 1− ε, 1 + ε)Âθ
k

t (st, at)]
(5)

where Âθ
k

t (st, at) is the generalized advantage estimate
(GAE) and clip (lt (θ) , 1− ε, 1 + ε) clips lt (θ) in the interval
[1− ε, 1 + ε].

III. METHOD

In the environments with large number of agents, there are
many neighbors within the communication range of the agents.
If an agent communicates with all its neighbors, redundant
information will affect the agent’s decision. When the number
of agents in the environment increases, the communication
among agents is more complicated, which makes the influence
of redundant information more serious.

The common methods are to use artificial rules [11] or
soft attention mechanism [15]–[18] to process communication
among agents. For the methods with artificial rules, they
require strong prior knowledge of the environment and may
not be suitable for application in complex environments.
For the methods with soft attention mechanism, they assign
attention coefficients to all agents within the communication
range. The total amount of communication is not decreased
since irrelevant agents can still obtain the attention coeffi-
cient and be included in the total amount of communication.
Besides, the soft attention mechanism usually assigns small
but nonzero attention coefficients to irrelevant agents, which
essentially weakens the attention assigned to the significant
agents. Therefore, we propose a multi-agent cognition dif-
ference reinforcement learning composed of cognition differ-
ence network (CDN) and soft communication netowrk (SCN).
CDN is responsible for filtering redundant agents to reduce
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Fig. 1. Architecture of MACD-RL

redundant information. SCN is responsible for the weight
distribution of the filtered agents to handle the influence of
different neighbors. The details are presented in the following
parts.

A. Cognition Difference Network

We construct the communication status between agents as
a graph, where each node represents a single agent, and all
nodes are connected in pairs by default.

Definition 1: The communication status between the agents
is defined as Gt = (V,Et). In particular, V = {1, . . . , N}
is a set of the agents. Et ⊆ V × V denotes the edge set at
time t. Besides, ht is a set of node features at time t, ht ={
~ht1,

~ht2, ...,
~htN

}
,
−→
hti ∈ RL, where L represents the feature

dimension of each node.
In order to filter neighbor agents more effectively, we

introduce the definition of cognitive difference based on an
assumption.

Definition 2: The cognition of an agent is its understanding
of the local environment. It contains the states of all entities
within its observation range, or the high-level hidden states
or distributions extracted from these states (e.g., learned with
DNNs).

Definition 3: The cognition difference is the difference of
high-level hidden states or distributions between the agents
measured by n-dimensional norm or distribution measures.

Assumption 1: Cognition of each agent can be represented
by a vector C= [c1, . . . , ck] or a distribution p (Ci |oi ) obeying
Gaussian distribution.

Under the above definition and assumptions, if the cognition
difference between agent i and agent j are relatively large, it
means that agents’ perceptions of the environment are quite
different. In other words, the states of agent j is a noise or
disturbance to agent i, which will affect the policy of agent i,
so agent i does not need to communicate with agent j.

After analyzing the role of the cognition difference, we
need to solve two problems including the representation of the
cognition and the measurement of the cognition difference.

The representation of the cognition of agent i is denoted
as cognition vector Ci, it is based on the states of all entities
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Fig. 2. Architecture of Variational Autoencode. Note that FC denotes fully-
connected layers

within its observation range. The commom methods are to
adopt directly multi-layer perception (MLP) [9]–[11] or graph
convolution network (GCN) [18], [23], [24] to extract features
of the observations as the cognition vector Ci. However, the
cognitive vectors extracted by these methods are essentially
the result of single-valued mapping from vector to vector.
Besides, these methods cannot fully decouple the factors of
the observations, such as position or velocity. Therefore, the
cognition vector extracted by MLP or GCN is not appropriate
as the cognition of the environment.

In order to effectively represent the cognitive vector, we
adopt a probability distribution method. Specifically, the cog-
nition vector Ci is extracted with posterior distribution from
observation states oi and Ci is inferred with:

p (Ci |oi ) =
p (oi |Ci ) p (Ci)

p (oi)
=

p (oi |Ci ) p (Ci)∫
p (oi |Ci ) p (Ci) dCi

(6)

where p (oi |Ci ) is a reconstruction process from the cognition
vector Ci. p (Ci |oi ) is the cogniton representation for agent



i. However, the above equation is diffcult to calculate directly.
Hence, we approximate p (Ci |oi ) by another tractable distri-
bution q (Ci |oi ). The objective is that q (Ci |oi ) needs to be
close to p (Ci |oi ). We achieve it by minimizing the following
KL divergence:

minKL (q (Ci |oi ) ‖p (Ci |oi ) ) (7)

which equals to maximize evidence lower bound (ELBO) [25]:

maxEq(Ci|oi ) log p (Ci |oi )−KL (q (Ci |oi ) ‖p (Ci) ) (8)

In the above equation, the former represents the reconstruc-
tion likelihood, and the latter ensures that q (Ci |oi ) is similar
to the true prior distribution p (Ci). This can be modelled
by a variational autoencoder (VAE) [26] as shown in Fig.
2. The encoder of this VAE learns a mapping q

(
Ĉi |oi ;χ

)
from oi to Ĉi where χ are the parameters of DNNs. Next, we
adopt the “reparameterization trick” to sample ε from a unit
Gaussian, and then generate Ĉi with mean µCi and variance
σCi : Ĉi = µCi +σCi � ε where ε ∼ N (0, 1). The decoder of
this VAE learns a mapping p

(
ôi

∣∣∣Ĉi; χ) from Ĉi back to ôi.
The loss function to train this VAE is:

minL2 (oi, ôi;χ) +KL
(
q
(
Ĉi |oi;χ

)
‖p (C)

)
(9)

where Ĉi is the result of the cognition representation of agent i
and the learned distribution q

(
Ĉi |oi ;χ

)
is an approximation

of p (Ci |oi ).
For the measurement of difference, since Ĉi is sampled from

the learned distribution, the distribution is more general in the
cognition of the environment than Ĉi. Therefore, we choose
the difference between the distributions as the cognition dif-
ference. To calculate the cognition difference between agent
i and agent j, KL divergence is adopted to calculate a score
Cijd that measures the difference.

Cijd = KL
(
q
(
Ĉi |oi ;χ

)∥∥∥q (Ĉj |oj ;χ)) (10)

The cognition difference model is needed to output a one-
hot vector to determine whether the edge between node i
and j exist in the graph Gt or which agents need to be
communicated. However, the process of outputting the one-
hot vector is often unable to achieve back-propagation of
gradients due to the sampling process. Therefore, Gumbel-
Softmax function [27] is adopted to solve it:

W i,j
c = gum(f

(
KL

(
q
(
Ĉi |oi ;χ

)∥∥∥q (Ĉj |oj ;χ))) (11)

where gum (·) reresents the Gumbel-Softmax function.
By cognition difference model, we can get a sub-graph G

′

i

for agent i, where agent i just connected with the agents that
need to communicate.
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B. Soft Communication Network

After getting the sub-graph G
′

i, the filtered neighbour agents
need to be treated differently by agent i for promoting
cooperation. Different neighbors have different cognition of
the environment, and this will have different influence on
agent i. Specifically, one of the neighbour agents may be
farther away from agent i than the other agents, which means
agent i will be influenced differently by cognition difference
caused by different distances between agents. Therefore, the
soft attention mechanism is adopted in SCN to enable agent i
to process the other agents’ states differently. SCN operates on
graph-structured data and obtains the features of each graph
node by aggregating the states of its neighbors. As shown in
Fig. 3, the attention coefficient eij from agent j to agent i and
its normalized form αij are calculated with the hidden states
of the agents:

eij = akG

(
W k
GĈi,W

k
GĈi

)
(12)

αij = softmax(eij) =
exp(LeakyReLU(eij))∑

k∈Ni
exp(LeakyReLU(eij))

(13)

where W k
G is a linear learnable matrix, akG is a single-layer

feed-forward neural network and LeakyReLU is a nonlinear
activation function. [28] shows that the import of multi-
head attention is helpful to stabilize the learning process of
the attention coefficients. Therefore, the aggregation states of
agent i with multi-head attention at t is given by:

ht
′

i =
∥∥K
m=1 σ

(∑
j∈Ni

αmijW
mhti

)
(14)

where Ni denotes the filtered neighbor agents for agent i. ||
represents the concatenation, K represents the number of the
heads, αmij represents the normalized attention coefficient of
the m-th attention mechanism and Wm represents the weight
matrix of the m-th linear transformation.

Furthermore, K-hop communication is used to enlarge the
receptive field of agent i. With SCN, the agent can know
the cognition of the neighbors and enlarge the communication
field, which is beneficial to the cooperation with other agents.



C. Training Method

After states are extracted by SCN, they are utilized to
optimize the policy of agents. PPO is adopted to train the
agents based on an actor-critic framework. Owing to CDN
and SCN, each agent can choose the agents to communicate
with and assign different weights to them. According to the
objective function of PPO as shown in (5), it is changed as
(17) after the state extracted from CDN and SCN. Then PPO is
trained by minimizing an total loss Ltotal, which is conducted
by the weighted summation of value loss LV (w), action loss
Lπ (θ), action entropy H (θ) and cognition difference loss
Lcd (χ):

LV (w) = E

[(
Q (O1, O2, · · · , ON , a)
−Q (O1, O2, · · · , ON , a;w)

)2
]

(15)

lt(θ) =
πθ(at |(O1,O2, · · · , ON ) )

πθk(at |(O1,O2, · · · , ON ) )
(16)

Lπ(θ) = E[min(lt(θ)Â
θk

t (O1, O2, · · · , ON ),

clip(lt(θ), 1− ε, 1 + ε)Âθ
k

t (O1, O2, · · · , ON )]
(17)

H (θ) = −
∑
πθ(at |O1, O2, · · · , ON )

log (πθ(at |O1, O2, · · · , ON ) )
(18)

Lcd (χ) = E
[(
L2 (oi, ôi;χ) +KL

(
q
(
Ĉi |oi;χ

)
‖p (C)

))]
(19)

Ltotal = β1LV (w) + β2Lπ (θ)− β3H (θ) + β4Lcd (χ) (20)

where βi is the weight coefficient of the loss function.
The action entropy H (θ) is specially designed to encourage
exploration for agents by penalizing the entropy of actor
πθ(at |O1, O2, · · · , ON ). The implementation details of PPO
are presented in Algorithm 1.

IV. SIMULATIONS

A. Simulation Settings

In this section, the performance of MACD-RL is evaluated
in two tasks as shown in Fig. 4.

For the cooperative navigation, there are N agents and N
landmarks in the environment as shown in Fig. 4 (a). The
objective is for the agents to deploy themselves in a manner

Landmark
Agent
Communication range
Detective range

(a) Cooperative navigation

Prey
Obstacle
Predator
Communication range
Detective range

(b) Predator-prey games

Fig. 4. The illustration of simulation tasks

Algorithm 1 PPO
Input: agent’s state oi
Initialization: Initialize actor θa, critic θc and old actor θolda
network

1: for Episode 1 to M do
2: Run policy πθa(o1, . . . , oN ) for T time-steps for each

agent, collecting {o, a, r} where o = (o1, · · · , oN ), a =
(a1, · · · aN ) and r = (r1, · · · , rN )
Estimate advantages function At
πθolda ← πθa

3: for k = 1 to 4 do
4: Calculate value loss: Lv(w)

Lv(w) =
(
Q−Qtfinal (w)

)2
Calculate action loss: Lπ(θ)
Lπ(θ) = E[min(lt(θ)Â

w
t (x, a1, . . . , aN ),

clip(lt(θ), 1− ε, 1 + ε)Âwt (xt,1, . . . , aN )]
Calculate entropy loss: H (θ)
H (θ) = −

∑
πθ log (πθ)

Calculate cognition difference loss: Lcd (χ)
Lcd (χ) = E

[(
L2 (oi, ôi;χ) +KL

(
q
(
Ĉi |oi;χ

)
‖p (C)

))]
Calculate total loss: Ltotal
Ltotal = β1LV (w)+β2Lπ (θ)−β3H (θ)+β4Lcd (χ)
Update actor and critic network by minimizing Ltotal

5: end for
6: end for

such that every agent reaches a distinct landmark. Note that we
do not assign particular landmark to each agent, but instead
let the agents communicate with each other and develop a
consensus as to who goes where. A dense reward of mean
distance between agents and landmarks is set. It means that
the reward for each agent is not only related to it self, but also
related to the other agents.

For the predator-prey games shown in Fig. 4 (b), the
predators move slower and need to capture all the preys.
The detection and communication range of the predator is
restricted, but the preys are not subject to this restriction. If
a prey is caught by one predator, the predator will obtain a
positive reward.

These scenarios are implemented based on [9]. The action
space is discrete and each agent is able to control unit
acceleration or deceleration in X and Y directions. For all
the scenarios, the detective range for an agent is set as 1 unit
and the communication range is set as 1.5 unit.

As a baseline algorithm for comparing the performance,
TRANSFER [18] is taken into consideration. GCN and soft
attention mechanism are adopted in TRANSFER, but agent
filtering is not taken into consideration.

B. Evaluation Results

The simulation results of 100 independent simulations for
each scenarios are presented in Tables I-II. t-test value is



TABLE I
EVALUATION RESULTS OF COOPERATIVE NAVIGATION

Method N=6 N=15
Success rate Steps Rewards Success rate Steps Rewards

TRANSFER mean 100 14.2 -0.52 97 17.18 -0.61
MACD-RL mean 100 14.17 -0.53 99 15.13 -0.56

Method N=20 N=29
Success rate Steps Rewards Success rate Steps Rewards

TRANSFER mean 98 20.11 -0.72 96 25.2 -0.86
MACD-RL mean 99 17.05 -0.64 98 20.06 -0.69

TABLE II
EVALUATION RESULTS OF PREDATOR-PREY GAMES

Method 3V1 5V2
Steps Rewards Steps Rewards

TRANSFER mean 22.17 0.47 34.25 0.82
MACD-RL mean 20.2 0.53 31.12 1.07

Method 7V2 7V4
Steps Rewards Steps Rewards

TRANSFER mean 40.13 0.63 48.05 1.45
MACD-RL mean 35.26 0.85 40.11 1.73

adopted to evaluate the effectiveness of our method statisti-
cally. According to the mean value, standard deviation and the
sample data for 100 tests, we calculate the t value of AERL
and the other methods on the same test scenario. ”+” and ”=”
indicate that the index values obtained by the algorithm in
this paper are superior and equal to the results of the other
methods in the same test scenario in the two-tailed t-test with
a significance level of %5.

For the cooperative navigation task, as indicated by Table
I, our method obtains 6 optimal measurements during all the
test scenarios. Note that there is no significant performance
difference between our method and TRANSFER in terms
of success rate. The reason is that the task is simple so
all methods can successfully complete the task. Despite this,
our method is better than TRANSFER in terms of rewards
and steps in scenarios with large number of agents. When
the number of agents is equal to 6, all methods presents a
similar performance. When the number of agents increases,
our proposed MACD-RL can obtain more rewards and take
fewer steps than TRANSFER to complete the task. The
reason is that agents need to communicate with more neighbor
agents as the number of agents increases, and MACD-RL can
filter out redundant agents to promote multi-agent cooperation
behavior.

For the predator-prey games, the simulation results of
MACD-RL and TRANSFER are presented in Table II.
MACD-RL obtain 8 optimal measurements during 4 scenarios
and outperforms than TRANSFER in terms of steps and
rewards. In this kind of competitive scenarios where there
is a high demand for communication effectiveness, CDN in
MACD-RL can filter out unrelated agents, and SCN can pro-
cess the information of filtered agents with attention weights
to promote cooperation.

To further demonstrate the effectiveness of our method, we
present the attention value distribution of predators in Fig.

(a) The cooperative strategy in 7V4
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(b) Attention distribution for agent 4
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(c) Attention distribution for agent 5

Fig. 5. Attention distribution

5. As shown in Fig. 5, we can obtain the attention value
distribution for agent 4 (Fig. 5 (b)) and agent 5 (Fig.5 (c)).
Note that agent 4 only communicates with agent 3 and agent
5, and agents 5 communicates with agent 4, agent 6 and agent
7. Therefore, the attention coefficients are only assigned to
those agents communicating with agent 4 and agent 5. More-
over, Since different agents have different influences, they are
assigned different attention coefficients. It demonstrates that
MACD-RL can filter out unrelated agents and process the
information of different agents to promote cooperation.

V. CONCLUSION

In this paper, we present a novel reinforcement learning
method MACD-RL for multi-agent cooperation in environ-
ments with a large number of agents. With MACD-RL, unre-
lated agents are filtered out and complex interactions between
the filtered agents are handled as well. MACD-RL is shown
to perform a satisfying strategy and adapt to environments



with many agents. Future work will take the adaptive grouping
based on cognitive differences into consideration.
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