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ABSTRACT
One essential problem in skeleton-based action recognition is how
to extract discriminative features over all skeleton joints. How-
ever, the complexity of the State-Of-The-Art (SOTA) models of this
task tends to be exceedingly sophisticated and over-parameterized,
where the low efficiency in model training and inference has ob-
structed the development in the field, especially for large-scale
action datasets. In this work, we propose an efficient but strong
baseline based on Graph Convolutional Network (GCN), where
three main improvements are aggregated, i.e., early fused Multiple
Input Branches (MIB), Residual GCN (ResGCN) with bottleneck
structure and Part-wise Attention (PartAtt) block. Firstly, an MIB
is designed to enrich informative skeleton features and remain
compact representations at an early fusion stage. Then, inspired
by the success of the ResNet architecture in Convolutional Neural
Network (CNN), a ResGCN module is introduced in GCN to allevi-
ate computational costs and reduce learning difficulties in model
training while maintain the model accuracy. Finally, a PartAtt block
is proposed to discover the most essential body parts over a whole
action sequence and obtain more explainable representations for
different skeleton action sequences. Extensive experiments on two
large-scale datasets, i.e., NTU RGB+D 60 and 120, validate that the
proposed baseline slightly outperforms other SOTA models and
meanwhile requires much fewer parameters during training and
inference procedures, e.g., at most 34 times less than DGNN, which
is one of the best SOTA methods.

CCS CONCEPTS
• Computing methodologies→ Activity recognition and un-
derstanding.
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1 INTRODUCTION
In the past decade, human action recognition becomes increasingly
crucial and achieves promising progress in various applications,
such as video surveillance, human-computer interaction, video
retrieval and so on [1, 20, 29]. One essential problem in human
action recognition is how to extract discriminative and rich features
to fully describe the spatial configurations and temporal dynamics
in human actions.1

Currently, skeleton-based representations have been very pop-
ular for human action recognition, as human skeletons provide
a compact data form to depict dynamic changes in human body
movements [10]. Skeleton data is a time series of 3D coordinates
of multiple skeleton joints, which can be either estimated from
2D images by pose estimation methods [5] or directly collected by
multimodal sensors such as Kinect [37]. Moreover, skeleton-based
representations are more robust to the variations of illuminations,
camera viewpoints and other background changes. These merits in-
spire researchers to develop various methods to explore informative
features from skeleton motion sequences for action recognition.

The current development of skeleton-based action recognition
can be divided mainly into two phrases. In early years, conven-
tional methods adopt Recurrent Neural Network (RNN)-based or
CNN-based models to analyze skeleton sequences. For example,
Du et al.[6] employ a hierarchical bidirectional RNN to capture
rich dependencies between different body parts. And Li et al.[12]
design a simple yet effective CNN architecture for action classifica-
tion from trimmed skeleton sequences. In recent years, due to the
greatly expressive power for depicting structural data, graph-based
models [11, 15] have been proposed for modeling dynamic skeleton
1The codes and pretrained models of the preposed ResGCN are available at here.
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sequences. Yan et al.[31] firstly propose the Spatial Temporal Graph
Convolutional Networks (ST-GCN) for skeleton-based action recog-
nition, after that increasing studies [23, 27, 36] are reported based
on GCN models.

Nevertheless, for learning discriminative and rich features from
skeleton sequences, the current SOTAmodels are often exceedingly
sophisticated and over-parameterized, where the network often
contains a multi-stream architecture with a large number of model
parameters, which leads to a hard training procedure and high
computational costs (low inference speed). For example, the 2s-
AGCN in [23] contains about 6.94 million parameters, and takes
nearly 4 GPU-days for model training on the NTU RGB+D 60
dataset [21]. And the DGNN [22] contains more than 26 million
parameters which is very hard for parameter tuning on large-scale
datasets. Thus, the high model complexity has seriously limited the
development of skeleton-based action recognition, while there are
few literatures on this issue. Moreover, the explainability issue of
conventional models still lacks of considerations in current studies.
Although some studies [24, 26] have utilized attention models to
discover informative skeleton joints and explain the differences
between action categories, they commonly exploit the relationships
among individual joints and frames, which often suffers from the
noisy skeleton joints in sensor inputs or inaccurate estimations.

To tackle the above problems, we make three main improve-
ments in this paper to build a new efficient baseline for skeleton-
based action recognition. Firstly, an early fused Multiple Input
Branches (MIB) architecture is proposed to capture rich spatial con-
figurations and temporal dynamics from skeleton data, where the
three branches include joint positions (relative and absolute), bone
features (lengths and angles) and motion velocities (one or two
temporal steps) respectively, which are subsequently fused in the
early stage of the whole model for reducing the model complexity.
Secondly, inspired by the success of the ResNet [8] in CNN-based
image classification, we introduce a Residual GCN (ResGCN) mod-
ule, where the residual links make the model optimization earlier
than the original unreferenced feature projection and the bottle-
neck structure can significantly alleviate the amount of parameter
tuning costs. Finally, instead of existing joint-wise attentions in
previous models, a Part-wise Attention (PartAtt) module is pro-
posed to discover the most essential body parts over a whole action
sequence, and thereby enhance the explainability and stability of
the learned representations for different action sequences.

The whole pipeline of the newly proposed baseline is shown
in the top of Fig. 1, where the three input sequences (Joint, Ve-
locity and Bone) are initially extracted from the original skeleton
sequence. Next, each input sequence is sent to an input branch con-
sisting of some ResGCN modules. Then, the three branches will be
concatenated and sent to several PA-ResGCN modules, where each
PA-ResGCN module contains a sequential execution of a ResGCN
module, followed by a PartAtt block. Finally, the GCN features of all
joints are concatenated and feed into a fully-connected (FC) layer
for action classification. In this paper, two types of baselines are
provided, i.e., a baseline with high performance (PA-ResGCN) and
a baseline with high efficiency (ResGCN, without PartAtt blocks).
Compared with the most popular GCN baseline, i.e., ST-GCN [31],
the PA-ResGCN achieves over 10% and 20% relative performance
increases with the similar model size on the two datasets, NTU

Frame n

Frame n+1

Joint-Branch

Bone-Branch

Velocity-Branch

Main Stream

Class
PA-ResGCN*n

ResGCN Part-wise Attention

ResGCN*m

ResGCN*m

ResGCN*m

FC

Data Preprocessing (a)

(b)

Figure 1: (a) is the overall pipeline of our approach and (b)
is an illustration of fivemanually designed body parts. (Best
viewed in color.)

RGB+D 60 [21] and 120 [16]. Besides, the PA-ResGCN obtains the
SOTA performance on the NTU 120 dataset, while it also achieves
competitive performance to other SOTA methods on the NTU 60
dataset. Furthermore, when considering the model size and com-
putational cost, the ResGCN with bottleneck structure obtains a
slightly lower accuracy than other SOTA models, while it only con-
tains 0.77 million parameters, nearly 34 times less than DGNN [22],
which is one of the best SOTA methods. The main contributions of
the proposed baseline can be summarized as follows:

• An early fused multi-branch architecture is designed to
take inputs from three individual spatio-temporal feature
sequences (Joint, Velocity and Bone) obtained from raw skele-
ton data, which enables the baseline model to extract suffi-
cient structural features.
• To further enhance the efficiency of our model, a residual bot-
tleneck structure is introduced in GCN, where the residual
links reduce the difficulties in model training and the bottle-
neck structure reduces the computational costs in parameter
tuning and model inference.
• A part-wise attention block is proposed to compute attention
weights for different human body parts to further improve
the discriminative capability of the features, which mean-
while provides an explanation for the classification results
through visualizing the class activation maps.
• Extensive experiments are conducted on two large-scale
skeleton action datasets, i.e., NTU RGB+D 60 and 120, where
the PA-ResGCN can achieve the SOTA performance, and
the ResGCN with bottleneck structure obtains competitive
performance with much fewer parameters.

2 RELATEDWORK
Skeleton-based Action Recognition. Due to its compactness to the

RGB-based representations, action recognition based on skeleton
data has received increasing attentions. In an earlier work [13], a
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convolutional co-occurrence feature learning framework is pro-
posed, where a hierarchical methodology is employed to gradually
aggregate different levels of contextual information. The study in
[34] designs a view adaptive model to automatically regulate ob-
servation viewpoints during the occurrence of an action, so as to
obtain the view invariant representations of human actions.

Inspired by the booming graph-based methods, Yan et al.[31]
firstly introduce GCN into the skeleton-based action recognition
task, and propose the ST-GCN to model the spatial configurations
and temporal dynamics of skeletons synchronously. Following this
work, Song et al.[27] aims to solve the occlusion problem in this
task, and propose a multi-stream GCN to extract rich features from
more activated skeleton joints. Shi et al.[23] utilize a Non-local
method into a two-streamGCNmodel, which significantly improves
the model’s accuracy. However, these well-performance models
are usually based on multi-stream structures, which need to tune
a larger amount of parameters with higher computational costs.
Therefore, how to reduce the complexity of the GCN model is still
a challenging problem for 3D skeleton based action recognition.

Efficient Models. Some existing studies have been considering
the model complexity problem. The study [32] constructs a light-
weight network with CNN-based blocks, which is not as accurate as
GCN models. The work [35] adopts a complex data preprocessing
strategy, whose inputs include positions, velocities, frame indexes
and joint types. This data preprocessing module enables the model
to recognize actions with a shallow model, thereby achieves a very
fast inference speed with 188 sequences/(second*GPU), yet its per-
formance is obviously lower than other SOTA models.

Attention Models. Attention mechanisms have become an inte-
gral part of compelling sequence modeling in various tasks, such as
action recognition. Baradel et al.[2] introduce the attention mecha-
nism into an RGB-based action recognition model, which uses hu-
man pose to calculate spatial and temporal attentions. The study in
[26] firstly introduces attention modules into skeleton-based action
recognition, where a spatial-temporal attention Long Short-Term
Memory (LSTM) is built to allocate different levels of attention
to the discriminative joints within each frame. Si et al.[24] also
incorporate attention modules within LSTM units. Both the two
models apply attention modules for each frame individually, which
may attend to some unstable noisy features. Besides, the traditional
attention module is usually implemented by a multi-layer percep-
tion, which does not consider the intensive local dependency for
temporal attention and the part dependency for spatial attention.

Part-based Models. Human skeleton is a natural graph with five
main body parts, as shown in Fig. 1. Thus, part-based methods are
often designed by researchers to extract the features of body parts
individually. Du et al.[6] propose a bidirectional RNN to hierar-
chically concatenate the features of body parts. Thakkar et al.[28]
utilize GCN to model different body parts, then aggregate them
together to recognize actions. Recently, Huang et al.[9] propose
a part-based skeleton model, which is capable to synchronously
explore discriminative features from joints and body parts. All these
part-based models aim to extract features from body parts individ-
ually, while our work focuses on discovering the most informative
parts with attention mechanisms.

Basic
6, 64

Bottleneck
64, 64

Bottleneck
64, 32

Bottleneck
96, 128, /2

Bottleneck
128, 128

Bottleneck
128, 128

Bottleneck
128, 256, /2

Bottleneck
256, 256

Bottleneck
256, 256

BatchNorm

FC, 256, 60

Basic
6, 64

Bottleneck
64, 64

Bottleneck
64, 32

BatchNorm

Basic
6, 64

Bottleneck
64, 64

Bottleneck
64, 32

BatchNorm

Joints Velocities Bones

Output

S-Block

T-Block

Block
Residual

S-Block

T-Block

Module
Residual

S-Block

T-Block

Dense
Residual

Three types of residual in 
a Bottleneck module

B1

N2

N3

N3

PartAtt

PartAtt

PartAtt

PartAtt

PartAtt

PartAtt

S-Block: Spatial Convolution Block
T-Block: Temporal Convolution Block

Figure 2: An example of the ResGCN model with bottle-
neck structure. The structural parameters of this example
are [B1,N2,N3,N3], which correspond to the type and the
number of modules in different model parts. Concretely,
B1 denotes one ResGCN module with basic (B) blocks and
N2/N3 denotes two/three ResGCN modules with bottleneck
(N) blocks. Eachmodule in the network is composed of a spa-
tial block, a temporal block and a residual link. In addition,
this figure illustrates three types of residual links, i.e., Block
residual, Module residual and Dense residual, shown at the
bottom-right corner. (Best viewed in color.)
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3 METHODS
In this section, we will illustrate the proposed ResGCN/PA-ResGCN.
Firstly, the GCN operation will be briefly introduced. Next, we will
discuss the details of ResGCN, which can be constructed by stacking
some basic or bottleneck blocks. Then, the multiple input branches
(MIB) with data preprocessing will be presented. Finally, the new
PartAtt block is proposed to enhance the model performance and
explainability. An example of the baseline with bottleneck structure
is displayed in Fig. 2.

3.1 Graph Convolutional Network
According to [31], the spatial GCN operation for each frame t in a
skeleton sequence is formulated as

fout =
D∑
d=0

Wd fin (Λ
− 1

2
d AdΛ

− 1
2

d ⊗ Md ), (1)

where D is a predefined maximum graph distance, fin and fout
denote the input and output feature maps, ⊗ means element-wise
multiplication, Ad represents the d-th order adjacency matrix that
marks the pairs of joints with a graph distance d , and Λd is used
to normalize Ad .Wd andMd are both learnable parameters, which
are utilized to implement the convolution operation and tune the
importance of each edge, respectively.

For temporal feature extraction, an L × 1 convolutional layer is
designed to aggregate the contextual features embedded in adja-
cent frames. In this operation, L is a predefined hyper-parameter,
defining the length of temporal windows. Both spatial and temporal
convolutional layers are followed by a BatchNorm layer and a ReLU
layer, and totally construct a basic block.

3.2 ResGCN
Bottleneck. He et al.[8] suggest a subtle block structure named

bottleneck, which inserts two 1 × 1 convolutional layers before
and after the common convolution layer, respectively, in order to
reduce the number of feature channels with a reduction rate r in
convolution calculation.

In this paper, we replace spatial and temporal basic blocks with
the bottleneck structure, and obtains a significantly faster imple-
mentation of model training and inference. Suppose that the input
and output channels are both 256, and the channel reduction rate r
is 4, the temporal window size L is 9. Then, the basic block contains
256× 256× 9 = 589824 parameters, while the bottleneck block only
contains 256 × 64 + 64 × 64 × 9 + 64 × 256 = 69632 parameters,
nearly 8.5 times less than the basic block. In Fig. 2, each module in
ResGCN contains a sequential execution of one spatial block and
one temporal block respectively.

Residual Links. Based on the spatial and temporal blocks men-
tioned above, it is easy to construct a ResGCN module after adding
residual links over the blocks. There are three types of residual
links, i.e., block, module and dense, displayed in the bottom-right of
Fig. 2. As we can see, the block residual link connects the features
before and after each block, while the module link jumps the whole
module. It seems that the dense link possesses both advantages of
the other two links, but more links may harm the compactness of

the model and need more memory costs. Therefore, it is necessary
to select an appropriate type of residual links.

3.3 Multiple Input Branches
Model Architecture. Fig. 2 gives an example of the MIB archi-

tecture, which can be summarized by a set of hyper-parameters
[B1,N2,N3,N3]. The first parameter denotes that we use one Res-
GCN module with basic (B) blocks to process the initial input data.
And the other three parameters represent the ResGCN modules
with bottleneck (N) blocks, while the differences locate at the num-
ber of input and output channels. Every ResGCN module in the
third and the fourth parts is followed by a PartAtt block. In addi-
tion, at the beginning module of the third and the fourth parts, a
temporal stride of 2 is used to further reduce the complexity, which
is also found useful for avoiding over-fitting in our experiments.

Furthermore, it should be noticed that current high accuracy
models usually apply amulti-stream architecture with various input
data. For example, Shi et al.[23] take the joints data and bones data
as input for feeding to the same model separately, and eventually
choose the fusion results of two streams as the final decision. This
is an effective way to augment the input data and enhance the
model performance. However, a multi-stream network often means
high computation costs and difficulties of parameter turning on
large-scale datasets. Thus, we fuse the three input branches at the
early stage of our model, and apply one main stream to extract
discriminative features after the concatenation of three branches of
features. This architecture not only retains the rich input features,
but also significantly suppresses the model complexity, and makes
the training procedure easier to converge.

Data Preprocessing. Data preprocessing is essential for skeleton-
based action recognition, according to the previous studies [23, 25,
27]. In this work, the input features after various preprocessing
methods are mainly divided into three classes: 1) joint positions, 2)
motion velocities and 3) bone features.

Suppose that the original 3D coordinate set of an action se-
quence is X = {x ∈ RC×T×V }, where C , T , V denote the coordi-
nate, frame and joint, respectively. Then the relative position set
R = {ri |i = 1, 2, · · · ,V }, where ri = x[:, :, i] − x[:, :, c], x[:, :, c] rep-
resents the center joint of a skeleton (center spine). These two sets
are concatenated into a single sequence, and sent to the first branch
as the input of joint positions. Moreover, it is easy to obtain the two
sets of motion velocities F = { ft |t = 1, 2, · · · ,T } and S = {st |t =
1, 2, · · · ,T } with the following definitions: ft = x[:, t+2, :]−x[:, t , :]
and st = x[:, t + 1, :] − x[:, t , :]. And the input of motion velocities
is acquired by concatenating F and S for each joint to obtain a
6-d feature vector at each time. Finally, the input of bone features
consists of the bone lengths L = {li |i = 1, 2, · · · ,V } and the bone
angles A = {ai |i = 1, 2, · · · ,V }. To obtain these two sets, the dis-
placement of each bone is calculated by li = x[:, :, i] − x[:, :, iad j ],
where iad j means the adjacent joint of the i-th joint. Next, the angle
of each bone is calculated by

ai,w = arccos (
li,w√

l2i,x + l
2
i,y + l

2
i,z

), (2)

wherew ∈ {x ,y, z} denotes the 3D coordinates.
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Figure 3: The overview of the proposed PartAtt block, whereC denotes the number of input channels, r = 4 is utilized to reduce
the computational cost, P = 5 represents five individual body parts, ⊗ means the element-wise multiplication and Part-level
Softmax means to calculate Softmax at part level. (Best viewed in color.)

3.4 Part-wise Attention
Previous part-basedmodels usually aim to extract feature from body
parts individually, while we focus on discovering the importance
of different body parts over the whole action sequences. Inspired
by Split Attention (SplitAtt) in the ResNeSt model [33], the PartAtt
block is designed as Fig. 3. Firstly, five individual body parts are ob-
tained from the input features by manually selecting corresponding
joints (seen as Fig. 1). Then, the features of all parts are concate-
nated and average pooled in temporal dimension, and then passed
through a fully connected layer with a BatchNorm layer and a ReLU
function. Subsequently, five fully connected layers are adopted to
calculate the attention matrices and a Softmax function is utilized to
determine the most essential body parts. Finally, the features of five
parts are concatenated as an integral skeleton representation with
different attention weights. This PartAtt block can be formulated
as

fp = fin (p) ⊗ δ (θ (pool ( fin )W )Wp ) (3)

fout = Concat ({ fp |p = 1, 2, · · · , P }) (4)

where fin and fout denote input and output feature maps, ⊗ means
element-wise multiplication, pool (·) denotes temporal avg-pool and
part-pool operations, δ (·) and θ (·) represent part-level Softmax and
ReLU activation functions. AndW ∈ RC×

C
r ,Wp ∈ R

C
r ×C are both

learnable parameters, whereW is shared by all parts for dimension
reduction andWp is specific to each part for calculating the final
attention weights.

The main difference between PartAtt and SplitAtt is that the car-
dinal groups of SplitAtt are obtained by separating feature channels,
while the cardinal groups in PartAtt correspond to various body
parts from the spatial view. Compared to other attention models
[24, 26], there are two obvious differences between our PartAtt
and their methods. On one hand, we employ this block to work on
body parts, while their attention blocks concentrate on joints. On
the other hand, traditional spatial attention blocks work for each
frame individually, while our spatial attention block is based on the

global contextual feature maps obtained by average pooling over
the whole temporal sequence.

4 EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the proposed PA-
ResGCN and ResGCN (without PartAtt blocks) on two large-scale
datasets NTU RGB+D 60 [21] and NTU RGB+D 120 [16]. Ablation
studies are also performed to validate the contributions of each
component in our model. For simplicity, all experiments in ablation
studies choose ResGCN with [B1,N2,N3,N3] structure as the base
model (seen as Fig. 2), which can be denoted as ResGCN-N51, where
N51 means there are 51 convolutional or FC layers within the model.
Similarly, the model with the same architecture and basic blocks
can be denoted as ResGCN-B19. Finally, result analyses are reported
to prove the effectiveness of the proposed PartAtt block.

4.1 Datasets
NTU RGB+D 60 Dataset. This large-scale indoor captured dataset

is provided in [21], which contains 56680 human action videos col-
lected by three Kinect v2 cameras. These actions consist of 60
classes, where the last 10 classes are all interactions between two
subjects. For simplicity, the input frame number is set to 300, and
the sequences with less than 300 frames are padded by 0 at the end.
Each frame contains no more than 2 skeletons, and each skeleton
is composed of 25 joints. The authors of this dataset recommend
two benchmarks: 1) cross-subject (X-sub) contains 40320 train-
ing videos and 16560 evaluation videos divided by splitting the
40 subjects into two groups. 2) cross-view (X-view) recognizes
the videos collected by cameras 2 and 3 as training samples (37920
videos), while the videos collected by camera 1 are treated as evalua-
tion samples (18960 videos). Note that there are 302 wrong samples
selected by [16] that need to be ignored.

NTU RGB+D 120 Dataset. This is the currently largest indoor
action recognition dataset [16], which is an extended version of the
NTU RGB+D 60. It totally contains 114480 videos performed by 106
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Model Conf. Speed Param. X-sub X-view X-sub120 X-set120
HBRNN [6] CVPR15 – – 59.1 64.0 – –
ST-LSTM [17] ECCV16 – – 69.2 77.7 55.0 57.9
TSRJI [3] SIBGRAPI19 – – 73.3 80.3 67.9 62.8
TSA [4] AVSS19 – – 76.5 84.7 67.7 66.9

VA-fusion [34] TPAMI19 – 24.60 89.4 95.0 – –
ST-GCN [31] AAAI18 42.9⋆ 3.10⋆ 81.5 88.3 70.7† 73.2†
SR-TSL [25] ECCV18 14.0⋆ 19.07⋆ 84.8 92.4 – –
PB-GCN [28] BMVC18 – – 87.5 93.2 – –
RA-GCN [27] ICIP19 18.7† 6.21⋆ 85.9 93.5 74.6† 75.3†
GR-GCN [7] ACMMM19 – – 87.5 94.3 – –
AS-GCN [14] CVPR19 – 6.99⋆ 86.8 94.2 77.9† 78.5†
2s-AGCN [23] CVPR19 22.3† 6.94⋆ 88.5 95.1 82.5† 84.2†
AGC-LSTM [24] CVPR19 – 22.89⋆ 89.2 95.0 – –
DGNN [22] CVPR19 – 26.24⋆ 89.9 96.1 – –

AS-GCN+DH-TCN [18] arXiv19 – – 85.3 92.8 78.3 79.8
SGN [35] arXiv19 188.0 1.8 86.6 93.4 – –

PL-GCN [9] AAAI20 – 20.70⋆ 89.2 95.0 – –
NAS-GCN [19] AAAI20 – 6.57⋆ 89.4 95.7 – –

ResGCN-N51 (Bottleneck) ours 67.4 0.77 89.1 93.5 84.0 84.2
PA-ResGCN-N51 ours 54.8 1.14 90.3 95.6 86.6 87.1

ResGCN-B19 (Basic) ours 44.0 3.26 90.0 94.8 85.2 85.7
PA-ResGCN-B19 ours 38.3 3.64 90.9 96.0 87.3 88.3

⋆: These results are provided by the authors or calculated according to their released codes.
†: These results are implemented by ourselves, based on their released codes on the Github website.

Table 1: Comparison with the SOTA methods on NTU RGB+D 60 & 120 datasets in accuracy (%), inference speed (se-
quences/(second*GPU)) and parameter number (million). The top part consists of several models without the GCN technique,
while the middle part contains some graph-based models.

subjects from 155 viewpoints. These videos consist of 120 classes,
extended from the 60 classes of the previous dataset. Similarly, two
benchmarks are suggested: 1) cross-subject (X-sub120) is divided
subjects into two groups, to construct training and evaluation sets
(63026 and 50922 videos respectively). 2) cross-setup (X-set120)
contains 54471 videos for training and 59477 videos for evaluation,
which are separated based on the distance and height of their col-
lectors. According to [16], 532 bad samples of this dataset should
be ignored in all experiments.

4.2 Implementation Details
In our experiments, the maximum graph distance D and the tem-
poral window size L mentioned in Section 3.1 are set to 2 and 9,
respectively. The maximum number of training epochs is set to 70.
The initial learning rate is set to 0.1 and decays by 10 at the 20-th
and 50-th epochs. Moreover, a warmup strategy [8] is utilized at
the first 10 epochs to make the training procedure more stable. The
stochastic gradient descent (SGD) with the Nesterov momentum of
0.9 and the weight decay of 0.0001 is employed to tune the parame-
ters. Other structural parameters are defined as Fig. 2. In addition,
the dropout layer in original ST-GCN model [31] is removed. All
our experiments are performed on two GTX TITAN X GPUs.

4.3 Comparisons with SOTA Methods
4.3.1 NTU RGB+D 60 Dataset.

vs. SOTA Models. From Tab. 1, the PA-ResGCN-B19 obtains an
excellent performance, 90.9% for X-sub benchmark and 96.0% for X-
view benchmark. When removing the PartAtt blocks and replacing
basic blocks with bottleneck blocks, the ResGCN-N51 is built, and its
recognition accuracies are 89.1% and 93.5% for the two benchmarks,
respectively, but with only a quarter amount of model parameters
compared to PA-ResGCN-B19. Here, three typical methods should
be noticed. 1) The first one is ST-GCN [31], which is the currently
most popular backbonemodel for skeleton-based action recognition.
Compared with ST-GCN, our ResGCN-N51 outperforms by 7.6% on
X-sub benchmark and 5.2% on X-view benchmark. 2) 2s-AGCN [23]
is another popular baseline in skeleton-based action recognition.
The proposed baseline ResGCN-N51 outperforms 2s-AGCN in both
accuracy and efficiency. 3) The third one is DGNN [22], which
is the current SOTA method with GCN technique. The ResGCN-
N51 is slightly lower than DGNN in accuracy, while ResGCN-N51
only requires 0.77 million parameters, about 34 times less than that
of DGNN. With respect to PA-ResGCN-B19, our model achieves
SOTA performance on NTU 60 dataset with only 1/8 parameters
of DGNN. This gap of model complexity is caused by the multi-
stream architecture in DGNN, while ResGCN only contains one
main stream. These results imply that the proposed ResGCN is an
efficient baseline with competitive performance to SOTA methods.

vs. Efficient Models. In order to verify the efficiency of our model
with bottleneck blocks, we compare ResGCN-N51 with other meth-
ods in accuracy and inference speed on X-sub benchmark. The
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inference speed is defined as the number of sequences successfully
evaluated by the model in one second with one GPU. The inference
speeds are demonstrated in Tab. 1. From this table, it can be found
that ResGCN-N51 greatly improves the inference speed compared
with the ST-GCN model [31]. For LSTM-based models such as VA-
fusion [34] and SR-TSL [25], the inference speeds are very slow,
because of the high computational cost of the LSTM technique.
SGN [35] is a lightweight model which contains five GCN or CNN
layers and obtains an extremely fast inference speed. However, it
only achieves an accuracy of 86.6% on X-sub benchmark, signifi-
cantly worse than the ResGCN-N51. Therefore, the ResGCN-N51 is
a considerable model that balances the performance and efficiency.

vs. Attention Enhanced Models. STA-LSTM [26] and AGC-LSTM
[24] are also enhanced by attention blocks. However, there are
obvious differences between PA-ResGCN and these two models,
e.g., our attention block works for the whole sequence and body
part, while their models use the attention block for each frame
and each joint. The performance of PA-ResGCN greatly exceeds
STA-LSTM over 10% on the two benchmarks, and outperforms
AGC-LSTM by 1.7% and 1.0% on X-sub and X-view benchmarks,
respectively.

vs. Part-based Models. There are three part-based models, i.e.,
HBRNN [6], PB-GCN [28] and PL-GCN [9], which often incorporate
the part-based operation into the RNN or GCN blocks for a more
informative representation, while PA-ResGCN calculates part-wise
attentions to discover the key body parts. As shown in Tab. 1, the
proposed PA-ResGCN outperforms PL-GCN in terms of the two
benchmarks. As to HBRNN and PB-GCN, our approach has superior
performance because the model architectures of HBRNN and PB-
GCN are too simple to sufficiently explore discriminative features.

4.3.2 NTU RGB+D 120 Dataset. The NTU RGB+D 120 dataset is
proposed by Liu et al.[16] recently. As a newly released dataset,
there is a little work performed on the new dataset. For more con-
vincing, four popular models, i.e., ST-GCN [31], RA-GCN [27], AS-
GCN [14] and 2s-AGCN [23], are implemented by ourselves, based
on their released codes. The right column of Tab. 1 presents the
experimental results, from which we can find a huge gap between
the proposed ResGCN/PA-ResGCN and other models. For example,
PA-ResGCN-B19 outperforms 2s-AGCN by 4.8% and 4.1% for the
two benchmarks. We consider that this phenomenon is caused by
the capability of PartAtt blocks to discovering features from the
most informative body parts.

4.4 Ablation Studies
Bottleneck Block. In Section 3.2, we introduce the bottleneck

structure into the GCN model, for reducing the model size and
computational cost. There is a hyper-parameter in the bottleneck
structure, i.e., the reduction rate r , which determines the number
of channels in middle layers. The top part of Tab. 2 illustrates the
influence of the bottleneck structure, from which our ResGCN with
basic blocks achieves an excellent performance on X-sub bench-
mark. After introducing the bottleneck structure, the performance
of our model is slightly decreased by about 1%. Except the very
large reduction rate (r = 8), the ResGCN-N51 obtains competitive
accuracies but only with a half or even a quarter amount of model

Setting Param. X-sub
ResGCN-B19 (Basic) 3.35 90.0

Block ResGCN-N51 (Bottleneck) (r = 2) 1.61 89.0
ResGCN-N51 (Bottleneck) (r = 4) 0.77 89.1
ResGCN-N51 (Bottleneck) (r = 8) 0.49 87.2

ResGCN-N51 w/o Residual 0.63 85.3
Residual + Block Residual 0.77 89.1
Link + Module Residual 0.69 87.8

+ Dense Residual 0.82 88.9
Table 2: Comparisonwith different types of blocks and resid-
ual links onX-sub benchmark in accuracy (%) and parameter
number (million). r means the reduction rate.

Architecture Input data Param. X-sub
Three-branch ResGCN-N51 0.77 89.1

w/o Joint 0.71 88.2
Two-branch w/o Velocity 0.71 88.0

w/o Bone 0.71 86.7
w/o Joint & Bone 0.67 86.6

One-branch w/o Bone & Velocity 0.67 86.1
w/o Joint & Velocity 0.67 84.5

Table 3: Comparison with different input data on X-sub
benchmark in accuracy (%) and parameter number (million).

parameters, compared to the ResGCN-B19 model. These results
clearly indicate that the bottleneck structure with a proper reduc-
tion rate (r = 4) can reduce the model complexity effectively while
maintains the model accuracy.

Residual Links. From Fig. 2, three types of residual links are
demonstrated. The bottom part of Tab. 2 displays the recognition ac-
curacies of different residual links. As shown in Tab. 2, the ResGCN-
N51 with block residual link achieves the best performance, while
the model with the module residual link obtains the worst accu-
racy. As to the dense residual link, it is not as accurate as expected,
which implies that the uses of the block residual link and themodule
residual link simultaneously may produce somehow inconsistency
in feature learning. Therefore, we use the block residual link to
construct the proposed model.

MIB Module. The proposed model contains three input branches,
which are defined in Section 3.3. Tab. 3 presents the ablation studies
of the input data. As shown in the table, the models with only one
input branch are significantly worse than the others. In contrast,
the model with all input data gets the best accuracy. This implies
that each input branch is necessary to the model, and our model
takes a huge benefit from the MIB architecture.

Model Architecture. Previous studies [8] tell us that a deeper
model usually means a better performance, as well as a harder train-
ing procedure. In this part, we will discuss whichmodel architecture
has high performance/cost ratio. Tab. 4 gives the accuracies of four
example models. It is described that the ResGCN-N51 achieves the
best performance on X-sub benchmark, while the ResGCN-N75
obtains the best accuracy on the larger NTU 120 dataset. The struc-
tural parameters of ResGCN-N51 are [B1,N2,N3,N3], as presented
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Architecture Param. X-sub X-sub120
ResGCN-N39 [B1,N2,N2,N2] 0.61 88.7 83.7
ResGCN-N51 [B1,N2,N3,N3] 0.77 89.1 84.0
ResGCN-N57 [B1,N3,N4,N3] 0.83 88.6 84.0
ResGCN-N75 [B1,N3,N6,N4] 1.01 88.7 84.2

Table 4: Comparison with different model structures on X-
sub and X-sub120 benchmarks in accuracy (%) and param-
eter number (million). ResGCN-Nx means that this model
contains x conventional layerswithin the bottleneck blocks.

Model Param. X-sub X-sub120
ResGCN-N51 0.77 89.1 84.0
+ ChannelAtt 0.89 89.1 85.4
+ FrameAtt 0.77 88.6 84.8
+ JointAtt 0.77 89.1 85.3
+ PartAtt 1.14 90.3 86.6

Table 5: Comparison with different attentions on X-sub and
X-sub120 benchmarks in accuracy (%) and parameter num-
ber (million).

in Fig. 2. This phenomenon that the deeper network does not bring
the better performance here is mainly due to the limitation of vari-
ations in the NTU 60 dataset. A bigger and more difficult dataset
may need a deeper ResGCN model, such as the NTU 120 dataset.

PartAtt Block. To illustrate the advantages of PartAtt blocks, we
design three comparative blocks, i.e.ChannelAtt, FrameAtt and Join-
tAtt, according to previous studies [26, 30]. Experimental results in
Tab. 5 show that the proposed PartAtt achieves the best accuracies
on both benchmarks. Especially on the larger benchmark X-sub120,
the gaps between PartAtt and other attention blocks are more obvi-
ous. This is mainly because the PartAtt is more robust to the noisy
skeleton joints in sensor input or inaccurate pose estimations.

4.5 Discussion and Failure Cases
Activation Map. To show how our model works, the activation

maps of some action sequences are calculated by class activation
map technique [38], as presented in Fig. 4, in which the activated
joints in several sampled frames are displayed. From this figure, we
can find that the PA-ResGCN-B19 model successfully concentrates
on the most informative body parts, i.e., left arm for the two actions.
Besides, compared with the ResGCN-B19 model, the PA-ResGCN-
B19 pays obviously higher attention to the left arm, while ResGCN-
B19 shows nearly equal attention to the whole upper body. This
significant difference implies that the proposed PartAtt block is
more explainable than the joint-based methods.

Failure Cases. Although PA-ResGCN receives promising results
on the large-scale datasets, there are still two actions which are
difficult to recognize (accuracies less than 70%). They are the actions
reading and writing. It is easy to find that, both the two actions are
performed by two hands, and are extremely similar with each other.
However, there are only two joints are recorded for each hand in
the two datasets. Therefore, it is still challenging for our model to
capture such subtle movements of two hands.

Action: throwing

ResGCN-B19

Action: drinking water

PA-ResGCN-B19

ResGCN-B19

PA-ResGCN-B19

Figure 4: Activated joints in several contextual frames of
ResGCN-B19 and PA-ResGCN-B19 for the sample actions
throwing and drinking water. The red joints denote the acti-
vated joints, while blue means non-activated joints. (Best
viewed in color.)

5 CONCLUSION
In this paper, we have proposed an efficient but strong baseline
based on the MIB, residual bottleneck blocks and PartAtt blocks.
Different from other attention enhanced models, the proposed Par-
tAtt block concentrates more on the essential body parts, instead
of joints, which makes the model avoid focusing on some super-
fluous even interferential features. In order to save the training
and inference time, we utilize the bottleneck technique into the
GCN model, which significantly reduces the number of learnable
parameters, at most 34 times less than other models. On the chal-
lenging datasets, NTU RGB+D 60 & 120, the proposed PA-ResGCN
achieves the SOTA performance, while its inference speed is obvi-
ously higher than other models. Thus, the new baseline will have
huge potential for some complex extensions. In the future, we will
extend the proposed baseline with the object appearance, which is
responsible for the recognition of the extremely similar actions.
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