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Abstract

An end-to-end speech-to-text translation (ST) takes audio
in a source language and outputs the text in a target lan-
guage. Inspired by neuroscience, humans have perception
systems and cognitive systems to process different informa-
tion. We propose LUT, Listen-Understand-Translate, a uni-
fied framework with triple supervision to decouple the end-
to-end speech-to-text translation task. In addition to the tar-
get sentence translation loss, LUT includes two auxiliary su-
pervising signals to guide the acoustic encoder to extracts
acoustic features from the input, and the semantic encoder
to extract semantic features relevant to the source transcrip-
tion text. We do experiments on both English-French and
English-German speech translation benchmarks and the re-
sults demonstrate the reasonability of LUT. Our code and
models will be released.

1 Introduction
Processing audio in one language and translating it into an-
other language has been requested in many applications.
Traditional speech translation (ST) systems are cascaded by
connecting separately trained automatic speech recognition
(ASR) and machine translation (MT) subsystems (Sperber
et al. 2017, 2019b; Zhang et al. 2019; Beck, Cohn, and
Haffari 2019; Cheng et al. 2019). However, such cascaded
ST systems have drawbacks including higher latency, larger
memory footprint, and potential error propagation in its sub-
systems. In contrast, an end-to-end ST system has a sin-
gle unified model, which is beneficial in deployment. While
very promising, existing end-to-end ST models still cannot
outperform cascaded systems in terms of translation accu-
racy.

Cascaded ST systems usually have intermediate stages
which extract acoustic features and source-text semantic fea-
tures, before translating to the target text, like humans with
perception systems and cognitive systems to process differ-
ent information (Gazzaniga 2000). Ideally, a neural encoder-
decoder network should also benefit from imitating these in-
termediate steps. The challenges are: a) there is no sufficient
supervision to guide the internals of an encoder-decoder to
process the audio input and obtain acoustic and semantic in-
formation properly, b) the training corpus for ST with pairs
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of source audio and target text is much smaller than those
typically used for ASR and MT. Previous works attempt to
relieve these challenges using pre-training and fine-tuning
approaches. They usually initialize the ST model with the
encoder trained on ASR data to mimic the speech trans-
ducing process and then fine-tune on a speech translation
dataset to make the cross-lingual translation. However, pre-
training and fine-tuning are still not sufficient enough to train
an effective ST system, for the following reasons: a) the en-
coder for speech recognition is mainly used to extract acous-
tic information, while the ST model requires to encode both
acoustic and semantic information. b) previous studies (Bat-
tenberg et al. 2017) have proved that the learned alignments
between input and output units in ASR models are local
and monotonic, which is not conducive to modeling long-
distance dependencies for translation models. c) the gap of
length between the input audio signals (typically ∼ 1000
frames) and target sentences (typically∼ 20 tokens) renders
the association from the encoder to decoder difficult to learn.

Based on the above analysis, we explore decoupled model
structures, LUT, with an acoustic encoder (Listen), a seman-
tic encoder (Understand), and a translation decoder (Trans-
late) to imitate the intermediate steps for effective end-to-
end speech translation. In addition to the normal translation
loss with cross-entropy, we propose two additional auxil-
iary supervising signals. We introduce connectionist tempo-
ral classification (CTC) (Graves et al. 2006) loss to ensure
the acoustic encoder capture necessary acoustic information
from the input audio spectrum sequence. In this way, the lo-
cal relations among nearby audio frames are preserved. We
utilize the pre-trained embedding to guide the semantic en-
coder to capture a proper semantic representation. Specifi-
cally, we use the pre-trained feature extracted from BERT in
this work. Notice that neither of the two auxiliary supervi-
sion is required during the model inference time and there-
fore our method is efficient.

The contributions of the paper can be summarized as fol-
lows:

• We design LUT, a unified framework augmented with
additional components and supervision to decouple and
guide the ST task.

• Our proposed method can extract semantic knowledge
from the pre-trained language model (BERT) and utilize
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Figure 1: The architecture of LUT. It contains three modules, an acoustic encoder, a semantic encoder, and a translation decoder.

external ASR corpus to enhance acoustic modeling more
effectively benefiting from the flexibly designed structure.

• We conduct experiments and do analysis on two main-
stream speech translation datasets, LibriSpeech (English-
French) and IWSLT2018 (English-German), to verify the
effectiveness of our model.

2 Methodology
In this section, we illustrate how we design the speech-to-
text translation model. The LUT architecture allows a flexi-
ble configuration of the backbone network structure in each
module. One can freely choose convolutional layers, recur-
rent neural networks, or Transformer network as the main
building structure. Figure 1 illustrates the overall architec-
ture of the LUT, using Transformer as the backbone net-
work. Our proposed LUT consists of three modules: a) an
acoustic encoder network that encodes the audio input se-
quence into hidden features corresponding to the source text;
b) a semantic encoder network that extracts hidden semantic
representation for translation, which behaves like a normal
machine translation encoder; c) a translation decoder net-
work that emits sentence tokens in the target language. No-
tice an input sequence typically has a length of more than
1000, while a target sentence has tens of tokens. We have
specially designed layers to cope with such a big discrep-
ancy in lengths.

Problem Formulation The training corpus for speech
translation contains speech-transcription-translation triples,
denoted as S = {(x, z,y)}. Specially, x = (x1, ..., xTx

)
is a sequence of acoustic features. z = (z1, ..., zTz

) and
y = (y1, ..., yTy

) represents the corresponding text sequence
in source language and target language, respectively. Mean-
while, A = {(x′, z′)} represents the external ASR corpus.
Usually, the amount of end-to-end speech translation corpus
is much smaller than that of ASR, i.e. |S| � |A|.

2.1 Acoustic Encoder
The acoustic encoder of LUT takes the input of low-level
audio features and outputs a series of vectors correspond-
ing to the transcribed text in the source language. The orig-
inal audio signal is transformed into mel-frequency cep-

strum (Mermelstein 1976), which is the standard preprocess-
ing in speech recognition. The sequence of frames (x) are
processed by a feed-forward linear layer, and Nae layers of
Transformer sub-network, which includes a multi-head at-
tention layer, a feed-forward layer, normalization layers, and
residual connections. The output of acoustic encoder is de-
noted as hae. They are further projected linearly with a soft-
max layer to obtain auxiliary output probability p for each
token in the vocabulary. Note here the vocabulary is aug-
mented with one extra blank symbol “ ”. The transcribed
source sentence is also split into sub-word tokens in this vo-
cabulary. Since the length of the frame sequence, x is much
larger than that of the transcribed source sentence z, we em-
ploy the CTC loss to align the acoustic encoder output and
the expected supervision sequence z.

Given the ground truth transcribed token sequence z,
there can be multiple raw predicted label sequences from
the acoustic encoder. Let g denote the mapping from the
raw label sequence to the ground truth, which is based on
a deterministic rule by removing the blank symbols and
consecutive duplicate tokens. For example, g(aa ab ) =
g(a abb ) = aab. We denote the set of all raw label se-
quences corresponding to a ground truth transcription as
g−1(z). Then the conditional probability of a ground truth
token sequence z can be modeled by marginalizing over all
raw label sequences:

P (z|x) =
∑

s∈g−1(z)

P (s|x) (1)

Where each raw label probability p(s|z) for a sequence s
is calculated from the acoustic encoder using the following
equation:

P (s|x) =
Tx∏
i=1

p(si|x) =
Tx∏
i=1

Softmax(haei )si (2)

Where hae is the output of the acoustic encoder.
Finally, the acoustic encoder loss is defined as

Lae(θ;x, z) = − logP (z|x) (3)

2.2 Semantic Encoder
The second module of LUT is motivated by the commonly
used encoder for a neural machine translation model. LUT’s



semantic encoder aims to extract semantic and contextual
information for translation. However, unlike the normal en-
coder in the MT model taking the input of source sentence
tokens, LUT’s semantic encoder takes the hidden represen-
tation hae computed from the acoustic encoder as the in-
put. Since we do not have explicit supervision of the se-
mantic representation, we utilize a pre-trained BERT model
to calculate sentence embeddings for the source sentence
z and then further employ these embeddings to supervise
the training of this encoder module. This approach of self-
supervision is advantageous because it enables training us-
ing a very large independent monolingual corpus in the
source language. It proves to be beneficial in our experi-
ments.

The semantic encoder contains Nse Transformer layers at
the core and then connects to two branches. The output of
this module is denoted as hse. One branch is to compute an
overall semantic vector of the input, marked as “Seq-level
Distance”. It is realized using a 2D convolutional layer to
reduce dimension, a normalization layer, and finally an av-
erage pooling layer to shrink the vectors into one. The out-
put of this branch is denoted as vse0 , which is a single vec-
tor. This is to be compared with the class-label represen-
tation hBERT

c calculated by a BERT model. Another branch
is aimed to match the semantic representation of the tran-
scribed source sentence, marked as “Word-level Distance”.
This branch is connected to an auxiliary layer to calculate
the length-synchronized semantic representation, which is
a sequence of vectors of the size Tz , equivalent to that of
the transcribed source sentence. To this end, we first use
a separately pre-trained BERT model to calculate the sen-
tence embedding vectors, excluding the class-label vector
hBERT
c . These vectors are organized into Tz time steps, de-

noted as hBERT. Suppose theNse-layer transformer outputs a
sequence of vectors at length Tx, denoted as v = hse. Note
each of these vectors are split into J heads, i.e. hBERT =
(hBERT

1 , . . . ,hBERT
J ) and v = (v1, . . . ,vJ). These BERT

vectors are used as queries to compute the attention weights
for the branch input hidden vectors.

headi = Attn(hBERT
i WQ

i ,viW
K
i ,viW

V
i ) (4)

Where the WQ
i ,WK

i ,WV
i are parameters for the attention of

i-th head. The attention is calculated by scaled dot-product
layer, as follows:

Attn(Q,K, V ) = Softmax(
Q ·KT

√
dk

)V (5)

where dk is the dimension of the key K. With this layer, the
output can be reduced to the same length as source text by
concatenating the heads.

vse1 = Concat(head1, . . . , headJ) (6)

Finally, the semantic encoder loss is defined as the distance
between the calculated hidden representations and the BERT
embeddings.

Lse(θ; z) =
{
|vse0 − hBERT

c |, Seq-level
|vse1 − hBERT|, Word-level

(7)

The key insight of our formulation is that the semantic
encoder needs to behave like a text encoder of a neural ma-
chine translation model, with only source language text data
in the training. The specifically designed loss ensures that
the semantic encoder could produce similar semantic em-
beddings close to the BERT representation trained on a sep-
arate large text corpus. During the inference time, the output
of this module is hse, therefore no additional source tran-
scription text is needed and the BERT calculation is saved.

2.3 Translation Decoder
As with the normal machine translation model, our proposed
LUT usesNtd layers of Transformer network as the decoder.
Additional attention from the decoder to the semantic en-
coder output hse is added. We use the cross entropy loss to
measure the translation decoding performance.

Ltd(θ;y) = −
Ty∑
i=1

log pθ(y
t
i |yt<i,hse) (8)

As usual, the decoder probability is calculated from the final
softmax layer based on the output of the decoder.

The overall objective function for end-to-end training is
the sum from three supervision modules:

L(θ;x, z,y)
= αLae(θ;x, z) + βLse(θ;x, z) + γLtd(θ;x,y)

(9)

where θ is the model parameter. α, β and γ are hyper-
parameters to balance among the acoustic transducer loss
Lae, the semantic encoder loss Lse, and the translation de-
coder loss Ltd.

3 Experiments
3.1 Data
Augmented LibriSpeech Dataset Augmented Lib-
riSpeech (Kocabiyikoglu, Besacier, and Kraif 2018) is
built by automatically aligning e-books in French with
English utterances of LibriSpeech. The dataset includes
four types of information: English speech signal, English
transcription, French text translations from the alignment of
e-books with augmented references via Google Translate.
Following the previous work (Liu et al. 2019a), we also
conduct experiments on the 100 hours clean train set for
training, with 2 hours development set and 4 hours test
set, corresponding to 47271, 1071, and 2048 utterances
respectively.

IWSLT2018 English-German Dataset IWSLT2018
English-German (Jan et al. 2018) is the KIT end-to-end
speech translation corpus, which is built automatically by
aligning English audios with SRT transcripts for English
and German from lectures online. The raw data, including
long wav files, English transcriptions, and the corresponding
German translations, is segmented into chunks with the
attached time stamps and made forced alignments using
the gentle toolkit1, according to the officially released

1https://github.com/lowerquality/gentle



version. It should be noted that some transcriptions are not
aligned with their corresponding audio well. Noisy data is
harmful to models’ performance, which can be avoided by
data filtering, re-alignment, and re-segmentation (Liu et al.
2018). In this paper, the original data is used directly as
training data to verify our method, with a size of 272 hours
and 171121 segmentations. We use dev2010 as validation
set, and tst2010, tst2013, tst2014, tst2015 as test set,
corresponding to 653, 1337, 793, 957 and 1177 utterances
respectively.

TED English-Chinese Dataset English-Chinese TED is
crawled from TED website2 and released by (Liu et al.
2019a) as a benchmark for speech translation from English
audio to Chinese text. Following the previous work (Liu
et al. 2019a), we use dev2010 as development set and
tst2015 as test set. The raw long audio is segmented based
on timestamps for complete semantic information. Finally,
we get 524 hours train set, 1.5 hours test set and 2.5 hours
test set, corresponding to 308,660, 835, 1223 utterances re-
spectively.

LIUM2 Dataset We use LIUM2 as the external ASR par-
allel corpus (∈ A) used in the expanded experimental setting
for broad reproducibility. LIUM2 (Rousseau, Deléglise, and
Esteve 2014) is composed of segments of public talks ex-
tracted from the lecture website3 with 207 hours of speech
data. Speed perturbation is performed on the raw signals
with speed factors 0.9 and 1.1.

Data Preprocessing Following the efforts of (Liu et al.
2019a; Wang et al. 2020), we introduce acoustic features
that are 80 dimensional log Mel filterbanks. The features
are extracted with a step size of 10ms and a window size
of 25ms and extended with mean subtraction and variance
normalization. The features are stacked with 5 frames to
the right and downsampled to a 30ms frame rate. For tar-
get language text data, we lowercase all the texts, tokenize
and apply normalize punctuations with the Moses scripts4.
For source language text data, we lowercase all the texts, to-
kenize and remove the punctuation to make the data more
consistent with the output of ASR. We apply BPE5 on the
combination of source and target text to obtain shared sub-
word units. The number of merge operations in BPE for
ASR and MT systems is set to 8k and 30k, respectively.
For strategies using BERT features, we apply the same pre-
processing tool as BERT does to text data for ST models and
regenerate the vocabulary. For English-French and English-
German corpora, we report case-insensitive BLEU scores by
multi-bleu.pl6 script for the evaluation of ST and MT

2https://www.ted.com
3http://www.ted.com
4https://github.com/moses-smt/mosesdecoder
5https://github.com/rsennrich/subword-nmt
6https://github.com/moses-smt/mosesdecoder/scripts/generic/multi-

bleu.perl

tasks. And for English-Chinese corpus, we report character-
level BLEU scores. We use word error rates (WER) to eval-
uate ASR tasks.

3.2 Baselines

We conduct our experiments in three following settings.

Base Setting with only Speech-translation Data Our
main purpose is to compare our method with conventional
end-to-end speech translation models. In the experiment, the
base setting is restricted to only the triple data. To pre-train
the encoder, only the audio-transcription pair of the triple
data can be leveraged to train an ASR model.

Expanded Setting with External Data In the context of
expanded setting, Bahar et al. (2019) apply the SpecAug-
ment (Park et al. 2019) on Librispeech English-French ST
task, where his team uses a total of 236h of speech for
ASR pre-training. Inaguma et al. (2019) combine three
ST datasets of 472h training data to train a multilingual
ST model for both Librispeech English-French ST task and
IWSLT2013 English-German ST task. And (Wang et al.
2019) introduce an additional 272h ASR corpus and 41M
parallel data from WMT18 to enhance the ST performance.

MT Systems The input of MT systems is the manual tran-
scribed text which can be regarded as the upper bound of ST
models.

3.3 Details of Our Model and Experiments

For ST tasks, we use a similar hyper-parameter setting with
the Transformer base model (Vaswani et al. 2017) for the
stack of Transformer layers, in which we set the hidden
size dmodel = 768 to match the output of BERT. Learn-
ing from speech-transformer (Dong, Xu, and Xu 2018), one
third of the layer is used for the decoder (Ntd = 4). Nae
and Nse are both set to 4 for our best performance, dis-
cussed in Section 4.1. For ASR and MT tasks, the standard
Transformer base model is adopted. All samples are batched
together with 20000-frame features by approximate feature
sequence length during training. We train our models on 1
NVIDIA V100 GPUs with a maximum number of training
steps 400k. We use a greedy search and beam search (as de-
fault) with a beam size of 8 for our experimental settings.
The maximum decoding length for ASR and ST (MT) is set
to 200 and 250, respectively. The hyper-parameters in Equa-
tion 9, α, β and γ are set to 0.5, 0.05, 0.45 (details in Table
11 in Appendix). For experiments in the base setting, the ST
model is trained from scratch. For experiments in the ex-
panded setting, the ST model is trained as the following two
steps: a) pre-training the acoustic encoder with CTC loss
with (x′, z′) ∈ A, as Section 2.1. b) fine-tuning the overall
ST model with (x, z,y) ∈ S, as Equation 9.



Method
Enc Pre-train
(speech data)

Dec Pre-train
(text data) greedy beam

MT system
Transformer MT - - 20.98 21.51

Base ST setting
LSTM ST (Bérard et al. 2018) 7 7 12.30 12.90

+pre-train+multitask (Bérard et al. 2018) 3 3 12.60 13.40
LSTM ST+pre-train (Inaguma et al. 2020) 3 3 - 16.68
Transformer+pre-train (Liu et al. 2019a) 3 3 13.89 14.30
+knowledge distillation (Liu et al. 2019a) 3 3 14.96 17.02

TCEN-LSTM (Wang et al. 2019) 3 3 - 17.05
LUT 7 7 16.70 17.75

Expanded ST setting
LSTM+pre-train+SpecAugment (Bahar et al. 2019) 3(236h) 3 - 17.00
Multilingual ST+PT (Inaguma et al. 2019) 3(472h) 7 - 17.60
LUT 3(207h) 7 17.55 18.34

Table 1: Performance (BLEU) on Augmented Librispeech English-French test set. MT model only translates from the tran-
scribed source text, which serves as an upper limit. Our proposed LUT achieves the best performance.

Method
Enc Pre-train
(speech data)

Dec Pre-train
(text data) tst2010 tst2013 tst2014 tst2015 Avg

MT system
RNN MT (Inaguma et al. 2020) - - 23.80 24.90 21.17 22.33 23.05

Base ST setting
ESPnet (Inaguma et al. 2020) 7 7 13.77 12.50 11.50 12.68 12.61

+enc pre-train 3 7 14.46 13.12 11.62 11.30 12.63
+enc dec pre-train 3 3 14.98 13.54 12.33 11.67 13.13

LUT 7 7 16.60 16.35 13.25 14.37 15.16

Expanded ST setting
Multilingual ST (Inaguma et al. 2019) 3(472h) 7 - 14.6 - - -
CL-fast* (Kano, Sakti, and Nakamura 2018) 3(479h) 7 - 14.33 - - -
TCEN-LSTM (Wang et al. 2019) 3(479h) 3(40M) 15.49 15.50 13.21 13.02 14.31
LUT 3(207h) 7 17.07 16.42 13.63 14.97 15.52

Table 2: Performance (BLEU) on IWSLT2018 English-German test set. MT model only translates from the transcribed source
text, which serves as an upper limit. Our proposed LUT achieves the best performance.

4 Results
4.1 Main Results
Librispeech English-French For En-Fr experiments, we
compare the performance with existing end-to-end methods
in Table 1. Clearly, LUT outperforms the previous best re-
sults by more than 0.7 BLEU in base setting and 0.74 BLEU
in expanded setting respectively. Specifically, in the base
setting, the model we propose outperforms ESPnet, which
is equipped with both a well-trained encoder and decoder.
We also achieve better results than a knowledge distillation
baseline in which an MT model is introduced to teach the ST
model (Liu et al. 2019a). Different from previous work, our
work focuses on reducing the modeling burdens of the en-
coder by suggesting that auxilliary supervision signals make
it easier to learn both the acoustic and semantic information.
This proposal promises great potential for the application
of the double supervised encoder. Compared to the TCEN
baseline which includes two encoders, LUT is simple and
flexible, without the need to introduce additional computa-

tional cost for inference. Simple yet effective, LUT achieves
the best performance in this benchmark dataset in terms of
BLEU.

IWSLT2018 English-German For En-De experiments,
we compare the performance with existing end-to-end meth-
ods in Table 2. Unlike that of Librispeech English-French,
this dataset is noisy, and the transcriptions do not align well
with the corresponding audios. As a result, there is a wide
gap between the performance of the end to end ST and the
upper bound of the ST. Overall, our method outperforms ES-
Pnet on all test sets by averaged 2.03 bleu in the base setting
and has an advantage of averaged 1.21 bleu compared with
TCEN (Wang et al. 2019). To be notice, our LUT does not
include any pretraining tricks, and achieves the state-of-the-
art performance in the base ST setting. This trend is consis-
tent with that in the Librispeech dataset.



Method
Enc Pre-train
(speech data)

Dec Pre-train
(text data) BLEU

MT system
Transformer MT (Liu et al. 2019a) - - 27.08

Base setting
Transformer+pre-train (Liu et al. 2019a) 3 3 16.80

+knowledge distillation (Liu et al. 2019a) 3 3 19.55
LUT 7 7 20.84

Table 3: Performance for MT, ST tasks on English-Chinese TED test set. *: re-implemented. Our proposed LUT achieves the
best results.

TED English-Chinese For En-Zh experiments, we com-
pared the performance with existing end-to-end methods
in Table 3. Under the base setting, LUT exceeded the
Transformer-based ST model augmented by knowledge dis-
tillation with 0.7 bleu, proving the validity of our method.

Comparison with Cascaded Baselines Table 4 shows the
comparison with cascaded ST systems on Augmented Lib-
rispeech En-Fr test set, En-De TED tst2013 set and En-Zh
test set. For a fair comparison, we do the experiments on
the base settings of English-French/German/Chinese trans-
lation. Results show that LUT either receives the equiva-
lent performance or outperforms with cascaded methods in
two datasets, thus displaying great potential for the end-to-
end approach. This indicates our flexible structure can make
good use of additional ASR corpus and learn valuable lin-
guistic knowledge.

Method BLEU

En→Fr
Pipeline 17.58
LUT 17.75

En→De
Pipeline 15.38
LUT 16.35

En→Zh
Pipeline 21.36
LUT 20.84

Table 4: LUT versus cascaded systems on Augmented
Librispeech En-Fr test set and En-De TED tst2013 set.
“Pipeline” systems consist of separate ASR and MT mod-
els trained independently.

4.2 Ablation Study
Effects of Auxiliary Supervision We first study the ef-
fects of two auxiliary supervision for LUT. The results in
Table 5 show that all the auxiliary supervision indicate pos-
itive results that can be superimposed. Models that use su-
pervision only from the acoustic encoder can be regarded as
a method of multi-task learning, which has a significant per-
formance improvement compared to the model of direct pre-
training and fine-tuning (seen in Table 1). This reflects the
catastrophic forgetting problem that occurs in the sequential
transfer learning based on the pre-training method.

Dev Bleu Test Bleu

LUT 18.51 17.75
w/o Semantic Encoder Loss 17.72 16.81
w/o Acoustic Encoder Loss * 16.91 15.48
w/o Acoustic Encoder Loss 12.05 11.24

Table 5: Effects of LUT on En-Fr validation and test set. “*”
means using ASR pre-training as initialization.

Balance of Acoustic and Semantic Modeling Experi-
mental results, shown in Table 6 prove that the performance
is better when the two modules are balanced. In order to
determine which module has a more significant impact on
performance, we conducted experiments on the layer num-
ber allocation of the two modules, in which the total number
of layers of the acoustic transducer and semantic encoder is
fixed, and the number of layers for one module is adjusted
from 2 to 6. As the number of layers decreases, the two mod-
ules will both result in worse performance degradation, thus
explaining that using enough layers to extract acoustic fea-
tures and encode semantic representation is equally essential
to the speech translation model.

Nae Nse Dev BLEU Test BLEU

2 6 14.81 13.09
3 5 17.01 15.50
4 4 17.93 16.70
5 3 17.07 16.21
6 2 16.47 15.49

Table 6: Performance on En-Fr corpus: LUT with varying
layers in its acoustic encoder (Nae) and semantic encoder
(Nse). Greedy decoding is employed.

Sequence-level Distance v.s. Word-level Distance For
this part, we conduct experiments with different branches
described in Section 2.2. We conduct an experimental com-
parison of the performance differences caused by the pre-
training features extracted by different layers of BERT for
semantic encoder’s supervision. We found that the pre-
trained features of the higher layers of BERT have similar
supervisory effects. We then adopt the pre-trained features



from the last layer of BERT as our default setting. The re-
sults, as shown in Table 7, prove that the word-level distance
benefit more from the BERT pre-trained features because of
its finer and grainer regulation.

Dev BLEU Test BLEU

Seq-level Distance 17.64 16.61
Word-level Distance 17.93 16.70

Table 7: Performance on En-Fr corpus: LUT with different
losses for semantic encoder. “Seq-level” and “Word-level”
losses are described in Eq. (7). Greedy decoding is em-
ployed.

4.3 Analysis

SpeakerVer IntentIde

AT Output hat 97.6 91.0
SE output hse 46.3 93.1

Table 8: Classification accuracy on speaker verification and
intent identification, using LUT’s acoustic transducer (AT)
and semantic encoder (SE) output embeddings.

Acoustic or Semantic In Table 8, we design auxiliary
probing tasks to further analyze the learned representation
(Lugosch et al. 2019). SpeakerVer is designed to identify
the speaker, therefore it benefits more from acoustic infor-
mation. IntentIde is focused on intention recognition, so it
needs more linguistic knowledge. We use the Fluent Speech
Commands dataset (Lugosch et al. 2019) for experiments
which contains 30,043 utterances, 97 speakers, and 31 in-
tents. For the train split, we extract the hidden output of
each layer of our well-trained LUT encoder and freeze it,
followed by a fully connected layer. We then fine-tune for
20,000 steps on the two probing tasks respectively. We re-
port the accuracy of the test split. It can be seen that during
the modeling process of ST, acoustic information is modeled
at low-level layers and semantic information is captured at
high-level layers.

Case Study Table 9 shows our case study analysis, prov-
ing that the end-to-end speech translation system can alle-
viate the problem of error propagation caused by upstream
speech recognition errors. LUT can obtain the intermediate
results of speech recognition by the way of CTC decoding,
so it can perform a certain degree of interpretable diagnosis
on the translation results. Benefiting from the ability of the
end-to-end system to directly obtain the original audio infor-
mation, our method is fault-tolerant in the case of incorrect
recognition, missing recognition, repeated recognition, and
son on during the first stage.

5 Related Work
End-to-end ST Previous works (Bérard et al. 2016; Duong
et al. 2016) have proved the potential for end-to-end ST,

Speech #1 766-144485-0090.wav
Transcription
reference it was mister jack maldon
hypothesis it was mister jack mal
Translation
reference c’était m. jack maldon
hypothesis c’était m. jack maldon
Phenomenon incorrect recognition

Speech #2 1257-122442-0101.wav
Transcription
reference cried the old soldier
hypothesis cried the soldier
Translation
reference s’écria le vieux soldat,
hypothesis s’écria le vieux soldat,
Phenomenon missing recognition

Speech #3 1184-121026-0000.wav
Transcription
reference chapter seventeen the abbes chamber
hypothesis chapter seventeen teen the abbey chamber
Translation
reference chapitre xvii la chambre de l’abbé.
hypothesis chapitre xvii la chambre de l’abbé.
Phenomenon repeated recognition

Table 9: Examples of transcription and translation on En-
Fr test set generated by LUT. Text in pink means correct
tokens, and text in red represents incorrect tokens.

which has attracted intensive attentions (Vila et al. 2018;
Salesky et al. 2018; Salesky, Sperber, and Waibel 2019;
Di Gangi, Negri, and Turchi 2019; Bahar, Bieschke, and Ney
2019; Di Gangi et al. 2019; Inaguma et al. 2020). It’s proved
that pre-training (Weiss et al. 2017; Bérard et al. 2018;
Bansal et al. 2018; Stoian, Bansal, and Goldwater 2020)
and multi-task learning (Vydana et al. 2020) can signifi-
cantly improve the performance. Two-pass decoding (Sung
et al. 2019) and attention-passing (Anastasopoulos and Chi-
ang 2018; Sperber et al. 2019a) techniques are proposed to
handle deeper relationships and alleviate error propagation
in end-to-end models. Data augmentation techniques (Jia
et al. 2019; Pino et al. 2019b; Bahar et al. 2019; Pino
et al. 2019a) are proposed to utilize ASR and MT cor-
pora to generate fake data. Semi-supervised training (Wang
et al. 2019) brings great gains to end-to-end models, such
as knowledge distillation (Liu et al. 2019a), modality ag-
nostic meta-learning (Indurthi et al. 2019), model adapta-
tion (Di Gangi et al. 2020) and son on. Curriculum learn-
ing (Kano, Sakti, and Nakamura 2018; Wang et al. 2020) is
proposed to improve performance of ST. Liu et al. (2019b);
Liu, Spanakis, and Niehues (2020) optimize the decod-
ing strategy to achieve low-latency end-to-end ST. (Chuang
et al. 2020; Salesky and Black 2020; Salesky, Sperber, and
Black 2019) explore additional features to enhance end-to-
end models. The most related work may be Wang et al.
(2020), however, there are much differences between our
method and theirs. Wang et al. (2020) focused on the pre-



train method to improve the speech translation performance,
while LUT focuses on the neural model. Specifically, LUT
can decouple the modeling process to better leverage the
speech-transcription-translation triple supervision.
Knowledge Distillation in MT Representations learned by
pre-training have been widely applied in the field of ma-
chine translation. There’re different modeling granularities
for representation learning, which can be utilized by fine-
tuning, freezing, or distillation. Many knowledge distillation
methods have been extended to transfer the rich knowledge
using teacher-student architecture (Gou et al. 2020). Kim
and Rush (2016) extended word-level knowledge distillation
into sequence-level knowledge distillation for directing the
sequence distribution of the student model. Sequence-level
knowledge distillation was further explained from the per-
spective of data augmentation and regularization in Gordon
and Duh (2019). Zhou, Neubig, and Gu (2019) studied how
knowledge distillation affects the non-autoregressive MT
models by empirical analysis. Lample and Conneau (2019);
Edunov, Baevski, and Auli (2019) feeded the last layer of
ELMo or BERT to the encoder of MT model for learning
better representation. Yang et al. (2019) firstly leveraged
ssymptotic distillation to transfer the pre-training informa-
tion to MT model.

6 Conclusion
In this paper, we propose LUT, a novel and unified train-
ing framework to decouple the end-to-end speech transla-
tion task. We empirically validate the effectiveness of our
approach as compared to previous methods on two bench-
mark datasets, and empirical analysis suggests that LUT is
capable of capturing both acoustic and semantic information
properly.
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7 Appendix
7.1 Model Sizes for ST Systems
We make a detailed comparison between the performance
of end-to-end systems and cascaded systems with different
model parameter sizes. Compared with the original pipeline
system, the pipeline (small) system is a cascade of speech
recognition models and machine translation models with
halved layers. Results in Table 10 prove that end-to-end
models have advantages in balancing performance and the
size of the total system parameters.

En-Fr ParameterASR↓ MT↑ ST↑
Pipeline (small) 21.3 19.5 15.9 ≈ 129M
Pipeline 16.6 20.98 16.38 ≈ 209M
LUT - - 16.70 ≈ 144M

Table 10: Performance with greedy search for ASR, MT
and ST tasks on En-Fr test set with different model sizes.
Pipeline: consists of independently trained ASR and MT
systems (see details in Section 3.3).

7.2 Attention Visualization

Figure 2: The visualization of attention for different mod-
ule layers. (a), (b) visualize the attention of the last layer of
acoustic transducer and the last layer of semantic encoder re-
spectively. Both the horizontal and vertical coordinates rep-
resent the same sequence of speech frames.

We analyze the learned representation through visualiza-
tions of the acoustic and semantic modeling’s attention be-
tween layers. Figure 2 shows an example of the distribution
of attention weights. The attention of acoustic modeling is
local and monotonous from the first layer to the fourth layer,
matching the behavior of ASR. The attention of semantic en-
coder gradually tends to be smoothed out across the global
context, which is beneficial to modeling semantic informa-
tion. The observation is in line with our hypothesis.

7.3 Correlation Analysis
The quality of the hidden state obtained in our second stage
depends largely on the accuracy of the acoustic modeling in
the first stage. Using the CTC loss function introduced in
the first stage, we can also predict recognition results while
predicting translation results. We can diagnose whether the
wrong prediction for translation is caused by the wrong
acoustic modeling in this way. We use samples from the test
set to analyze the relationship between translation quality
and acoustic modeling, which are evaluated by BLEU and
WER respectively. We draw scatter plots of WER and BLEU
on the test set, as can be seen in Figure 3. It can be seen that
samples with a higher WER can usually obtain a translation
result with a lower BLEU. Statistically, the Pearson corre-
lation coefficient between BLEU and WER is −0.205 < 0
(with p-value = 2e−16 << 0.05), which indicates the sig-
nificant negative relation between them. At the same time,
a minority of samples with a higher WER can obtain trans-
lation results with a higher BLEU, which indicates that our
ST model has a certain degree of robustness to recognition
errors.
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Figure 3: Relationship between WER and BLEU for En-Fr
test set.

7.4 Effect of Hyper-parameters
Table 11

7.5 Shallower or Deeper
Table 12

7.6 Semi-supervised Fine-tuning Strategy
For experiments in the



0.80-0.05-0.15 17.31
0.50-0.10-0.40 17.17
0.50-0.05-0.45 17.55
0.50-0.01-0.49 16.87
0.40-0.20-0.40 17.00
0.30-0.40-0.30 17.34
0.20-0.05-0.75 17.41

Table 11: Performance with greedy decoding.

6-6-6 -
6-6-4 17.15
5-5-4 17.58
4-4-4 17.55
3-3-4 16.39
2-2-4 14.13

Table 12: Performance with greedy decoding. ”-” means
failing.
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