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Abstract

Speech-to-text translation (ST), which directly translates the
source language speech to the target language text, has at-
tracted intensive attention recently. However, the combina-
tion of speech recognition and machine translation in a single
model poses a heavy burden on the direct cross-modal cross-
lingual mapping. To reduce the learning difficulty, we pro-
pose COnSecutive Transcription and Translation (COSTT),
an integral framework for speech-to-text translation. Our
method is verified on three mainstream datasets, includ-
ing Augmented LibriSpeech English-French dataset, TED
English-German dataset, and TED English-Chinese dataset.
Experiments show that our proposed COSTT outperforms
the previous state-of-the-art methods. Our code and models
will be released.

1 Introduction
Speech translation (ST) aims at translating from source lan-
guage speech into the target language text. Traditionally,
it is realized by cascading an automatic speech recogni-
tion (ASR) and a machine translation (MT) (Sperber et al.
2017, 2019b; Zhang et al. 2019; Beck, Cohn, and Haffari
2019; Cheng et al. 2019). Recently, end-to-end ST has at-
tracted much attention due to its appealing properties, such
as lower latency, smaller model size, and less error accumu-
lation (Liu et al. 2019a, 2018; Weiss et al. 2017; Bérard
et al. 2018; Duong et al. 2016; Jia et al. 2019).

Although end-to-end systems are very promising, cas-
caded systems still dominate practical deployment in indus-
try. The possible reasons are: a) Most research work com-
pared cascaded and end-to-end models under identical data
situations. However, in practice, the cascaded system can
benefit from the accumulating independent speech recogni-
tion or machine translation data, while the end-to-end sys-
tem still suffers from the lack of end-to-end corpora. b) De-
spite the advantage of reducing error accumulation, the end-
to-end system has to integrate multiple complex deep learn-
ing tasks into a single model to solve the task, which intro-
duces heavy burden for the cross-modal and cross-lingual
mapping. Therefore, it is still an open problem whether end-
to-end models or cascaded models are generally stronger.
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We argue that a desirable ST model should take advan-
tages of both end-to-end and cascaded models and acquire
the practically acceptable capabilities as follows: a) it should
be end-to-end to avoid error accumulation; b) it should be
flexible enough to leverage large-scale independent ASR or
MT data. At present, few existing end-to-end models can
meet all these goals. Most studies resort to pre-training or
multitask learning to bridge the benefits of cascaded and
end-to-end models (Bansal et al. 2018; Sung et al. 2019;
Sperber et al. 2019a). A de-facto framework usually initial-
izes the ST model with the encoder trained from ASR data
(i.e. source audio and source text pairs) and then fine-tunes
on a speech translation dataset to make the cross-lingual
translation. However, it is still challenging for these meth-
ods to leverage the bilingual MT data, due to the lack of
intermediate text translating stage.

Our idea is motivated by two motivating insights from
ASR and MT models. a) A branch of ASR models has
intermediate steps to extract acoustic feature and decode
phonemes, before emitting transcription; and b) Speech
translation can benefit from decoding the source speech tran-
scription in addition to the target translation text. We pro-
pose COSTT, a unified speech translation framework with
consecutive decoding for jointly modeling speech recog-
nition and translation. COSTT consists of two phases, an
acoustic-semantic modeling phase (AS) and a transcription-
translation modeling phase (TT). The AS phase accepts the
speech features and generates compressed acoustic repre-
sentations. For TT phases, we jointly model both the source
and target text in a single shared decoder, which directly
generates the speech text sequence and the translation se-
quence at one pass. This architecture is closer to cascaded
translation while maintaining the benefits of end-to-end
models. The combination of the AS and the first-part out-
put of the TT phase serves as an ASR model; the TT phase
alone serves as an MT model; while the whole makes an
end-to-end speech translation by ignoring the first-part of TT
output. Simple and effective, COSTT is powerful enough to
cover the advantage of ASR, MT, and ST models simultane-
ously.

The contributions of this paper are as follows: 1) We pro-
pose COSTT, a unified training framework with consecu-
tive decoding which bridges the benefits of both cascaded
and end-to-end models. 2) As a benefit of explicit multi-



phase modeling, COSTT facilitates the use of parallel bilin-
gual text corpus, which is difficult for traditional end-to-end
ST models. 3) COSTT achieves state-of-the-art results on
three popular benchmark datasets.

2 Related Work
For speech translation, there are two main research
paradigms, the cascaded system and the end-to-end
model (Sperber and Paulik 2020; Jan et al. 2018, 2019).

For cascaded system, the most concerned point is how to
avoid early decisions, relieve error propagation and better
integrate the separately trained ASR and MT modules. To
relieve the problem of error propagation and tighter couple
cascaded systems: a) robust translation models (Cheng et al.
2018, 2019) introduce synthetic ASR errors and ASR related
features into the source side of MT corpora; b) techniques
such as domain adaptation (Liu et al. 2003; Fügen 2008), re-
segmention (Matusov, Mauser, and Ney 2006), punctuation
restoration (Fügen 2008), disfluency detection (Fitzgerald,
Hall, and Jelinek 2009) and so on, are proposed to provide
the translation model with well-formed and domain matched
text inputs.

And a paradigm shift towards end-to-end system is
emerging to alleviate the drawbacks of cascaded systems.
Bérard et al. (2016); Duong et al. (2016) have given the first
proof of the potential of end-to-end speech-to-text transla-
tion, which has attracted intensive attentions recently (Vila
et al. 2018; Salesky et al. 2018; Salesky, Sperber, and Waibel
2019; Di Gangi, Negri, and Turchi 2019; Bahar, Bieschke,
and Ney 2019; Di Gangi et al. 2019; Inaguma et al. 2020).
Many works have proved that pre-training then transfer-
ring (Weiss et al. 2017; Bérard et al. 2018; Bansal et al.
2018; Stoian, Bansal, and Goldwater 2020) and multi-task
learning (Vydana et al. 2020) can significantly improve
the performance of end-to-end models. The two-pass de-
coding (Sung et al. 2019) and attention-passing (Anasta-
sopoulos and Chiang 2018; Sperber et al. 2019a) tech-
niques are proposed to handle the relatively deeper rela-
tionships and alleviate error propagation in end-to-end mod-
els. Many data augmentation techniques (Jia et al. 2019;
Pino et al. 2019b; Bahar et al. 2019; Pino et al. 2019a) are
proposed to utilize external ASR and MT corpora. Many
semi-supervised training (Wang et al. 2019) methods bring
great gain to end-to-end models, such as knowledge distilla-
tion (Liu et al. 2019a), modality agnostic meta-learning (In-
durthi et al. 2019), model adaptation (Di Gangi et al. 2020)
and so on. Curriculum learning (Kano, Sakti, and Naka-
mura 2018; Wang et al. 2020) is proposed to improve perfor-
mance of ST models. Liu et al. (2019b); Liu, Spanakis, and
Niehues (2020) optimize the decoding strategy to achieve
low-latency end-to-end speech translation. (Chuang et al.
2020; Salesky and Black 2020; Salesky, Sperber, and Black
2019) explore additional features to enhance end-to-end
models. How to efficiently utilize ASR and MT parallel data
is a big problem for ST. However, existing methods mostly
resort to ordinary pretraining or multitask learning to inte-
grate external ASR resources, which may face the issue of
catastrophic forgetting and modal mismatch. And it is still

challenging for previous methods to leverage external bilin-
gual MT data efficiently.

3 Proposed COSTT Approach
3.1 Overview
The detailed framework of our method is shown in Fig-
ure 1. To be specific, the speech translation model accepts
the original audio feature as input and outputs the target
text sequence. We divide our method into two phases, in-
cluding the acoustic-semantic modeling phase (AS) and the
transcription-translation modeling phase (TT). Firstly, the
AS phase accepts the speech features, outputs the acoustic
representation, and encodes the shrunk acoustic representa-
tion into semantic representation. In this work, the small-
grained unit, phonemes are selected as the acoustic modeling
unit. Then, the TT phase accepts the AS’s representation and
consecutively outputs source transcription and target trans-
lation text sequences with a single shared decoder.

Problem Formulation The speech translation corpus usu-
ally contains speech-transcription-translation triples. We
add phoneme sequences to make up quadruples, denoted as
S = {(x,u, z,y)} (More details about the data prepara-
tion can be seen in Section 4). Specially, x = (x1, ..., xTx

)
is a sequence of acoustic features. u = (u1, ..., uTu

), z =
(z1, ..., zTz

), and y = (y1, ..., yTy
) represents the corre-

sponding phoneme sequence in source language, transcrip-
tion in source language and the translation in target lan-
guage respectively. Meanwhile, A = {(z′,y′)} represents
the external text translation corpus, which can be utilized
for pre-training the decoder. Usually, the amount of end-to-
end speech translation corpus is much smaller than that of
text translation, i.e. |S| � |A|.

3.2 Acoustic-Semantic Modeling
The acoustic-semantic modeling phase takes the input of
low-level audio features x and outputs a series of vectors
hAS corresponding to the phoneme sequence u in the source
language. Different from the general sequence-to-sequence
models, two modifications are introduced. Firstly, in order
to preserve more acoustic information, we introduce the
supervision signal of the connectionist temporal classifica-
tion (CTC) loss function, a scalable, end-to-end approach
to monotonic sequence transduction (Graves et al. 2006;
Salazar, Kirchhoff, and Huang 2019). Secondly, since the
length of audio features is much larger than that of source
phoneme (Tx � Tu), we introduce a shrinking method
which can skip the blank-dominated steps to reduce the en-
coded sequence length.

Self-Attention with CTC General preprocessing includes
down-sampling and linear layers. Down-sampling refers to
the dimensionality reduction processing of the input audio
features in the time and frequency domains. In order to sim-
plify the network, we adopt physical dimensionality reduc-
tion, that is, a method of sampling one frame every three
frames. The linear layer maps the length of the frequency
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see you <st> à plus <eos>

<asr> see you <st> à plus
S - IY1 ŏ UW1 -

S IY1 … UW1

Acoustic Unit Shrinking

Multi-Head Self Attention

Self-Attention with CTC

Figure 1: Overview of the proposed COSTT. It consists of two phases, an acoustic-semantic modeling phase (AS) and a
transcription-translation phase (TT). During AS phase, CTC loss is adopted against phoneme labels corresponding to source-
text. The TT phase decodes source-text and target-text in a single sequence consecutively.

domain feature of the audio feature to the preset network
hidden layer size. After preprocessing, multiple Transformer
blocks are stacked for acoustic feature extraction.

ĥAS = Attention(Linear(Down-sample(x))) (1)

Finally, the softmax operator is applied to the result of
the affine transformation to obtain the probability of the
phoneme sequence. CTC loss is adopted to accelerate the
convergence of acoustic modeling. CTC assumes Tu ≤ Tx,
and defines an intermediate alphabet V ′ = V ∪ {blank}. A
path π is defined as a Tx-length sequence of intermediate
labels π = (π1, ..., πTx) ∈ V

′Tx . And a many-to-one map-
ping is defined from paths to output sequences by removing
blank symbols and consecutively repeated labels.

The conditional probability of a given labelling u ∈ V ′Tu

can be modeled by marginalizing over all paths correspond-
ing to it:

log pctc(u|x) = log
∑

π∈B−1(u)

p(π|ĥAS)

= log
∑

π∈B−1

t∑
t′=1

p(πt′ , t
′|ĥAS)

(2)

The distribution over the set V ′Tx of path π is defined by
the probability of a sequence of conditionally-independent
outputs, which can be calculated non-autoregressively. And
p(πt′ , t

′|S) is computed by applying the softmax function
to logits. Finally, the objective training function during AS
phase is defined as:

LAS = − log pctc(u|x) (3)

Acoustic Unit Shrinking The shrinking layer aims at re-
ducing the potential blank frames, and repeated frames. The

details can be seen in the sub-figure of the lower left of Fig-
ure 1. The method is mainly founded on the studies of Chen
et al. (2016); Yi, Wang, and Xu (2019). We adopt the imple-
mentation by removing the blank frames and averaging the
repeated frames. Without the interruption of blank and re-
peated frames, the language modeling ability should be bet-
ter in theory. Blank frames can be detected according to the
spike characteristics of CTC probability distribution.

h′
AS = Shrink(ĥAS , pctc(u|x)) (4)

Then, similarly, after shrinking, multiple Transformer
blocks are stacked to extract higher-level semantic represen-
tations and result in the final output hAS .

hAS = Attention(h′
AS) (5)

3.3 Transcription-Translation Modeling
We jointly model the transcription and translation generation
in a single shared decoder, which takes the acoustic repre-
sentation hAS as the input and generates the source text z
and target text y. This TT phase is stacked with T Trans-
former blocks, consisting of multi-head attention layers and
feed-forward networks.

hTT = Transformer([z,y],hAS) (6)

As shown in Figure 1, the decoder output is the tandem re-
sult of the transcription and translation sequences, joined
by the task identificator token (“<asr>” for recognition and
“<st>” for translation), marked as [z,y]. That is to say, the
model is able to continuously predict the transcription se-
quence and the translation sequence. The training objective
of the TT phase is the cross entropy between prediction se-
quence and target sequence.

LTT = − log p([z,y]|x) (7)

Compared with the multi-task learning method, consecu-
tive decoding can make prediction from easy (transcription)



speech 135-19215-0118.wav
phonemes

Y UW1 <space> M AH1 S T <space> M EY1 K <space>
AH0 <space> D R IY1 M <space> W ER1 L <space> ER0
AW1 N D <space> DH AH0 <space> B R AY1 D
transcription

you must make a dream whirl around the bride
translation

il faudrait faire tourbillonner un songe autour de l’ épousée .

Table 1: An example of the speech-phoneme-transcription-
translation quadruples. Phonemes can be converted from the
transcription text.

to hard (translation) tasks, alleviating the decoding pres-
sure. For example, when predicting the translation sequence,
since the corresponding transliteration sequence has been
decoded, that is, the intermediate recognition result of the
known speech translation and the source of information for
decoding, the translation sequence can be improved.

Pre-train the Consecutive Decoder Generally, it is
straightforward to use ASR corpus to improve the perfor-
mance of ST systems, but is non-trivial to utilize MT cor-
pus. Taking advantage of the structure of consecutive decod-
ing, we propose a method to enhance the performance of ST
systems by means of external MT paired data. Inspired by
translation language modeling (TLM) in XLM (Lample and
Conneau 2019), we use a masked loss function to pre-train
TT phase. Specifically, we use external data inA to pre-train
the parameters of the TT part. Different from the end-to-
end training stage, there is no audio feature as input during
pre-training, so cross-attention cannot attend to the output of
the previous AS phase. We use an all-zero constant, marked
as hASblank

to substitute the encoded representations (hAS)
from TT phase to be consistent with fine-tuning. When cal-
culating the objective function, we mask the loss for pre-
diction of the recognition result, and make the decoder pre-
dicts the translation sequence when aware of the input of the
transcription sequence. The translation loss of the TT phase
during pre-training only includes the masked cross entropy:

LTTPT = −
Ty∑
i=1

log p(yi|z, y<i) (8)

We exploit joint learning to integrate our unified ST
model. The total training objective is as follows:

L = αLAS + (1− α)LTT (9)

where α is a tunable parameter to balance the objectives of
different phases.

4 Experiments
4.1 Dataset and Preprocessing
We conduct experiments on three popular publicly avail-
able datasets, including Augmented LibriSpeech English-
French dataset (Kocabiyikoglu, Besacier, and Kraif 2018),

TED English-German dataset (Jan et al. 2018) and TED
English-Chinese dataset (Liu et al. 2019a).

Augmented LibriSpeech English-French Dataset Aug-
mented LibriSpeech is built by automatically aligning e-
books in French with English utterances of LibriSpeech.
The dataset includes quadruplets: source audio files in En-
glish, transcriptions in English, translations in French from
the alignment of e-books, and augmented translation refer-
ences via Google Translate. We experiment on the 100 hours
clean train set for training, with 2 hours development set and
4 hours test set, corresponding to 47,271, 1071, and 2048 ut-
terances respectively.

TED English-German Dataset English-German TED is
the KIT speech translation corpus, which is built by auto-
matically aligning English audios with SRT transcripts for
English and German from TED. The raw data, including
long wave files, English transcriptions, and the correspond-
ing German translations, are segmented with time stamps
and made forced alignments using the gentle tool kit1, ac-
cording to the officially released version. We utilize the at-
tached timestamps to segment a raw long audio into chunks
and remove samples missing the target language translation.
It should be noted that some transcriptions are not aligned
with the corresponding audio well. Noisy data is harmful to
models’ performance, which can be avoided by data filter-
ing, re-alignment and re-segmentation (Liu et al. 2018). In
this paper, we directly use the original data as training data to
verify our method, with a size of 272 hours and 171,121 seg-
mentations. We use dev2010 as validation set, and tst2010,
tst2013, tst2014, tst2015 as test set, corresponding to 653,
1337, 793, 957 and 1177 utterances respectively.

TED English-Chinese Dataset English-Chinese TED is
crawled from TED website2 and released by (Liu et al.
2019a) as a benchmark for speech translation from English
audio to Chinese text. Following the previous work (Liu
et al. 2019a), we use dev2010 as development set and
tst2015 as test set. The raw long audio is segmented based
on timestamps for complete semantic information. Finally,
we get 524 hours train set, 1.5 hours test set and 2.5 hours
test set, corresponding to 308,660, 835, 1223 utterances re-
spectively.

WMT Machine Translation Corpus We use WMT143

English-to-French and English-to-German training data, and
WMT204 English-to-Chinese training data as the external
MT parallel corpus (∈ A) in the expanded experimental set-
ting for broad reproducibility. We pre-processed all of the
data of specific language pairs, and filtered sentence pairs
whose total length exceeds 500. We shuffled the data and

1https://github.com/lowerquality/gentle
2https://www.ted.com
3https://www.statmt.org/wmt14/translation-task.html
4http://www.statmt.org/wmt20/translation-task.html



Method
Enc Pre-train
(speech data)

Dec Pre-train
(text data) BLEU

MT system
Transformer MT - - 21.51

Base setting
LSTM ST (Bérard et al. 2018) 7 7 12.90
+pre-train+multitask (Bérard et al. 2018) 3 3 13.40

LSTM ST+pre-train (Inaguma et al. 2020) 3 3 16.68
Transformer+pre-train (Liu et al. 2019a) 3 3 14.30

+knowledge distillation (Liu et al. 2019a) 3 3 17.02
TCEN-LSTM (Wang et al. 2019) 3 3 17.05
Transformer+ASR pre-train (Wang et al. 2020) 3 7 15.97

+curriculum pre-train (Wang et al. 2020) 3 7 17.66
COSTT 7 7 17.83

Expanded setting
LSTM+pre-train+SpecAugment (Bahar et al. 2019) 3(236h) 3 17.00
Multi-task+pre-train (Inaguma et al. 2019) 3(472h) 7 17.60
Transformer+ASR pre-train (Wang et al. 2020) 3(960h) 7 16.90

+curriculum pre-train (Wang et al. 2020) 3(960h) 7 18.01
COSTT 3(100h) 3(1M) 18.23

Table 2: Performance for MT, ST tasks on Augmented Librispeech English-French test set. Our proposed COSTT achieves the
best results in both base and expanded settings.

randomly selected a subset of 1 million for the following
experiments and analysis.

4.2 Experimental Setup
Our acoustic features are 80-dimensional log-Mel filter
banks extracted with a step size of 10ms and window size
of 25ms and extended with mean sub-traction and variance
normalization. The features are stacked with 5 frames to
the right. For all source language text data, we lower case
all the texts, tokenize and remove the punctuation to make
the data more consistent with the output of ASR. For target
French and German text data, we lower case all the texts,
tokenize and apply normalize punctuations with the Moses
scripts5. For target Chinese text data, we use the raw re-
leased segmented results. For English-French and English-
German datasets, we apply BPE6 (Sennrich, Haddow, and
Birch 2015) to the combination of source and target text
to obtain shared subword units. And for English-Chinese
dataset, we apply BPE to the source text and target text
respectively. The number of merge operations in BPE is
set to 8k for all datasets. In order to simplify, we use the
open-source grapheme to phoneme tool7 to map the tran-
scription to the phoneme sequence (An example in Table
1). The alphabet of labels V includes the union of sub-
word vocabulary and phoneme vocabulary, plus a few spe-
cial symbols (including “<asr>”, “<st>” and “blank”).
For English-French and English-German corpora, we report
case-insensitive BLEU scores by multi-bleu.pl8 script

5https://github.com/moses-smt/mosesdecoder
6https://github.com/rsennrich/subword-nmt
7https://github.com/Kyubyong/g2p
8https://github.com/moses-smt/mosesdecoder/scripts/generic/multi-

bleu.perl

for the evaluation of translation. And for English-Chinese
corpus, we report character-level BLEU scores. We use word
error rates (WER) and phoneme error rates (PER) to evalu-
ate the transcription and phoneme sequences, respectively.

We use a similar hyperparameter setting with the base
Transformer model (Vaswani et al. 2017). For English-
French Dataset, the number of transformer blocks is set
to 8 and 4 for the acoustic-semantic (AS) phase and
the transcription-translation (TT) phase, respectively. For
English-German and English-Chinese Datasets, the number
of transformer blocks is set to 12 and 6 for the acoustic-
semantic (AS) phase and the transcription-translation (TT)
phase, respectively. And phoneme supervision is added to
the middle layer of AS phase for all datasets. SpecAugment
strategy (Park et al. 2019) is adopted to avoid overfitting
with frequency masking (F = 30, mF = 2) and time mask-
ing (T = 40, mT = 2). All samples are batched together with
20000-frame features by an approximate feature sequence
length during training. We train our models on 1 NVIDIA
V100 GPUs with a maximum number of 400k training steps.
We use the greedy search decoding strategy for our experi-
mental settings. The maximum decoding length is set to 500
for our models with consecutive decoding and 250 for other
methods on all datasets. α in Equation 9 is set to 0.5 for
all datasets (We have searched the value of α using a step of
0.2.). We design different workflows for our method training
from scratch and training with pre-training the consecutive
decoder. More details are in the Appendix.

5 Results

5.1 Baselines

We compare with systems in different settings:



Method
Enc Pre-train
(speech data)

Dec Pre-train
(text data) tst2010 tst2013 tst2014 tst2015 Avg

MT system
Transformer MT - - 25.72 27.87 22.23 23.58 24.85

Base setting
ESPnet (Inaguma et al. 2020) 7 7 13.77 12.50 11.50 12.68 12.61

+enc pre-train 3 7 14.46 13.12 11.62 11.30 12.63
+enc dec pre-train 3 3 14.98 13.54 12.33 11.67 13.13

Transformer+ASR pre-train (Wang et al. 2020) 3 7 - 15.35 - - -
+curriculum pre-train (Wang et al. 2020) 3 7 - 16.27 - - -

COSTT 7 7 19.54 16.30 14.53 16.42 16.70

Expanded setting
Multi-task+pre-train (Inaguma et al. 2019) 3(472h) 7 - 14.60 - - -
CL-fast* (Kano, Sakti, and Nakamura 2018) 3(479h) 7 - 14.33 - - -
TCEN-LSTM (Wang et al. 2019) 3(479h) 3(40M) 17.61 17.67 15.73 14.94 16.49
Transformer+curriculum pre-train (Wang et al. 2020) 3(479h) 3(4M) - 18.15 - - -
COSTT 3(272h) 3(1M) 21.31 18.63 16.20 17.72 18.47

Table 3: Performance (BLEU) for MT, ST tasks on English-German TED test sets. *: re-implemented by Wang et al. (2020).
Our proposed COSTT consistently achieves the best performance across all test sets.

Method
Enc Pre-train
(speech data)

Dec Pre-train
(text data) BLEU

MT system
Transformer MT - - 23.19

Base setting
Transformer+pre-train (Liu et al. 2019a) 3 3 16.80

+knowledge distillation (Liu et al. 2019a) 3 3 19.55
Multi-task+pre-train* (Inaguma et al. 2019)(re-implemented) 3 7 20.45
COSTT 7 7 21.12

Expanded setting
COSTT 3(524h) 3(1M) 22.16

Table 4: Performance for MT, ST tasks on English-Chinese TED test set. *: re-implemented. Our proposed COSTT achieves
the best results.

Base setting: ST models are trained with only ST triple
corpus.

Expanded setting: ST models are trained with ST triple
corpus augmented with external ASR and MT corpus. In
the context of expanded setting, Bahar et al. (2019) apply
the SpecAugment (Park et al. 2019) with a total of 236h of
speech for ASR pre-training. Inaguma et al. (2019) combine
three ST datasets of 472h training data to train a multilingual
ST model. Wang et al. (2019) introduce an additional 272h
ASR corpus and 41M parallel data from WMT18 to enhance
the ST.

MT system: Text translation models are trained with man-
ual transcribed transcription-translation pairs, which can be
regarded as the upper bound of speech translation tasks.

5.2 Main Results
We conduct experiments on three public datasets.

Method BLEU

En→Fr
Pipeline 17.58
COSTT 18.23

En→De
Pipeline 17.40
COSTT 18.63

En→Zh
Pipeline 21.36
COSTT 22.16

Table 5: COSTT versus cascaded systems on Augmented
Librispeech En-Fr test set, En-De TED tst2013 set and En-
Zh tst2015 set. “Pipeline” systems consist of separate ASR
and MT models trained independently.

Results on Augmented Librispeech For En-Fr experi-
ments, we compared the performance with existing end-to-
end methods in Table 2. Clearly, COSTT outscored the pre-
vious best results by more than 0.5 BLEU in the base set-
ting and 0.6 BLEU in the expanded setting, respectively.
Specifically, in the base setting, the model we proposed out-



performed ESPnet, which was equipped with both a well
pre-trained encoder and decoder. We also achieved better
results than a knowledge distillation baseline in which an
MT model was introduced to teach the ST model (Liu et al.
2019a). Different from previous work, COSTT can make
full use of the machine translation corpus. With an additional
1 million sentence pairs, we achieve +0.7 BLEU score im-
provements (17.51 v.s. 18.23). This proposal promises great
potential for the application of the COSTT. In a nutshell,
simple yet effective, COSTT achieves the best performance
in this benchmark dataset in terms of BLEU.

Results on English-German TED For En-De experi-
ments, we compared the performance with existing end-to-
end methods in Table 3. Unlike that of Librispeech English-
French, this dataset is noisy, and the transcriptions do not
align well with the corresponding audios. As a result, there
is a wide gap between the performance of the ST system
and the upper bound of the ST (MT). We suppose it would
be more beneficial to carry out data filtering. Overall, our
method had +0.5 BLEU score advantage as compared to pre-
vious competitors on tst2013 in the expanded setting. This
trend is consistent with that in the Librispeech dataset.

Results on English-Chinese TED For En-Zh experi-
ments, we compared the performance with existing end-to-
end methods in Table 4. COSTT outperformed the previ-
ous best methods obviously by more than 1.5 BLEU in the
base setting and 1.7 BLEU in the expanded setting, respec-
tively. Especially, under the base setting, COSTT exceeded
the Transformer-based ST model augmented by knowledge
distillation with a big margin, proving the validity of our
unified framework.

Comparison with Cascaded Systems In Table 5, we
compare the performance of our E2E models with the cas-
caded systems. It shows that E2E models are outstand-
ing or comparable on all En→Fr/De/Zh tasks, proving our
method’s capacity to combine the separate ASR and MT
tasks in a model.

5.3 Ablation Study
We use an ablation study to evaluate the importance of dif-
ferent modules in our methods. The results in Table 6 show
that all the methods adapted are positive for the model per-
formance, and the benefits of different parts can be super-
imposed. Models with consecutive decoding are able to pre-
dict both the recognition and translation, for which we also
report WER and PER to evaluate the performance of dif-
ferent modeling phase. It has been proved that consecutive
decoding brings the gain of 1 BLEU compared with the base
model and pre-training decoder can bring improvements to
all three metrics.

5.4 Case Study on English-French
The cases in Table 7 shows that COSTT has obvious struc-
tural advantages in solving missed translation, mistransla-
tion, and fault tolerance. For instance: #1, the base model

BLEU↑ WER↓ PER↓
COSTT 18.23 14.60 10.30

w/o PT Dec 17.51 15.30 11.90
w/o CD 16.57 - -
w/o Shrink 16.40 - -
w/o AS loss * 15.48 - -
w/o AS loss 11.24 - -

Table 6: Benefits of each component in COSTT on En-Fr
test set. “PT Dec” stands for pre-training the successive de-
coder. “CD” represents using the consecutive decoder. “*”
means using ASR pre-training as initialization.

Speech #1 766-144485-0043.wav
Transcript said the doctor yes
Target dit le docteur , oui .
Base ST dit le docteur .
COSTT <asr> said the doctor yes <ast> dit le doc-

teur , oui .

Speech #2 2488-36617-0066.wav
Transcript i rushed aboard
Target je me précipitai à bord.
Base ST je me précipitai vers l’ avant .
COSTT <asr> i rushed aboard <ast> je me

précipitai à bord .

Speech #3 766-144485-0098.wav
Transcript is there any news today
Target y a-t-il des nouvelles aujourd’ hui ?
Base ST est-ce que j’ ai déjà utilisé aujourd’ hui ?
COSTT <asr> is there any news to day <ast> y a-t-

il des nouvelles aujourd’ hui ?

Table 7: Examples of speech translation generated by
COSTT and the baseline ST model. Words in red highlight
the difference. Words underlined, as generated by COSTT,
contributes to the improved translation results.

missed the translation of “yes” in the audio, whereas our
method produced a completely correct translation. After lis-
tening to the original audio, it is suspected that the miss-
ing translation is due to an unusual pause between “doctor”
and “yes”. #2, the base model mistranslated the “aboard”
in the audio into “vers l’ avant”(“forward” in English), yet
our method could correctly translate it into “a bord” based
on the correct transcription prediction. The reason for the
mistranslation may be that the audio clips are pronounced
similarly, thus confusing the translation model. #3, the base
model translated erroneously most of the content, and our
model also predicted “today” in the audio as “to day”. How-
ever, in the end, our method was able to predict the transla-
tion result completely and correctly.

6 Conclusion
We propose COSTT, a novel and unified training frame-
work for jointly speech recognition and speech translation.
We use the consecutive decoding strategy to realize the se-
quential prediction of the transcription and translation se-
quences, which is more in line with human cognitive prin-



ciples. By pre-training the decoder, we can directly mask
better use of the parallel data of MT. Additionally, CTC aux-
iliary loss, and shrinking operation strategies are adopted to
enhance our method benefiting from the flexible structure.
Experimental results prove the effectiveness of our frame-
work and it has great prospects for promoting the application
of speech translation.
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7 Appendix
7.1 Workflows for Different Settings
We design different workflows for our method training from
scratch (marked as workflow #1, seen in Algorithm 1) and
training with pre-training the consecutive decoder (marked
as workflow #2, seen in Algorithm 2). For workflow #1,



ST model is totally supervised training from scratch with
(x,u,y) ∈ S , as Equation 9. For workflow #2, training is
done as the following three steps: a) pre-training the con-
secutive decoder (ConDec) with (z′,y′) ∈ A with cross-
entropy, as Equation 8. b) pre-training the acoustic modeling
(AM) with (x,u) ∈ S with CTC loss, as Equation 3. c) fine-
tuning the ST model with (x,u, z,y) ∈ S , as Equation 9
(the same as workflow #1). Workflow #2 is determined af-
ter many attempts to better avoid the catastrophic forgetting
of pre-trained knowledge. Figure 2 shows the convergence

Algorithm 1 Workingflow #1 for our ST models

1: # training from scratch (θ0AS → θ1AS , θ
0
TT → θ1TT )

2: while not converged do
3: supervised training ST with (x,u,y) ∈ S
4: end while
5: return ST with θ1AS , θ

1
TT

Algorithm 2 Workingflow #2 for our ST models

1: # pre-training ConDec (θ0AS → θ0AS , θ
0
TT → θ1TT )

2: while not converged do
3: CE loss guided supervised training ConDec with

(z′,y′) ∈ A
4: end while
5: # pre-training AM (θ0AS → θ1AS , θ

1
TT → θ1TT )

6: while not converged do
7: CTC loss guided supervised training AM with

(x,u) ∈ S
8: end while
9: # fine-tuning ST (θ1AS → θ2AS , θ

1
TT → θ2TT )

10: while not converged do
11: Supervised training ST with (x,u, z,y) ∈ S
12: end while
13: return ST with θ2AS , θ

2
TT

curve on the English-French validation set of the two work-
flows. It proves that workflow #2 with pre-training the con-
secutive decoder can get a better initialization and converge
better benefiting from our flexible model structure.

7.2 Parameters of ST systems
The parameter sizes of different systems are shown in Ta-
ble 8. The pipeline system needs a separate ASR model
and MT model, so its parameters are doubled. Our method
COSTT only needs the same parameters as the vanilla
end-to-end model, but it can achieve superior performance
thanks to the consecutive decoding mechanism.

7.3 Effects of Shrinking Mechanism
In order to verify whether the shrinking mechanism has
achieved the expected effect, we collected the sequence
length of the encoded hidden layer before and after shrinking
and the length distribution of the gold phoneme sequence.
As shown in Figure 3, the sequence length of the shrunk
acoustic unit and the distribution of phoneme length are al-
most the same. According to statistics in Table 9, for more
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Figure 2: BLEU scores on Augmented Librispeech valida-
tion set for different workflows.

Model Params
Pipeline 110M
E2E 55M
COSTT (12 L) 55M
COSTT (18 L) 76M

Table 8: Statistics of parameters of different ST systems.
E2E: the vanilla end-to-end ST system.
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Figure 3: Length distribution of the raw acoustic features,
the shrunk acoustic units and the gold phoneme sequences
on English-French training set

than 90% of the samples, the absolute error between the
length of the shrunk acoustic unit and the length of the gold
phoneme sequence is within 3. Moreover, the length of the
shrunk acoustic unit is significantly reduced compared to
the length of the original acoustic feature. The results show
that the shrinking mechanism can detect blank frames and
repeated frames well, while reducing the computational re-
sources and preventing memory overflow.

7.4 Effects of Layers after Shrinking
As mentioned in Section 3.2, our model stacks additional
Transformer blocks after the shrinking operation. We have
conducted simplified experiments on the English-French
dataset with a vanilla speech translation model without con-



Error Range 0 1 2 3 4 5 6 7 8 9
Probability 0.32 0.66 0.83 0.91 0.95 0.97 0.98 0.99 0.99 0.99

Table 9: Statistics of the absolute error between the length of shrunk acoustic unit and the length of the gold phoneme sequence.

6Enc + 6Dec 12.70
6Enc shrinking + 6Dec 11.34
6Enc shrinking + 6Enc + 6Dec 16.46

Table 10: The number represents the layers of Transformer
block contained in the corresponding module.

secutive decoding to demonstrate the importance of the ad-
ditional encoding layers after shrinking. The output of the
encoded layer uses the CTC loss as the supervision, and we
use the subword of transcriptions in the source language as
the acoustic labels. Results can be seen in Table 10. The
experimental results show that directly inputting the shrunk
encoded output to the decoder will cause performance loss.
And stacking additional encoding layers after shrinking can
bring significant performance improvements. We conjecture
that there is a lack of semantic encoding modules between
acoustic encoding and linguistic decoding. In addition, the
relationship between the hidden states after shrinking has
changed a lot, and an additional network structure is re-
quired to re-extract high-level encoded features.

7.5 Compared with 3-stage Pipeline
In the case study of Table 7, we have listed some examples
of errors in transcription recognition, but COSTT can still
correctly predict the translation sequence, which proves that
COSTT can solve the error propagation problem to some ex-
tent. In a pipeline system that includes the phoneme stage,
the phoneme recognition error will also lead to error propa-
gation. But in COSTT, the phoneme sequence is only the
intermediate supervision used during training, not neces-
sary during inferring. Moreover, end-to-end training can al-
leviate the error propagation between different stages. We
believe that the more stages, the greater the advantage of
our method. We have built a 3-stage system consisting of
acoustics-to-phoneme (A2P), phoneme-to-transcript (P2T),
and transcript-to-translation (T2T) stages. A2P is a phoneme
recognition model based on the CTC loss function, which
uses phoneme error rate (PER) to evaluate performance (the
lower the better). Both P2T and T2T use the sequence-to-
sequence model based on Transformer and BLEU is the
evaluation criterion (the higher the better). The performance
of each module is shown in Table 11. The performance of
different systems in Table 12 prove that with the increase
of stages, the problem of error propagation becomes more
and more serious, which shows the benefits of the COSTT
method.

Stage A2P(PER) P2T(BLEU) T2T(BLEU)
Performance 10.30 92.08 21.51

Table 11: Performance of each module of our 3-stage
Pipeline.

System BLEU

3-stage Pipeline 12.22
2-stage Pipeline 17.58

COSTT 18.23

Table 12: COSTT versus 2-stage Pipeline and 3-stage
Pipeline on Augmentated Librispeech En-Fr test set.
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