
Online Temporal Calibration of Camera and IMU
using Nonlinear Optimization

Jinxu Liu, Wei Gao*, Zhanyi Hu
{jinxu.liu, wgao, huzy}@nlpr.ia.ac.cn

NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China

Abstract—In this paper, we aim to calibrate the time delay
of timestamps of cameras and IMU measurements provided by
Android smart phones or other low-cost devices whose camera
and IMU are not temporally aligned. The time delay is estimated
online in an iterative way through nonlinear optimization in
sliding windows. We add new terms that are relative to time delay
to the pre-integration results of IMU measurements instead of
feature observations in order to improve the precision of temporal
calibration. The experimental results indicate that our calibration
result is closer to the real value compared with the state-of-the-art
system and that our method appears to converge faster. By using
our temporal calibration, the visual inertial odometry algorithm
is less likely to suffer from fast turning or sudden stop. 1

I. INTRODUCTION

Recent years have seen many great visual inertial odometry
algorithms where camera and IMU data are combined to use
because they are complementary. MSCKF [1] utilizes Extend-
ed Kalman Filter (EKF) that propagates IMU measurements
to update state variables and regards features from pictures
as observations. OKVIS [2] makes a tightly coupled fusion
of camera and IMU data by nonlinear optimization. From
then on, more visual inertial odometry or SLAM algorithms
resorting to nonlinear optimization appear, such as VINS
[3], which adds well-designed initialization and loop closure
modules to OKVIS, and the visual-inertial version of ORB-
SLAM [4], which is adapted from vision only monocular
ORB-SLAM [5] and also jointly optimizes all sensor states
in a local window. They are widely used for localization of
micro air vehicles (MAV), as well as AR development and
location based services on smart phones.

Every of the algorithms expects the timestamps of cameras
and IMU measurements to be precise and temporally aligned.
But on many low-cost systems, such as Android smart phones,
the timestamps provided by cameras and IMUs are in different
time references. They differ from each other by a time delay,
typically the delay between the time of first exposure of the
camera and the time of entering the callback function of the
first picture. Such time delay is a fixed value or drifts very
slowly with respect to time during a program run, but differs
every time the program runs. Thus the time delay, gotten from
an off-line temporal calibration using off-the-shelf tools such

1This work was supported in part by the National Key R&D Program of
China (2016YFB0502002), and in part by the Natural Science Foundation
of China (61472419, 61333015, 61772444). *Corresponding Author: Wei
Gao{wgao@nlpr.ia.ac.cn}.

as Kalibr [6] before program runs, is not the one needed in
the visual inertial odometry program. Hence online temporal
calibration is required to estimate the time delay between the
timestamps of pictures and those of IMU measurements when
program runs.

Different approaches on temporal calibration of camera-
IMU systems have been proposed. Some of them first solve
camera poses using visual information only and then align
them with gyroscope data acquired from IMU [7], [8]. In [7],
the angular velocity of camera is derived from the image based
motion estimation. Then temporal alignment is made by com-
puting cross-correlation ratio or phase congruency between
camera angular velocities and angular velocities measured by
IMU. [8] proposes a TD-ICP method where camera and IMU
orientations are regarded as points in three dimensional space,
and the time delay and spatial transformation between the
two sets are computed iteratively like Iterative Closest Points
(ICP). Both of the above methods require computing camera
poses before temporal alignment, where the precision of every
camera pose is regarded as equal, thus an inaccurate estima-
tion of one camera pose may affect the alignment seriously.
Another approach [9] models the IMU-camera calibration
problem in a nonlinear optimization framework but is not
real-time capable. [10] is an online calibration method that
includes the time delay td in the IMU state vector of Extended
Kalman Filter (EKF) which cannot be directly adapted to be
used in visual inertial odometry algorithms that use nonlinear
optimization such as [2] and [3].

The latest version of the open source code of VINS [3]
by the time this paper is written includes online calibration
module using nonlinear optimization. The velocity at which
every feature point moves on image is calculated by dividing
the displacement of the feature point between two successive
frames by the time interval between them. Then a correction
term, which is the product of feature velocity and time delay, is
added to feature observations. In this way, the time delay to be
estimated is included as a parameter in nonlinear optimization.
However, visual measurements are not only at a much lower
frequency than IMU measurements, but also suffer from image
blur and matching errors. The velocity calculated may not be
the real velocity at which the feature point moves at the instant
the picture is taken because the time interval between frames
is big. Therefore, our approach is based on [3] but instead add
new terms that are relative to time delay to the pre-integration



results of IMU measurements. The calculation is a bit more
complicated but our approach appears to converge faster and
gets a more precise estimation of the time delay than [3].

II. OUR APPROACH

A. The Definition of Time Delay

Taking our Android smart phone for example, the times-
tamps from camera and IMU measurements are on different
time basis. The timestamps from IMU are the time since
system boot, that is, they are on the same time base as the time
we get from Java Virtual Machine (JVM). The timestamps of
images are precise but on a totally unknown time base. To
roughly align the two sets of timestamps, we substitute the
time of first exposure of camera with the time of executing
the callback function of the first image, because the time of
callback function execution is the time from JVM, so that it is
on the same time base as the time base of IMU measurements.
We define tIe,0 and tIe,k as the time at the first and the kth frame
exposure respectively, on IMU time base. In fact, tIe,k is what
we need exactly, and it can be written as:

tIe,k = tIe,0 + (tIe,k − tIe,0) (1)

which is an identical equation. Let tIf,0 denote the time at the
execution of the callback function of the first image, and let
tCe,0 and tCe,k denote the time at the first and the kth frame
exposure respectively, on camera’s own time base. Given the
fact that neither tIe,k nor tIe,0 is known, we substitute tIe,0 with
tIf,0 to compute tIe,k. Because tIe,0 − tIe,k and tCe,0 − tCe,k are
equal, the timestamp of the kth frame that we compute is:

t̂Ie,k = tIf,0 + (tCe,k − tCe,0) (2)

and the time delay td is:

td = t̂Ie,k − tIe,k = tIf,0 − tIe,0 (3)

which is the time interval between the exposure moment of the
first frame and the moment of executing the callback function
of the first image.

B. IMU Model with Time Delay

Both OKVIS [2] and VINS [3] jointly optimize a cost
function that contains reprojection error terms, IMU error
terms, and the marginalization error term which represents
prior information. The reader may refer to [3] for details.
Among them only the IMU error terms will be relevant to
the time delay. The IMU error terms can be expressed as:

CIMU (x) =

K−1∑
k=1

eks
T

(xk,xk+1)Pk,k+1
s

−1
eks(xk,xk+1) (4)

where k denotes the camera frame index, xk is the IMU
state vector of the kth camera frame, and x is composed of
x1 . . .xK . The covariance matrix Pk,k+1

s is computed through
IMU pre-integration [3]. The residual vector eks is relevant to

the state vectors of the kth and k + 1th frame as well as the
IMU pre-integration between them:

eks(xk,xk+1)

=


Rbk

w (pw
bk+1
− pw

bk
+ 1

2g
w∆t2k − vw

bk
∆tk)− α̂bk

bk+1

Rbk
w (vw

bk+1
+ gw∆tk − vw

bk
)− β̂bk

bk+1

2
[
qbk
w ⊗ qw

bk+1
⊗ (γ̂bkbk+1

)−1
]
xyz

babk+1
− babk

bwbk+1
− bwbk


(5)

where pw
bk

and vw
bk

are the camera position and velocity at
the moment of the exposure of the kth frame in the world
frame respectively, while babk and bwbk are the biases of
accelerometer and gyroscope respectively, in IMU body frame.
Rbk

w is the rotation matrix from world frame to IMU body
frame at the time of the exposure of kth frame, and qbk

w is
its quaternion form. α̂bk

bk+1
, β̂bk

bk+1
and γ̂bkbk+1

are the results
of IMU pre-integration between the time tk and tk+1, which
denote the time at the exposure of kth and k + 1th frame
respectively.

If there is no time delay between image timestamps and
IMU timestamps, α̂bk

bk+1
, β̂bk

bk+1
and γ̂bkbk+1

are directly comput-
ed through pre-integration, as is what [3] does. Given that
there is a time delay, let’s say ∆T , between camera and
IMU, what we compute through pre-integration are in fact
the variations of displacement, velocity and rotation between
time tk+∆T and tk+1+∆T . We define the time tk+∆T and
tk+1 + ∆T as tb and te respectively, which represent the time
at the beginning and the ending of the IMU pre-integration we
actually performed. Let α̂b

e, β̂b
e and γ̂be denote the variations

of displacement, velocity and rotation between time tb and te,
and those are directly computed through IMU pre-integration.
We are going to represent α̂bk

bk+1
, β̂bk

bk+1
and γ̂bkbk+1

using α̂b
e,

β̂b
e , γ̂be and ∆T , along with other IMU measurements.
Since γ̂bkbk+1

is the rotation quaternion of IMU body frame
from the time tk+1 to time tk, it can be decomposed as the
rotation from time tk+1 to te, the rotation from time te to tb
and the rotation from time tb to tk. The rotation quaternion
from te to tk+1 is computed as:

γbk+1
e =

[
1

1
2 (ω̂ωωe − bwbk)∆T

]
(6)

where ω̂ωωe is the angular velocity measured by gyroscope at
time te, and bwbk is the gyroscope bias. Similarly, the rotation
quaternion from tb to tk is computed as:

γbkb =

[
1

1
2 (ω̂ωωb − bwbk)∆T

]
(7)

where ω̂ωωb is the angular velocity measured by gyroscope at
time tb. Finally, the rotation quaternion from tk+1 to tk can
be expressed as:

γ̂bkbk+1
= γbkb ⊗ γ̂

b
e ⊗ (γbk+1

e )−1 (8)

The relation among time tk, tk+1, tb, te and ∆T is shown in
Figure 1.



Fig. 1. tk ,tk+1,tb,te and ∆T are on the time axis. tk and tk+1 are at the
moment of camera exposure. tb and te are the beginning and the ending of
IMU pre-integration respectively.

As shown in Figure 1, there are many IMU measurements
between time tb and te. According to the IMU pre-integration
process in [3], the velocity change β̂bk

bk+1
is expressed in the

discrete form:

β̂bk
bk+1

=

tk+1∑
ti=tk

R(γ̂bki )aiδti (9)

where ai represents âi−babk . ti represents the moment of the
ith IMU measurement between tk and tk+1. γ̂bki is the rotation
quaternion from the IMU body frame at the time of the ith

IMU measurement to the body frame at time tk, which is
computed beforehand only using the gyroscope measurements
and the time intervals among them. R(γ̂bki ) is the rotation
matrix form of γ̂bki . âi is the ith accelerometer measurement
and babk is the accelerometer bias. δti is the time interval
between two IMU measurements i and i + 1. As mentioned
before, what we compute through IMU pre-integration is in
fact β̂b

e , which is:

β̂b
e =

te∑
ti=tb

R(γ̂bi )aiδti (10)

From (9) and (10), it is derived that

β̂bk
bk+1

= R(γbkb )β̂b
e +

tb∑
ti=tk

R(γ̂bki )aiδti−
te∑

tj=tk+1

R(γ̂bkj )ajδtj

(11)
Assuming ∆T is small, âi from tk to tb is approximated by
âb and âj from tk+1 to te is approximated by âe. Meanwhile,
we substitute R(γ̂bki ) with R(γbkb ) and substitute R(γ̂bkj )

with R(γbkb )R(γ̂be). γ̂be has been computed through IMU pre-
integration and γbkb is expressed in (7). Thus β̂bk

bk+1
can be

approximated as:

β̂bk
bk+1

= R(γbkb )(β̂b
e + ab∆T −R(γ̂be)ae∆T ) (12)

where ab represents âb − babk and ae represents âe − babk .
Similarly, α̂bk

bk+1
can also be expressed as the formula:

α̂bk
bk+1

=

tk+1∑
ti=tk

δti

ti∑
tj=tk

R(γ̂bkj )ajδtj +
1

2

tk+1∑
ti=tk

R(γ̂bki )aiδti
2

(13)

while what we actually compute through IMU pre-integration
is

α̂b
e =

te∑
ti=tb

δti

ti∑
tj=tb

R(γ̂bj )ajδtj +
1

2

te∑
ti=tb

R(γ̂bi )aiδti
2 (14)

Comparing (13) and (14) we can derive that

α̂bk
bk+1

=R(γbkb )α̂b
e +

tk+1∑
ti=tk

δti

tb∑
tj=tk

R(γ̂bkj )ajδtj

−
te∑

ti=tk+1

δti

te∑
tj=tb

R(γ̂bkj )ajδtj

(15)

By approximating R(γ̂bkj ) from tk to tb by R(γbkb ) and
approximating aj from tk to tb by ab, we can reduce (15)
to:

α̂bk
bk+1

= R(γbkb )(α̂e
b + ab(te − tb)∆T − β̂b

e∆T ) (16)

Substitute (8), (12) and (16) into (5), and then we get
the IMU residual vector eks that contains the time delay
∆T between the camera and IMU time base as a parameter.
For deriving the Jacobian matrix which is composed of the
partial derivatives of eks with respect to all the parameters the
reader may refer to [11] for details. Although in this paper
(8), (12) and (16) are derived assuming ∆T ≥ 0, they still
hold when ∆T < 0. There is some approximation in the
Jacobian matrix, but the approximation error approaches 0 as
∆T approaches 0. However, in the latest open source code
of [3], the approximation error caused by using the average
velocity between two successive frames does not approach to
0 however small ∆T is. This is one of the reasons why our
approach converges faster than the latest open source code of
[3], and another reason is that IMU measurements come at a
much higher frequency than images.

C. Iterative Alignment

We adopt the iterative alignment strategy adopted by the
latest open source code of [3]. The time interval ∆T is
estimated every time nonlinear optimization is performed in
the sliding window. When ∆T is computed, we subtract ∆T
from the succeeding image timestamps, to make the image
timestamps more close to the real camera exposure moments.
In this way, the time delay between camera time base and
IMU time base becomes smaller and smaller as nonlinear
optimization is performed once and once again. As the time
delay decreases the approximation error also decreases. At
last the time delay converges to zero while ∆T computed
every time in the sliding window remains almost zero. Figure
2 explains the change on image timestamps of succeeding
frames after ∆T is estimated.

III. EXPERIMENTAL RESULTS

We experimentally evaluated our work on the Android smart
phone Huawei Honor Note8, which provides an 2.5GHz ×
4 + 1.8GHz × 4 CPU and 4GB memory. First we make
quantitative comparison with the temporal calibration work



Fig. 2. ∆̂T is the estimated time interval between image timestamp (the
yellow bar) and the moment of camera exposure (the green arrow). After
subtracting ∆̂T the updated image timestamp (the red bar) is more close to
the camera exposure moment. For succeeding frames IMU pre-integration is
performed using IMU measurements between the updated camera timestamps.

adopted by the latest open source code of [3] on the EuRoc
MAV Dataset [12], and then test our work on the data acquired
by our smart phone in our lab. Ceres Solver [13] is used
for nonlinear optimization. Although the derivation of our
approach is a bit more complicated, the experiments prove
that it is not computationally more expensive.

A. Experiments on Datasets

On the Euroc MAV Dataset where the camera and IMU
data are temporally aligned, we manually shift the camera
timestamps for 60ms, 30ms, 0ms and -30ms in turn, and
compare the estimated time delay by our method and by the
latest open source code of VINS [3] against the shift we
add on camera timestamps. The experiments where camera
timestamps are shifted for 0ms are aimed to test whether
the online temporal calibration have negative effect on the
results when the camera and IMU has been temporally aligned
actually. Furthermore, we compare the camera trajectory com-
puted by the two methods against both the ground truth data
and the computed trajectory when camera timestamps are
not shifted and the time delay is not estimated. The latter
comparison is based on the assumption that if the time delay
is well estimated (and meanwhile the camera timestamps are
accurately restored) by online temporal calibration, the camera
trajectory should be close to the original trajectory when no
time shift is added on camera timestamps.

Figure 3 displays the temporal calibration error. Because of
space limitations, only the results on five datasets are shown,
which include results on two easy datasets, one medium
dataset and two difficult datasets. Generally speaking, our
method outperforms the latest open source code of VINS in
terms of temporal calibration error on the datasets and neither
of the calibration methods has bad effects when the time delay
is actually zero.

Table I shows the Mean Square Error (MSE) of the trajec-
tory compared with groundtruth. The results prove that both
our method and the method adopted by the latest open source
code of VINS can dramatically reduce the MSE compared with
ground truth. However, a noteworthy phenomenon appears that
no time delay does not guarantee the least MSE even when
no temporal calibration is performed. For example, the MSE
of MH 01 easy when td = −30ms is smaller than that when

TABLE III
COMPARISON OF TIME DELAY AT 25 SECONDS AFTER INITIALIZATION

Calibrated Time Delay (ms)

seq1 seq2 seq3 seq4 seq5 seq6 seq7 seq8

Ours 32.9 23.6 82.4 56.6 52.0 59.1 35.7 37.1

VINS 10.3 11.4 49.5 10.2 9.1 18.7 10.2 26.3

Align 42 30 45 42 45 48 42 39

The Ours and VINS rows show the calibrated time delay by our method
and the latest open source code of VINS respectively. The Align row
shows the calibrated time delay by the third method.

td = 0ms. The similar thing happens on MH 05 difficult.
Thus by comparing the MSE of the two methods in Table
I we can’t tell which trajectory is better. Thus we go on to
compare against the trajectory when no time shift is added
on the timestamps and no temporal calibration is performed,
whose results are shown in table II. In general, the MSE of
our trajectory is smaller. In other words, our trajectory is more
close to the trajectory of temporally aligned data.

B. Experiments on Our Data

We collected 8 image sequences in our lab using an Android
smart phone held by a pedestrian. The moving pattern of
pedestrians is different from MAVs in that pedestrians like
to walk in a straight line with fast turnings and sudden stops
occasionally. And both image data and IMU measurements are
more noisy. Our calibration method appears to converge faster
than the latest open source code of VINS and it performs well
on fast turnings or sudden stops.

1) Comparison on convergence speed: We compare the
online calibration results at 25 seconds after initialization
between our method and VINS. Since we don’t know the true
time delay, we perform a third online calibration method to
see which result it approves. In the third method, like [7] and
[8], we solve camera orientations using image data only and
then find the time delay that make IMU measurements most
consistent with the camera orientations. To avoid incorrect
results, the third method is only performed when a list of
strict thresholds are satisfied. The calibrated time delays are
shown in Table III. Our method appears to converge faster
than VINS.

2) Results on fast turning and sudden stop: Among the
8 image sequences, Sequence 4 suffers from a sudden stop
and Sequence 5 suffers from a fast turning. In Sequence 4,
we walked around a rectangular area whose size is about
11m × 21m and the points in Figure 4 A, B1, B2 and B3

should be approximately coincide. The trajectories computed
from VINS and from the method without online temporal
calibration both suffer from a shrunken scale after the sudden
stop. But our trajectory still maintain a right scale after the
sudden stop to avoid a pedestrian. In sequence 5, the camera
turned suddenly not long after initialization. The camera poses
from the method without temporal calibration drifted away and
finally failed. The poses from VINS also drifted away because
of its incorrectly estimated time delay at the turning moment.



 

 

Fig. 3. Calibration error along time. The calibration results when camera timestamps are shifted for 60ms, 30ms, 0ms and -30ms corresponds to the first row
to the last row of the figures.

Our trajectory did not drift away and the camera moved at an
approximately constant speed as it actually did. The results are
shown in Figure 4. The dots in Figure 4 are selected camera
positions at a constant time interval, which shows that the
camera moves at a constant speed in our trajectory but they
move faster after the turning in the other two trajectories.

IV. CONCLUSION

This paper demonstrates an online temporal calibration
approach which can be applied on visual inertial odometry
algorithms based on nonlinear optimization and sliding win-
dows. Comparing with the nonlinear optimization approach
which adds correction terms on the coordinates of feature
points, our approach performs better on EuRoc MAV Dataset
in terms of calibrated time delay and the resulting trajectory.

(a) (b)

Fig. 4. (a) and (b) are respectively the trajectories of Sequence 4 and Sequence
5. The dots on the trajectory in (b) are selected poses at a constant time
interval.



TABLE I
MEAN SQUARE ERROR OF TRAJECTORY COMPARED WITH GROUND TRUTH

Trajectory MSE(m)

dt =60ms dt =30ms dt =0ms dt =-30ms

Ours VINS Original Ours VINS Original Ours VINS Original Ours VINS Original

MH 01 easy 0.272 0.330 Fail 0.255 0.306 0.436 0.266 0.253 0.262 0.265 0.241 0.228

MH 02 easy 0.284 0.252 0.720 0.286 0.263 0.387 0.289 0.287 0.288 0.289 0.295 0.501

MH 03 medium 0.234 0.227 Fail 0.229 0.227 0.582 0.226 0.226 0.226 0.225 0.229 0.452

MH 04 difficult 0.305 0.298 1.297 0.281 0.279 0.545 0.276 0.276 0.277 0.27 0.284 0.421

MH 05 difficult 0.431 0.419 1.545 0.426 0.397 0.374 0.43 0.426 0.427 0.428 0.442 0.583

V1 01 easy 0.113 0.114 0.65 0.114 0.114 0.230 0.113 0.112 0.112 0.114 0.113 0.175

V1 02 medium 0.299 0.302 1.701 0.301 0.319 0.558 0.292 0.29 0.314 0.301 0.292 0.449

V1 03 difficult 0.283 0.417 3.937 0.251 0.271 1.348 0.257 0.256 0.257 0.249 0.250 1.433

The Ours and VINS columns show MSE of trajectory by our method and the latest open source code of VINS respectively. the Original
columns show the MSE when online temporal calibration is not performed. dt is the time shift added on camera timestamps.

TABLE II
MEAN SQUARE ERROR OF TRAJECTORY COMPARED WITH TRAJECTORY ON TEMPORALLY ALIGNED DATA

Trajectory MSE(m)

dt =60ms dt =30ms dt =0ms dt =-30ms

Ours VINS Original Ours VINS Original Ours VINS Original Ours VINS Original

MH 01 easy 0.013 0.085 Fail 0.019 0.055 0.212 0.007 0.011 0 0.006 0.029 0.313

MH 02 easy 0.016 0.064 0.467 0.011 0.046 0.467 0.005 0.013 0 0.008 0.013 0.271

MH 03 medium 0.025 0.016 Fail 0.007 0.014 0.465 0.004 0.011 0 0.032 0.014 0.417

MH 04 difficult 0.103 0.069 1.237 0.028 0.022 0.412 0.005 0.009 0 0.035 0.037 0.448

MH 05 difficult 0.011 0.049 1.374 0.005 0.045 0.421 0.005 0.006 0 0.012 0.031 0.295

V1 01 easy 0.007 0.020 0.579 0.006 0.005 0.144 0.001 0.001 0 0.003 0.003 0.126

V1 02 medium 0.048 0.081 1.634 0.035 0.040 0.365 0.072 0.073 0 0.080 0.069 0.388

V1 03 difficult 0.089 0.283 3.893 0.039 0.109 1.315 0.003 0.010 0 0.045 0.032 1.387

The Ours and VINS columns show the MSE of trajectory by our method and the latest open source code of VINS respectively. The Original
columns show the MSE when online temporal calibration is not performed. dt is the time shift added on camera timestamps.

Our approach seems to converge faster on the data captured
by our smart phone and helps dealing with the tough data
containing fast turnings and sudden stops. But it might be
prone to overestimate the time delay on our own data. Our
approach may be applied on Android smart phones to calibrate
the time delay between camera and IMU online.

REFERENCES

[1] Anastasios I Mourikis and Stergios I Roumeliotis. A multi-state constraint
kalman filter for vision-aided inertial navigation. In Robotics and
automation, 2007 IEEE international conference on, pages 3565–3572.
IEEE, 2007.

[2] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and
Paul Furgale. Keyframe-based visual–inertial odometry using nonlinear
optimization. The International Journal of Robotics Research, 34(3):314–
334, 2015.

[3] Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and
versatile monocular visual-inertial state estimator. arXiv preprint arX-
iv:1708.03852, 2017.

[4] Raúl Mur-Artal and Juan D Tardós. Visual-inertial monocular slam with
map reuse. IEEE Robotics and Automation Letters, 2(2):796–803, 2017.

[5] Montiel J. M. M. Mur-Artal, Raúl and Juan D. Tardós. ORB-SLAM: a
versatile and accurate monocular SLAM system. IEEE Transactions on
Robotics, 31(5):1147–1163, 2015.

[6] Paul Furgale, Joern Rehder, and Roland Siegwart. Unified temporal
and spatial calibration for multi-sensor systems. In Intelligent Robots

and Systems (IROS), 2013 IEEE/RSJ International Conference on, pages
1280–1286. IEEE, 2013.

[7] Elmar Mair, Michael Fleps, Michael Suppa, and Darius Burschka. Spatio-
temporal initialization for imu to camera registration. In Robotics and
Biomimetics (ROBIO), 2011 IEEE International Conference on, pages
557–564. IEEE, 2011.

[8] Jonathan Kelly and Gaurav S Sukhatme. A general framework for
temporal calibration of multiple proprioceptive and exteroceptive sensors.
In Experimental Robotics, pages 195–209. Springer, 2014.

[9] Michael Fleps, Elmar Mair, Oliver Ruepp, Michael Suppa, and Darius
Burschka. Optimization based imu camera calibration. In Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference
on, pages 3297–3304. IEEE, 2011.

[10] Mingyang Li and Anastasios I Mourikis. Online temporal calibration for
camera–imu systems: Theory and algorithms. The International Journal
of Robotics Research, 33(7):947–964, 2014.

[11] Joan Sola. Quaternion kinematics for the error-state kf. 2015.
[12] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern

Rehder, Sammy Omari, Markus W Achtelik, and Roland Siegwart. The
euroc micro aerial vehicle datasets. The International Journal of Robotics
Research, 2016.

[13] Sameer Agarwal, Keir Mierle, and Others. Ceres solver. http://
ceres-solver.org.


