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Abstract—To benefit the blind by using advanced deep
learning techniques, we establish a new outdoor object detection
dataset, BLIND. Different from PASCAL VOC, the scales of
objects in our dataset are quite various because of different
distances between objects and the camera. The characteristic of
the BLIND dataset requires a high ability of scale invariance
for the object detector, which classical SSD isn’t adequate. We
propose a novel object detector named Feature Pyramid SSD
(FPSSD) focusing on BLIND, applying feature fusion strategies
to classical SSD. FPSSD achieves 75.4% mean Average Precision
(mAP) on BLIND, surpassing classical SSD by 1.7%. Extensive
experimental results and analyses demonstrate the necessity to
establish the BLIND dataset and validate the effectiveness of the
proposed FPSSD object detection algorithm for the blind people.
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I. INTRODUCTION

According to a study, the number of blind people in the
world is around 36 million and is set to triple by 2050 [1].
There are many restrictions for the blind or visually impaired
people on outdoor activities as they can’t see things clearly.
It is a significant social problem. We are aiming to help them
live independently.

Walking outdoors is one of the most expectations for the
blind or visually impaired persons. Helping them recognize
objects in front on the streets is the first problem must be
solved. The complex scene and various objects make the task
challenging.

Since Alex et al [2] achieved state-of-art on ImageNet [3] in
2012, deep learning has been widely used in computer vision.
Compared to typical hand-crafted methods, deep convolutional
neural networks can extract features with strong representation
automatically. The performances of CNN-based object detec-
tors on public datasets such as PASCAL VOC [4] and MS
COCO [5] are much higher than traditional ones.

DNN-based models are driven by big data. In the scene of
outdoor activities of the blind, the scales of objects are quite
various because of different distances between objects and
the camera. Datasets like PASCAL VOC [4] are dominated
by large and medium objects and are not suitable for the
scene we need. Thus, we establish a new outdoor object
detection dataset named BLIND by imitating blind people
walking outdoors.

We apply the structure of SSD [6] to our method. Previous
version of SSD uses original feature maps for detection and
isn’t adequate for strong scale invariance. To enhance scale
invariance, we propose a novel object detector named Feature
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Pyramid SSD (FPSSD) focusing on BLIND by applying
feature fusion to classical SSD.

To summarizes, our contributions are listed as follows:

e We establish a new outdoor object detection dataset,
BLIND, by imitating blind people walking outdoors.

e We propose a novel outdoor object detection method,
Feature Fusion SSD, focusing on the variable scales of objects
in outdoor scene.

e We validate the effectiveness of our method on BLIND
and PASCAL VOC dataset with ablation studies.

The rest of the paper is organized as follows. Section
IT introduces traditional hand-crafted and related CNN-based
object detection approaches. The proposed FPSSD network is
described in section III in detail. Section IV gives experimental
results and analyses. The last section is the conclusion.

II. RELATED WORK
A. Classical Object Detectors

Early object detectors firstly generate candidate regions with
different scales by applying sliding windows on an origi-
nal image. Then hand-crafted features are used to represent
candidates. Finally, classifiers such as SVM [7] are applied
to identify categories of candidates. Classical hand-crafted
features include Haar feature [8] based on Haar basis func-
tions, SIFT [9] and HOG [10] based on block-wise orientation
histograms, etc. DPM [11] mixes multi-scale deformable part
models to represent highly variable object classes. However,
with the development of deep learning, CNN-based detectors
quickly maintain the top results on most public datasets. These
approaches are roughly divided into two families, the two-
stage approach with relatively high accuracy and the one-stage
approach with relatively high speed.

B. Two-stage Approach

The two-stage approaches contain two steps. The first step
generates a series of category-agnostic object proposals, and
then recognizes object category and refines bounding boxes.
R-CNN [12] uses CNN to extract features from region pro-
posals generated by Selective Search [13], then uses SVM for
classification and linear regression for localization. Fast R-
CNN [14] uses neural networks not only for feature extraction
but also for classification and localization. To achieve higher
efficiency, Region Proposal Network (RPN) [15] replaces
Selective Search [13] and shares convolutional features with
the detection network. Following R-CNN family, Deformable
Convolutional Networks [16], SPP [17], R-FCN [18] are
proposed to further improve the performance.
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C. One-stage Approach

Compare to the two-stage approaches, the one-stage ap-
proaches pay more attention to speed. Redmon et al [19]
present a real-time detector, called YOLO (You Only Look
Once), which frames object detection as a regression problem
and predicts the bounding boxes directly without region pro-
posals. To achieve higher accuracy, YOLO9000 [20] improves
YOLO by adding anchors, batch normalization and removing
fully connected layers. After that, YOLOvV3 [21] adds more
tricks and performs better. SSD [6] uses multiple feature
maps from different layers to improve performance on small
objects. DSSD [22] introduces additional context into SSD via
deconvolution layers.

III. METHOD
A. SSD Method

SSD [6] is a typical one-stage detector, using slightly
adjusted VGG [23] as the backbone to extract features from
images. The structure of SSD is shown in Fig. 1. To ensure
scale invariance, SSD initializes prediction outputs by a set
of default boxes and then refines them. Finally, NMS is used
to ignore redundant boxes. SSD predicts bounding boxes on 6
feature maps with different sizes from different layers. To each
feature map for prediction, SSD assigns default boxes with
corresponding aspect ratios and scales respectively. Without
region proposals, SSD is easy to be trained and applied to the
system needing an object detection component.
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Figure 1. Structure of SSD.

B. Feature Pyramid SSD Method

Deep neural networks achieve a strong ability of repre-
sentation. The deeper layer feature maps are extracted from,
the larger receptive field each position in feature maps cor-
responds. Thus, deep features contain richer semantics than
shallow ones, which benefits classification. However, distant
objects are usually small in the outdoor scene. Just searching
objects in original feature maps will hardly achieve satisfactory
accuracy.

Shallow features keep high-resolution and are useful for
object localization. Combining deep features and shallow
features can generate higher-resolution and semantically strong
features. It is important for keeping scale-invariant.

FPN [24] merges features from different layers by element-
wise addition. Before merging, nearest neighbor interpolation
and 1 x 1 convolutional layers are applied to reshape feature
maps into the same dimension.

Convd 3 Convi(fe7) — Conv8 2

Conv9 2 Convi0 2 Convll 2 Convi2 2

Figure 2. Illustration of the feature fusion module.

Classical SSD detects objects on multi-scale feature maps
and alleviates scale variance problem to some extent. However,
detecting objects on original feature maps is not enough
for the high requirement for scale invariance in scenes like
outdoor activities of the blind. To further enhance scale
invariance, we apply FPN to SSD to predict bounding boxes
on fused feature maps instead of original feature maps. We
choose features from conv4_3, conv7, conv8_2, conv9_2,
convl0_2, convll_2, convl2_2 in backbone for feature fusion.
We directly use convl2_2 as P12 fused feature without any
operation. The structure of FPSSD is shown in Fig. 2. Note that
we replace nearest neighbor interpolation by deconvolution for
upsampling. More details in feature fusion are shown in Fig.
3.
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Figure 3. TIllustration of the feature fusion module.

IV. EXPERIMENTS AND ANALYSES

A. Preliminaries

In the scene of outdoor activities of the blind, the scales of
objects are quite various because of the law that the object
is big when near and small when far. Dominated by large
and medium objects, datasets like PASCAL VOC do not have
such a variety of scales. Considering that there is currently no
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Figure 5. Test examples for Feature Pyramid SSD on BLIND.

public dataset available, we established a new image dataset
named BLIND.

To collect photos, we fixed the camera on the head and
walked along the blind roads. It is to recover the perspective
of the blind as much as possible when outdoors. We sampled
a photo every 4 seconds to avoid the contents in images are
too similar, which will impact the generalization of the model
trained on it. We also collected photos in traffic intersections
and subway station. BLIND contains 1194 images. We select
900 images used for training and others for testing.

To satisfy the needs of blind people, seven categories of
objects are labeled in images we collected, including bicycle,
bus, car, motorcycle, person, truck and traffic light. Note that
although most categories in BLIND also appear in PASCAL
VOC, our experiment result demonstrates the data distribution
in two datasets is very different and our BLIND dataset is
useful and indispensable to help the blind going outside. Data
comparison between two dataset are shown in Fig. 4.

We use Labellmg [25], a graphical image annotation tool, to
label the bounding boxes for objects belong to the categories
above. All annotations are saved as XML files in PASCAL
VOC [4] format. There are 12488 target objects in BLIND
totally and 1784 objects per each category in an average. All

our experiments are performed on the Nvidia GTX-1080Ti
GPU, Intel Core 17-6950K CPU with Caffe 1.0 [26].

B. Training details

Considering the difference in receptive fields for feature
map positions, it’s necessary to set the scales of default boxes
specifically. The relative scales of the default boxes to each
feature map Pk is calculated as:

Smaz — Smin

—Smin (1),
where Sy, 18 0.15 and s,,4, 1S 0.9. In Fig. 6, the statistic
shows that the aspect ratio for target objects is roughly
distributed between [0.3, 3] uniformly in BLIND. Thus we
denote aspect ratio as r € {1,2,3,1/2,1/3} to contain all
situations. In addition we also add a default box with scale
Sk = \/SkSk+1 and aspect ratio r = 1. The width and height
of default boxes are computed as:

wi = 512 X s, X /T )

hi =512 X s, / /7 (3)

The backbone VGG model is pretrained on the ILSVRC
classification dataset [3]. We fine-tune the resulting model
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using SGD with 0.9 momentum, 0.0005 weight decay and
batch size 16. The initial learning rate is 10~2 and then we
decrease it by a factor of 10 after the 12 thousandth iteration
and the 15 thousandth iteration. We stop training after the
16 thousandth iteration. The resolution of input images is set
to 512 x 512. The same data argumentation strategies are
applied as those in SSD [6]. The loss function consists of
the classification confidence loss and localization loss:

1
L(z,c,l,9) = N (Lconf (7,¢) + aLioe (2,1, 9)) 4

Where N is the number of default boxes matched with the
ground truth; x is an indicator for matching the default box
to the ground truth box; c is the classification confidence; [ is
the prediction box and g is the ground truth box; the weight
parameter « is set to 1.
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Figure 6. The statistic aspect ratio for target objects in BLIND.

C. Testing details

During the testing phase, we still set the input size to 512
X 512. Other settings are the same as SSD [6]. The bounding
box predicted is correct if Intersection over union (IoU) > 0.5.
We use the average precision (AP) as the evaluation metrics.
AP is the average precision value for recall value over O to 1.
The mean average precision (mAP) is the mean of AP for each
class. The precision value and the recall value are computed
as:

Precisi True Positive )
recision =
True Positive + False Positive

True Positive
Recall = 6
ced True Positive + False Negative ©)

D. Experimental Results

To explore the similarity of data distribution between
BLIND and PASCAL VOC, we test SSD trained on VOC
directly on BLIND. The result is shown in Table II. The
extremely poor performance demonstrates that there is a huge

difference in data distribution between BLIND and PASCAL
VOC.

We train FPSSD on BLIND. FPSSD achieves satisfactory
performance, especially for objects closed to camera which
blind people are most concerned about. Some test examples
are shown in Fig. 5.
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Figure 7. Test accuracy during training models on BLIND.

To verify the effectiveness of feature fusion, we compare
the accuracy of FPSSD and classical SSD [6] on BLIND.
Fig. 7 shows the change of test accuracy during training
models. FPSSD achieves higher test accuracy than classical
SSD throughout the training stage and finally s urpass clas-
sical SSD by 1.7% mAP. Table III shows the test detection
result for each object category in BLIND. The result proves
feature fusion enriches semantics while remaining resolution
unchanged which can further enhance scale invariance and
improves the accuracy.

To evaluate the generalization, we also train and test FPSSD
and classical SSD on PASCAL VOC [4]. The train set is
the union of VOC2007 and VOC2012 trainval. The test set
is VOC2007 test. Both two models are trained 120 thousand
iterations with the same hyperparameter. The initial learning
rate 0.001 and is decreased by a factor of 10 at the 80
thousandth iteration and the 100 thousandth iteration. The
batch size is 32.

The test detection accuracy is shown in Table I. FPSSD
surpasses classical SSD by 1.2% mAP and is more accurate
in most object categories. Our method has a satisfactory
generalization and can be applied to other datasets.

V. CONCLUSION

In this paper, we have established a new outdoor object
detection dataset, BLIND. Focusing on the variable scales
of objects in outdoor scene, we propose an outdoor object
detection method, Feature fusion SSD, aiming at helping blind
people. Extensive experiments demonstrate the effectiveness of
our method. Otherwise, we test our method on PASCAL VOC
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TABLE I
TEST DETECTION RESULT ON PASCcAL VOC

Method ‘ plane bike bird boat bottle bus

car cat chair cow

table

dog horse motor person plant sheep sofa train tv mAP

FPSSD

SSD ‘84.9 85.8 80.8 73.1

58.0 87.8 884 87.6 63.6 855 732
86.8 87.0 81.0 756 603 88.6 887 884 629 873 76.1

863 87.7 838 827 553
869 885 875 826 56.7

81.6 792 86.5 803 79.6
840 794 88.0 80.2 80.8

TABLE II
TEST DETECTION RESULT ON BLIND OF SSD TRAINED BY VOC

Dataset | bicycle bus  car motor person truck tr_a ffic mAP
cycle light
voC 42.1 13.6 57.7 338 38.5 - - 26.5
BLIND | 76.7 784 80.8 77.3 75.6 742 532 737
TABLE III
TEST DETECTION RESULT ON BLIND
Method | bicycle bus  car motor person truck tra ffic mAP
cycle light
SSD 76.7 784 80.8 773 75.6 742 532 737
FPSSD 79.6  79.6 829 79.1 77.6 758 530 754

and verify its generalization. In the future, we will expand our
dataset and improve the speed of our method.
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