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Abstract
Keyword spotting requires a small memory footprint to run on
mobile devices. However, previous works still use several hun-
dred thousand parameters to achieve good performance. To ad-
dress this issue, we propose a time delay neural network with
shared weight self-attention for small-footprint keyword spot-
ting. By sharing weights, the parameters of self-attention are
reduced but without performance reduction. The publicly avail-
able Google Speech Commands dataset is used to evaluate the
models. The number of parameters (12K) of our model is 1/20
of state-of-the-art ResNet model (239K). The proposed model
achieves an error rate of 4.19% , which is comparable to the
ResNet model.
Index Terms: keyword spotting, small-footprint, tdnn, shared
weight self-attention

1. Introduction
Keyword spotting (KWS) is a kind of speech technology for
users to control intelligent devices with voice, such as mobile
phones, tablets, and “smart home” devices. Because it com-
monly runs on mobile devices, a small memory footprint and
efficient computation are required.

Two mainstream approaches for KWS are large vocabulary
continuous speech recognition (LVCSR) based methods [1] and
keyword/filler hidden Markov models (HMMs) based methods
[2]. However, these two approaches cost a big memory footprint
and require high computation. So these approaches are limited
in on-device applications.

Deep KWS [3] considers keyword spotting as an audio clas-
sification problem, where each keyword is denoted as a class.
An additional “filler” class is defined for all other words. A
deep neural network processes acoustic features and outputs the
posteriors of the keywords. When the confident score exceeds
a threshold, the keyword is detected. This approach shows the
small footprint, low computational cost, low latency, high per-
formance, and draws much attention recently [4, 5, 6]. How-
ever, previous work still use several hundred thousand parame-
ters to achieve state-of-the-art performance. We believe that the
number of parameters can still be reduced and the performance
will not be hurt.

ResNet based KWS systems, which leverage residual con-
nections to improve network depth and small size convolution
filters to reduce model size, have achieved good performance
[6]. However, because of the number of hidden layers and fil-
ters, their best model still has more than 200K parameters. A
stacked time delay neural network (TDNN) based model with

transfer learning was proposed [5]. However, the stacked net-
work architecture makes the model size large.

The attention mechanism weights inputs to achieve a high-
level representation and obtains success in many tasks [7, 8, 9].
It has also been successful when used in KWS [10, 11]. How-
ever, recurrent structures in these networks are hard to be im-
plemented in parallel, so that the computation speed is slow.
Self-attention mechanism, which captures relations of different
positions by pairwise similarities, has shown promising perfor-
mance in machine translation [12] and ASR [13, 14]. The feed-
forward structure of self-attention makes it fast to compute.

In this paper, we propose to use a TDNN with a Shared
Weight Self-Attention (SWSA) module for keyword spotting.
The TDNN captures local features of a sequence, and the self-
attention module captures global features. For self-attention, we
propose the SWSA module to reduce parameters. The original
self-attention utilizes three weight matrices to project features
into different spaces. Instead of the three weight matrices, the
proposed SWSA uses a shared weight matrix to project the input
into the same space, so the parameters are reduced. We demon-
strate that our proposed method is effective for KWS with lim-
ited parameters. The experiments are conducted on the publicly
available Speech Commands V1 dataset. Compared with state-
of-the-art ResNet model, our proposed model achieves a very
close classification error rate (4.19% vs. 4.12%) and a much
smaller model size (12K vs. 239K).

The rest of this paper is organized as follows. Section 2
describes the proposed models. Section 3 introduces the exper-
imental setup and results. Section 4 concludes the paper.

2. Proposed methods
2.1. Architecture

Fig. 1(a) shows the complete architecture of the model. It con-
sists of six layers. The input of the network is a T -by-D matrix,
where T is the length of a feature sequence, and D is the di-
mensionality of a feature. TDNN based subsampling, which
is referred to as TDNN-SUB at layer 1, is used to reduce the
length of the sequence. The proposed SWSA is set at layer 2.
Layer 3 and layer 4 are TDNNs. The high-level representation
is obtained by global mean pooling at layer 5. The top layer is
a softmax classifier to output posteriors of each keyword. For
example, when the number of keywords is 10, then the number
of output nodes is 11, including a filler label representing any
non-keyword.

Different from other attention based KWS work [10, 11],
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Figure 1: (a) is a schematic of the architecture. TDNN-SUB means TDNN based subsampling. Shared Weight Self-Attention (SWSA)
module is shown in the dashed box. (b) shows the scaled dot self-attention. vi stands for the i-th vector of the SWSA input, and ai

stands for attended representation at the corresponding location i. First, the dot products of vi and each vector is computed. Then, the
corresponding attention scores are computed with a softmax function and scaling. At last, the vectors of the input, which are weighted
by attention scores, are fused into the representation ai. Each vector of the output is generated by the above procedure. The sizes of
the input and the output are the same.

Figure 2: A schematic of the TDNN based subsampling. Tin

and Din are length and dimensionality of the input. Tout and
Dout are the length and dimensionality of the output. After
subsampling, the length is reduced to �(Tin −w+ 1)/k�. w is
the length of TDNN window.

we do not use recurrent structure in our model. The SWSA
module is a feed-forward structure, and the computation is
much smaller than RNNs based methods. In addition, the model
can be implemented in parallel due to the feed-forward struc-
ture. Moreover, a shared weight matrix replaces three differ-
ent matrices corresponding to queries, keys, and values, so the
number of parameters is further reduced.

TDNN is a classic network architecture, and has achieved
success in recent speech recognition work [15]. A TDNN can
be considered as a DNN moving along time. At each step, w
contiguous features are spliced and inputted into a TDNN, and
the TDNN outputs one vector. Then, the TDNN moves k steps.
Commonly, k is set to 1, i.e. moving step by step, to achieve
representation at each location. A TDNN is time invariant and
suitable to process speech [16].

TDNN based subsampling, which is shown Fig. 2, is uti-
lized to reduce the length of a sequence of representations.
Specifically, k is chosen to be an integer which is larger than
1 but smaller than w + 1. When the input is a Tin-by-Din

matrix, the output is a Tout-by-Dout matrix, where Tin is the
length of the input, Din is the dimensionality of the input,
Tout = �(Tin − w + 1)/k� is the length of the output, Dout

is the dimensionality of the output. This mechanism is used at
layer 1.

2.2. Shared weight self-attention

Inspired by success of self-attention mechanism in many tasks
[12, 13, 14], we propose a Shared Weight Self-Attention
(SWSA) module to improve the performance and reduce the
computation. A schematic of SWSA is shown in the dashed
box of Fig. 1(a). First, the shared weight self-attention is used
to capture long-term dependencies. After self-attention, ReLUs
with layer normalization [17] is used as activations.

The original self-attention mechanism can be formulated as
follows:

Attend(Q,K,V) = softmax(
QKT

√
Dk

)V,

where Q = UWq, K = UWk, V = UWv.

(1)

Q ∈ R
Tu×Dk , K ∈ R

Tu×Dk , V ∈ R
Tu×Dv denote a query

matrix, a key matrix, and a value matrix, respectively, and
U ∈ R

Tu×Du is the input matrix of the attention module. Tu

is the length of the input matrix U, Dk is the dimensionality of
queries and keys, Dv is the dimensionality of values. Weight
matrices Wq , Wk, and Wv are leveraged to project U into
different spaces.

The above self-attention mechanism shows promising per-
formance. However, three different projection matrices Wq ,
Wk, and Wv have many parameters. Because the core oper-
ation of the self-attention mechanism is the inner product, we
consider the three matrices, i.e. the queries, the keys, and the
values, should be projected in the same space. Therefore, we
propose a shared weight self-attention (SWSA) module:

Attend(V) = softmax(
VVT

√
D

)V,

where V = UW.

(2)

W ∈ R
Du×D is the shared weight matrix to project inputs into

values. Then the attention is leveraged on the values. Instead of



queries, keys, and values, only a value matrix is used in SWSA.
So the size of the weight matrix is much smaller than original
attention in Eq. 1.

Fig. 1(b) shows an illustration of shared weight self-
attention. First, similarities between a vector (v1 in Fig. 1(b))
and all other vectors in the input sequence of SWSA are com-
puted by dot product. The attention scores are computed in
terms of the similarities after scaling and softmax. Then, the
attention representation (a1 in Fig. 1(b)) corresponding to the
vector is generated by weighted sum. Each attention represen-
tation in the output sequence of SWSA is computed by this pro-
cedure. The lengths of the input and the output of SWSA are
the same.

The module can be extended to a multi-head version [12],
which is denoted as follows:

MultiHead(V ) = Cat(h1, · · · ,hn),

hi = Attend(UWi),
(3)

where n is the number of the heads, Wi ∈ R
Du×(D/n) is the

weight matrix of each head, D/n is an integer. So the dimen-
sionalities of the input and the output are the same, and the num-
ber of heads does not affect the number of parameters of SWSA.
After attention, the heads are concatenated together.

3. Experiments
3.1. Datasets

An English dataset Google Speech Commands (GSC)1 [18],
which is designed for device controlling tasks, is used to evalu-
ate our proposed methods. We use the same version with other
work (V1). The dataset consists of 64752 recordings of 30
words. The length of each recording is one second, and each
recoding has one word. 10 words are used as keywords and the
others are used as fillers. The 10 keywords and the 20 fillers are
listed in Table 1. All the fillers are labeled as “ unknown ”. We
use the standard configuration of the dataset. Specifically, 6835
utterances are used as testing set, 6798 utterances are used as
validation set, and 51088 utterances are used as training set.

3.2. Experimental setup

We use 40-dimensional Mel-Frequency Cepstral Coefficients
(MFCCs) extracted every 10ms with 25ms of frame length as
acoustic features. The 99 contiguous frames are spliced to-
gether and inputted to the system.

We refer to the proposed model as tdnn-swsa in the rest
of the paper. The configuration of tdnn-swsa is shown in Ta-
ble 2. Batch normalization [19] is added after each TDNN layer,
while the number of parameters of BN is not listed in Table 2.
The number of heads of SWSA is 4. The bottom row is the
total number of the parameters of the whole model (including
normalization parameters).

All models in the experiments are trained with the same
procedure. The weights are initialized with Xavier initializa-
tion [20]. The Adam algorithm [21] is used as an optimizer in
training procedure. The initial learning rate is set at 0.001. Af-
ter each epoch, the network is evaluated on the validation set.
If no significant improvement (10%) of average cross entropy
on validation set is observed, learning rate is halved. The to-
tal number of training epochs is 13. The mini-batch size is 32.
We use an early stop strategy. Specifically, we store the model

1http://download.tensorflow.org/data/speech commands v0.01.tar.gz

Table 1: Word labels in Speech Commands dataset.

Keywords
“down”, “go”, “left”, “no”, “off”,
“on”, “right”, “stop”, “up”, “yes”

Fillers

“bed”, “bird”, “cat’,“dog”, “happy”,
“house”, “marvin”, “sheila”, “tree”, “wow”,

“zero”, “one”, “two”, “three”, “four”,
“five”,“six”, “seven”, “eight”, “nine”

Table 2: The configuration of tdnn-swsa. w and k are the
window length and the number of moving steps of a TDNN, re-
spectively. The size of output matrix of each layer is l×d, where
l is the length of sequence, and d is the dimensionality. #Para
is the number of parameters of the weight matrix. #Mult. is the
number of multipliers in matrix multiplication.

Layer w k d l #Para. #Mult.

INPUT - - 40 99 - -

TDNN-SUB 3 3 32 33 3840 126720
SWSA - - 32 33 1056 72768
TDNN 3 1 32 33 3072 101376
TDNN 3 1 32 33 3072 101376

Global Pooling - - 32 - - -

SOFTMAX - - - - 352 352

Total 11755 402592

which achieves the best accuracy on validation set in the train-
ing procedure as the final model.

We first followed [6] to use classification error rate as a
measure to show the performance in number:

error = 1−
∑N

i=1 I(ŷi, yi)

N
,

where I(·, ·) is 1 if the variables are the equal, and 0 otherwise,
ŷi is predicted label, yi is ground truth label, N is the total num-
ber of the samples. Each experiment in this section was tested
five times. And we evaluated the results with 95% confidence
intervals. Specifically, we computed mean error rate of the five
experiments, and computed confidence intervals by

1.96× σ

5
,

where σ is the standard deviation. We further draw modified re-
ceiver operating characteristic curves to show the performance,
which follows [3] and [6].

3.3. Experimental results

3.3.1. The effectiveness of shared weight self-attention

We investigate the effectiveness of the proposed SWSA mod-
ule. The results are shown in Table 3. tdnn is a pure TDNN
model, i.e. the SWSA at layer 2 is replaced by a TDNN. To limit
tdnn’s number of parameters to 12K, the window size and the
moving steps of the TDNN-SUB module are set to 4 and 2, re-
spectively, and the window sizes of TDNN modules are all set
to 2. tdnn-blstm is built by replacing tdnn-swsa’s layer
2 with a 32 cells of bidirectional LSTM layer. swsa is a model
whose layer 2 to 4 are SWSA. We also replace the SWSA in
tdnn-swsa by a four-head original self-attention module to
build tdnn-sa. The three projection matrices in self-attention
of tdnn-sa are all 32-by-8.



Table 3: The effectiveness of SWSA.

Model Error Rate #Para.

tdnn 5.62%± 0.341 12K

tdnn-blstm 5.79%± 0.189 20K

swsa 9.81%± 0.203 8K

tdnn-sa 4.24%± 0.149 16K

tdnn-swsa 4.19%± 0.191 12K

Table 4: The impact of location of SWSA. The numbers of pa-
rameters of three models are the same.

Model Error Rate

tdnn-swsa-l3 4.32%± 0.255
tdnn-swsa-l4 4.74%± 0.259
tdnn-swsa 4.19%± 0.191

We find that combining TDNN and SWSA can achieve the
largest gain of performance. swsa has the fewest parame-
ters. Compared with tdnn, tdnn-swsa achieves a 25.44%
of relative improvement. Because of the recurrent structure
of tdnn-blstm, its computation cost is larger than the other
three. The performance of tdnn-blstm is similar to tdnn.

The performances of tdnn-sa and tdnn-swsa are very
close. However, the number of parameters of self-attention in
tdnn-sa is about three times larger than SWSA. We analy-
sis that the shared weight version of self-attention has enough
representation ability in the KWS task.

3.3.2. The impact of location of SWSA

We investigate the impact of the location of the proposed
SWSA. tdnn-swsa-l3 means that the SWSA is set at layer
3, and tdnn-swsa-l4 means that the SWSA is set at layer 4.
Note that the location of the SWSA does not change the num-
ber of parameters of the whole model. Table 4 shows the impact
of the SWSA location. tdnn-swsa whose SWSA is at lower
layer achieves the best performance. However, the difference
between the three models is very small.

3.3.3. A comparison with other models

We show the comparison with other models in Table 5. Be-
cause the results in [6] are not conducted on standard testing
set of GSC, we reimplement res15 (which is state-of-the-art)
and res8-narrow (with the smallest model size), and achieve
comparable accuracy. We use the tensorflow officially imple-
mented cnn-trad-fpool32 [4] as another baseline. Be-
cause the input of this version of cnn-trad-fpool3 is a
whole word utterance rather than a small window, the param-
eters of cnn-trad-fpool3 are more than original version
in [4]. stacked-tdnn is referred to the model which stacks
a phone network and a word network together in [5].

From Table 5, we can see that tdnn-swsa achieves
4.19% of error rate with 12K parameters, which is 1/20
of res15. Compared with res8-narrow, tdnn-swsa
achieves a relative improvement of 60.80%. tdnn-swsa ob-
tains smaller error rate than stacked-tdnn which uses a
complex transfer learning training procedure.

We draw modified receiver operating characteristic (ROC)

2https://github.com/tensorflow/tensorflow/tree/master/tensorflow/
examples/speech commands

Table 5: A comparison with other models.

Model Error Rate #Para.

ResNet15 * [6] 4.2% 238K

stacked-tdnn * [5] 5.7% 251K

cnn-trad-fpool3 † 7.82%± 0.373 878K

res15 † 4.12%± 0.232 239K

res8-narrow † 10.69%± 0.867 20K

tdnn-swsa (ours) 4.19%± 0.191 12K
* is from the literature.
† is reimplemented.

Figure 3: ROC curves for different models.

curves to show the performances the models. All the curves
are drawn with the best trial of the model. The lower the bet-
ter. In Fig. 3, we can see that the performance of tdnn-swsa
is similar to res15, and better than res8-narrow and
cnn-trad-fpool3.

4. Conclusions
In this paper, we introduce a TDNN with SWSA for small-
footprint KWS. The SWSA is a self-attention mechanism which
uses a shared weight matrix to project input into the same space.
A TDNN subsampling is also used to reduce the length of a se-
quence. We evaluate our model on a public available Google
Speech Commands dataset. Compared with previous state-of-
the-art model, the proposed model achieves a 4.19% of error
rate, which is very close to previous state-of-the-art ResNet
model (4.12%). The number of parameters of our model is
1/20 of the ResNet model. In the future, we will investigate
robustness of the models in noisy environments.
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