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Abstract
Integrating an external language model into a sequence-to-
sequence speech recognition system is non-trivial. Previous
works utilize linear interpolation or a fusion network to inte-
grate external language models. However, these approaches in-
troduce external components, and increase decoding computa-
tion. In this paper, we instead propose a knowledge distilla-
tion based training approach to integrating external language
models into a sequence-to-sequence model. A recurrent neural
network language model, which is trained on large scale exter-
nal text, generates soft labels to guide the sequence-to-sequence
model training. Thus, the language model plays the role of the
teacher. This approach does not add any external component
to the sequence-to-sequence model during testing. And this
approach is flexible to be combined with shallow fusion tech-
nique together for decoding. The experiments are conducted
on public Chinese datasets AISHELL-1 and CLMAD. Our ap-
proach achieves a character error rate of 9.3%, which is rela-
tively reduced by 18.42% compared with the vanilla sequence-
to-sequence model.
Index Terms: knowledge distillation, external language mod-
els, end-to-end, sequence-to-sequence models

1. Introduction
Attention based sequence-to-sequence (Seq2Seq) models have
achieved promising performance in automatic speech recogni-
tion (ASR) [1, 2, 3, 4]. A Seq2Seq model consists of two com-
ponents: an encoder encodes the acoustic feature sequence into
a high level representation, and a decoder generates the cor-
responding word sequence. The encoder leverages attention
mechanism to fuse extracted features into a fixed-dimensional
vector for capturing global semantic information of a speech
signal. The decoder is a conditional language model (LM) to
capture linguistic information of transcriptions. During decod-
ing stage, the decoder predicts the current word in terms of the
acoustic encoding of the encoder, history context, and the pre-
vious word at each step. This architecture is also referred to as
Listen, Attend, and Spell [2].

Compared with speech transcriptions, abundant unsuper-
vised text corpora, which have rich linguistic information, are
easier to obtain. Large scale external text data is commonly
used to train language models (LMs) to improve ASR perfor-
mance in conventional hidden Markov model (HMM) or con-
nectionist temporal classification (CTC) based ASR pipelines.
However, because the encoder and the decoder are optimized
jointly, it is non-trivial to integrate an external LM into a
Seq2Seq model.

Shallow fusion and deep fusion are two approaches to

integrating an LM into a Seq2Seq model [5]. Shallow fu-
sion performs log-linear interpolation between the decoder of
a Seq2Seq model and an external LM during beam search.
The external LM can be n-gram LM or neural network lan-
guage models (NNLMs). It has achieved success in ASR tasks
[1, 6]. Various deep fusion approaches leverage a neural net-
work to fuse hidden representations of the Seq2Seq decoder
and the external neural network based LM [5]. Cold fusion and
component fusion utilize a pre-trained recurrent neural network
language model (RNNLM) and gating mechanism to improve
ASR performances [7, 8]. These fusion approaches have shown
promising performance. However, the neural network of the ex-
ternal LM increases complexity of the Seq2Seq model. Specifi-
cally, the fusion network introduces external parameters into the
Seq2Seq model for deep fusion. Both shallow fusion and deep
fusion need the external LM during test stage. It introduces ex-
ternal complexity into the ASR system.

We propose a knowledge distillation (KD) [9] based train-
ing approach to integrating an external LM into a Seq2Seq
model. First, an RNNLM is trained on large scale text data.
Then, the RNNLM is used to generate soft labels of speech tran-
scriptions to train the Seq2Seq model. This training approach
is also named as Teacher/Student model: the teacher (RNNLM)
provides soft labels as prior knowledge to “teach” the student
(Seq2Seq decoder). Thus, we refer to the proposed training ap-
proach as “Learn Spelling from Teachers” (LST). LST is sim-
ple to implemented: it does not modify the model structure, and
only needs to train an RNNLM to generate soft labels. With
LST, the external LM is only needed during training, so it does
not increase complexity of the model for testing. Furthermore,
LST and shallow fusion can be used together to achieve bet-
ter performance. We conduct experiments on publicly avail-
able AISHELL-11 dataset [10] and CLMAD2 text dataset [11]
to show the effectiveness of the proposed LST. We use Speech-
Transformer [3] as the backbone network. Our proposed ap-
proach reduced character error rate (CER) from 11.4% to 9.3%.
we further utilized shallow fusion for the model trained with
LST, and achieved CER of 8.3%.

The rest of this paper is organized as follows. Section 2
introduces the background. Section 3 introduces the proposed
LST. Section 4 introduces the related work. Section 5 describes
the experimental results. Section 6 summarizes the paper.

2. Background: Seq2Seq models for ASR
A basic Seq2Seq model is shown in Fig. 1(a). First, a speech
signal is processed into an acoustic feature sequence. Then, an
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(a) Vanilla Seq2Seq Model
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(b) Learn Spelling from Teachers (LST)

Figure 1: (a) illustrates a basic encoder-decoder architecture for ASR. x1, · · · , xt represent acoustic features, ct−1 denotes the context
of t − 1 step, and yt−1 denotes the previous token. The decoder predicts the current token in terms of the context ct−1, the previous
token yt−1, and the acoustic vector generated by the encoder. The loss is computed with the softmax function of the decoder and the
current ground truth token yt. (b) illustrates the proposed “Learn Spelling from Teachers” (LST) approach. The RNNLM generates
soft labels to train the Seq2Seq model, and it is removed during testing.

encoder network encodes the sequence into a high level acoustic
representation. The encoder can be a recurrent neural network
[2, 12] or a transformer [3]. The decoder is a conditional LM:
given the high level acoustic representation, the previous token,
and history context, it predicts the current token. The proba-
bility distribution on the vocabulary is computed by a softmax
function.

The attention is an important mechanism to capture the re-
lationship between the acoustic representations and the current
state of the decoder. The attention scores are computed in terms
of the current state of the decoder and the high level acoustic
representations, and then the acoustic information and the de-
coder state are fused.

The encoder and decoder are trained jointly. The training
criterion is cross entropy:

LCE(θ) = −
K∑

k=1

δ(k, yt) logPS2S(k|yt−1, ct−1,x; θ), (1)

where k is the index of each token, K is the vocabulary size, yt
is the index of the corresponding ground truth token at step t,
yt−1 is the previous token, ct−1 is the history context, x is the
acoustic features, PS2S represents probability, and θ stands the
parameters of the whole network. δ(·, ·) is 1 if the two variables
are equal, and 0 otherwise.

3. Distilling knowledge from external LMs
The basic idea of “Learn Spelling from Teachers” (LST) is:
first, train an RNNLM on an external large scale text corpus,
and then use this RNNLM to guide Seq2Seq model training.
Besides 1-of-K hard labels provided by the transcriptions, the
RNNLM provides soft labels, which carries the knowledge of
the text corpus. The soft labels are probabilities estimated by
the RNNLM. Fig. 2 shows the hard labels and soft labels of to-
kens in the vocabulary at one time step in a sequence. The soft
labels contain more information than hard labels, e.g. some to-
kens have relatively large probabilities, and some tokens have
very small probabilities.

Given the context and the previous token, the probability of
k-th token in vocabulary estimated by the RNNLM is

PLM(k|yt−1, ht−1) =
exp(zk/T )∑K
i=1 exp(zi/T )

, (2)

where zi is i-th node of latent variable before the softmax func-
tion, K is the vocabulary size, yt−1 is the previous token, ht−1
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Figure 2: Hard labels and soft labels at one time step of a se-
quence for training. The values of the soft labels reflect knowl-
edge of the external LM.

is the history context, and T is a parameter called temperature
to smooth the outputs.

To make the Seq2Seq model learn the knowledge from the
RNNLM, we minimize the Kullback-Leibler divergence (KLD)
between estimated probability of the RNNLM PLM and the es-
timated probability of the Seq2Seq model PS2S. Let P k

S2S =
PS2S(k|yt−1, ct−1,x; θ), and P k

LM = PLM(k|yt−1, ht−1), the
KLD is

DKL(PLM||PS2S) = −
K∑

k=1

P k
LM log

P k
S2S

P k
LM
. (3)

Because PLM is fixed during training the Seq2Seq model, the
loss function is equivalent to the cross entropy form:

LLST(θ) = −
K∑
i=1

P k
LM logP k

S2S. (4)

We refer to the above loss as LST loss.
The cross entropy loss in Eq. (1) and the LST loss in Eq.

(4) are weighted with a coefficient λ ∈ [0, 1], then the final loss
is

L(θ) = λLCE(θ) + (1− λ)LLST(θ). (5)

We can simplify the above equation as the label interpola-
tion form:

L(θ) = −
K∑

k=1

(λδ(k, yt) + (1− λ)P k
LM) logP

k
S2S. (6)

Thus, compared with the vanilla Seq2Seq model, we just mod-
ify the labels rather than the loss function during training



stage. L(θ) combines the knowledge from transcriptions and
the knowledge from the LM. The LST is illustrated in Fig. 1(b).

Comparing Fig. 1(b) with Fig. 1(a), we can see that LST
is only used for training, and the external RNNLM is removed
during testing. So the computation is the same as the original
Seq2Seq for testing. In order to achieve better performance,
shallow fusion can be further used with LST during decoding.
In addition, besides ASR, our proposed LST can be generally
used for Seq2Seq models.

4. Related work
Knowledge distillation. KD was proposed for model compres-
sion [9]. It is also referred to as teacher-student learning. Yoon
et al. proposed to use KD to reduce the size of a Seq2Seq model
for machine translation [13]. It has also been used for domain
adaptation for acoustic models [14] and language models [15].
Different from these work, our work focuses on integrating ex-
ternal language models for Seq2Seq ASR systems.
Label smoothing. Label smoothing have been used to pre-
vent the Seq2Seq ASR model making overconfident predictions
[4, 3, 16]. It can be seen as a special case of KLD regulariza-
tion when assuming the prior label distribution is uniform [17].
Unlike label smoothing, LST leverages an RNNLM to provide
a context-dependent prior distribution rather than a simple uni-
form distribution. Instead of assumption, the prior distribution
is estimated with a data-driven method. Besides solving the
overconfident problem, LST introduces knowledge from an ex-
ternal large scale text data corpus.

5. Experiments
5.1. Datasets
We use a Chinese corpus AISHELL-1 to evaluate our proposed
approach [10]. The training set contains 150 hours of speech
(120, 098 utterances) recorded by 340 speakers. The devel-
opment set contains 20 hours of speech (14, 326 utterances)
recorded by 40 speakers. And the test set contains 10 hours
of speech (7, 176 utterances) recorded by 20 speakers. The
speakers of the training set, development set, and test set are
not overlapped. All the recordings of the corpus are in 16 kHz
WAV format. The content of the speech is news with different
topics.

A subset of CLMAD [11, 18] text dataset is used as external
text dataset3. We use an open source tool XenC to extract the
subset of CLMAD which is topic matched with AISHELL-1
[19]. The preprocessing steps are as follows:

(1) Select 3 million sentences which have small cross en-
tropy with AISHELL-1 training transcriptions [20];

(2) Remove the sentences whose lengths are longer than 50;

(3) Mix the remained sentences with training transcriptions
(which are duplicated 10 times to improve proportion);

(4) Re-segment the word sequences into characters.

The information of the text data is shown in Table 1.

5.2. Experimental setup
In this paper, we employ Speech-Transformer [3, 21], a non-
recurrent Seq2Seq model for speech recognition, as the back-
bone network. Instead of hidden states and recurrent structures
of RNNs, the transformer models the context by computing at-
tention directly. Please see [3, 12, 21] for details of the trans-
former.

3This subset of the external text has been shared with OneDrive:
https://1drv.ms/u/s!An08U7hvUohBb234-V-Z0Qb Zcc

Table 1: The description of the text.

#Sentences #Characters Size

Training Trans. 120, 098 1, 730, 113 6.6MB
Test Trans. 7, 176 104, 765 0.4MB

External Text 3, 703, 982 75, 893, 998 290MB

The acoustic features are 80-dimension Mel-filter bank fea-
tures (FBANK), which are extracted every 10ms with 25ms of
frame length. Each frame is spliced with three left frames. So,
the input of the network is 320-dimensional. The sequence is
subsampled every three frames. The Speech-Transformer con-
sists of 6 blocks of an encoder and 6 blocks of a decoder. The
dimensionality of the model is 512, and the number of inner
nodes of the fully connected feed-forward network is 2048.
The number of heads is 8. The modeling units of the decoder
are 4232 characters, including three special symbols “<unk>”,
“<sos>”, “<eos>”, which represent unknown character, start
of a sentence, end of a sentence, respectively. The character
embeddings is shared with the output weights of the decoder
[22]. Following [3], we use Adam optimizer with β1 = 0.9,
β2 = 0.98, ε = 10−9. The learning rate α is updated as fol-
lows:

α = k · d−0.5
model ·min(n−0.5, n · warmup−1.5), (7)

where dmodel is the dimensionality of the model, n is the step
number, k is a tunable parameter, and the learning rate increases
linearly forwarmup steps. We set k = 0.5, warmup = 8000.
The model is trained for 50 epochs. There are utterances con-
taining about 20K frames in one batch. The development set is
used for validation. Only the model which achieves the lowest
cross entropy on development set is stored as the final model.

The external RNNLM is a two layers of long short-term
memory (LSTM) network. The modeling units are the same
as the Seq2Seq model. The RNNLM is trained on the exter-
nal text. The embedding size of the RNNLM is 300, and the
number of LSTM cells of each layer is 1024. The RNNLM is
trained on external text. The stochastic gradient decent (SGD)
with momentum as the optimizer for training the RNNLM. The
momentum is set to 0.9, and the learning rate is set to 1.0. The
RNNLM is trained for 5 epochs.

For decoding, we set beam width to 5 for beam search, and
maximum decoding length to 60.

5.3. Results and analysis
5.3.1. The effectiveness of external text
Firstly, we demonstrate the effectiveness of the external
text data and the RNNLM. We compute the perplexities on
AISHELL-1 test transcriptions, which are shown in Table 2.
Note that the data is in character level, so the perplexities are
relatively smaller. We can see that compared with the 3-gram
with Kneser-Ney smoothing trained on training transcriptions,
the 3-gram trained on external text achieves a significant re-
duction of perplexity. Moreover, the RNNLM achieves about a
28% relative reduction over the 3-gram trained on the external
text.

5.3.2. The impact of hyper-parameters
Table 3(a) shows the the character error rates (CERs) on devel-
opment the set with different temperature T in Eq. (2) when λ
is fixed at 0.9. The temperature controls the smoothness of the
soft labels generated by the RNNLM. When it is too small, the
soft labels are too sharp, and the Seq2Seq training is perturbed



Table 2: The perplexities on transcriptions of AISHELL-1 de-
velopment set.

LM PPL

3-gram (Training Trans.) 70
3-gram (Ext. Text) 47
RNNLM (Ext. Text) 34

Table 3: Comparisons of different hyper-parameters on the de-
velopment set.

(a) Varing T for RNNLM soft-
max (λ = 0.9).

Temperature CER%

T = 1.0 10.5
T = 3.0 8.3
T = 5.0 8.0
T = 7.0 8.2
T = 10.0 8.2
T = 15.0 9.0

(b) Varing λ for interpola-
tion (T = 5.0).

Weight CER%

λ = 0.3 9.4
λ = 0.5 9.2
λ = 0.8 9.2
λ = 0.85 8.9
λ = 0.9 8.0
λ = 0.95 9.3

heavily. When it is too large, the soft labels are too smoothed to
affect the training. We can see that when the temperature is set
to 5.0, the model achieves the best performance.

Then we fix T at 5.0 and evaluate the influence of λ. The
parameter λ controls the proportion of the ground truth hard
labels to the soft labels of the RNNLM. The results are shown in
Table 3(b). We can see that when λ = 0.9, the model achieves
the best performance on the development set. According to the
above results in Table 3, we select λ = 0.9 and T = 5.0 as
the final hyper-parameters. We refer to the model trained with
λ = 0.9 and T = 5.0 as “Seq2Seq+LST” in the rest.

5.3.3. The effectiveness of the proposed approach

Table 4 gives the results on the test set of each model.
“Seq2Seq” is the plain Seq2Seq without regularization. Com-
pared to “Seq2Seq”, “Seq2Seq+LST” achieves an 18.42% rel-
ative reduction in character error rate.

We report results of two KLD based regularization ap-
proaches, namely label smoothing and unigram smoothing. For
label smoothing, the prior label distribution is assumed to be a
uniform distribution. The label smoothing achieves a 4.4% rel-
ative reduction in character error rate. For unigram smoothing,
the prior label distribution is assumed to be the frequency of
each label. The frequency is estimated on the external text. Be-
cause the unigram is too sharp, it introduces noises and affects
training. We add 0.1 to the frequencies and re-normalize them
to smooth the unigram. We can see that the original unigram
hurts the performance, and the smoothed unigram improves the
performance. Both label smoothing and unigram smoothing are
effective for regularizing the model. The unigram should be
smoothed for training to reduce the sharp problem.

From Table 4, we can see that “Seq2Seq+LST” outperforms
both label smoothing and unigram smoothing (without shallow
fusion). We analyze that the assumptions of label smoothing
(uniform distribution) and unigram smoothing (unigram fre-
quency) do not match real situations. However, LST, which is a
data-driven approach, does not assume prior distributions.

We further leverage shallow fusion with the RNNLM for
each model. The weight of LM is 0.1. The RNNLM is the
same one which is used for LST. We can see that shallow fu-
sion improves performances for all models. “Seq2Seq + LST”
model outperforms “Seq2Seq + Label Smoothing + SF” model
(CER 9.9%), which demonstrates that LST is an effective way

Table 4: Comparisons on the test set. LST represents our pro-
posed “Learn Spelling from Teachers” approach. SF means
using shallow fusion during decoding.

Model CER%

Seq2Seq (baseline) 11.4
Seq2Seq + SF 10.5

Seq2Seq + Label Smoothing 10.9
Seq2Seq + Label Smoothing + SF 9.9

Seq2Seq + Original Unigram Smoothing 15.7
Seq2Seq + Smoothed Unigram Smoothing 10.0
Seq2Seq + Smoothed Unigram Smoothing + SF 8.7

Seq2Seq + Proposed LST 9.3
Seq2Seq + Proposed LST + SF 8.3

Seq2Seq Seq2Seq+LST

Figure 3: The loss curves of Seq2Seq model (left) and Seq2Seq
model with LST (right). For Seq2Seq model, the training loss is
lower than validation loss. However, with LST, the training loss
is higher than the validation loss. Moreover, the validation loss
in the right figure is a little smaller than the left one.

to improve the performance of Seq2Seq models. Moreover,
the model which uses LST and shallow fusion together, i.e.
“Seq2Seq + LST + SF”, achieves the best CER of 8.3%.

To further show the effect of our proposed approach, we
draw the loss curves with baseline “Seq2Seq” and the pro-
posed “Seq2Seq+LST” in Fig. 3. For “Seq2Seq” model, the
training loss is lower than validation loss. However, for
“Seq2Seq+LST”, the training loss is higher than validation loss.
The final validation loss of “Seq2Seq+LST” is a little bit smaller
than “Seq2Seq”. This result shows regularization effect of LST.

6. Conclusions
In this paper, we propose LST training approach to integrating
an external RNNLM into a Seq2Seq model. An RNNLM is first
trained on large scale external text data. Then, the RNNLM pro-
vides soft labels of training transcriptions to train the Seq2Seq
model. We used transformer based Seq2Seq as backbone, and
conducted experiments on public available Chinese datasets
AISHELL-1 (speech) and CLMAD (external text). The experi-
ments demonstrate the effectiveness of our proposed approach.
We will try integrating more powerful language models into
Seq2Seq systems in the future.
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