
Normalized and Geometry-Aware Self-Attention Network

for Image Captioning

Longteng Guo
1,2

Jing Liu
1

Xinxin Zhu
1

Peng Yao
3

Shichen Lu
4

Hanqing Lu
1

1National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences

3University of Science and Technology Beijing 4Wuhan University
{longteng.guo,jliu,xinxin.zhu,luhq}@nlpr.ia.ac.cn,S20180598@xs.ustb.edu.cn,sclu@whu.edu.cn

Abstract

Self-attention (SA) network has shown profound value

in image captioning. In this paper, we improve SA from t-

wo aspects to promote the performance of image caption-

ing. First, we propose Normalized Self-Attention (NSA),

a reparameterization of SA that brings the benefits of nor-

malization inside SA. While normalization is previously on-

ly applied outside SA, we introduce a novel normalization

method and demonstrate that it is both possible and benefi-

cial to perform it on the hidden activations inside SA. Sec-

ond, to compensate for the major limit of Transformer that

it fails to model the geometry structure of the input objects,

we propose a class of Geometry-aware Self-Attention (GSA)

that extends SA to explicitly and efficiently consider the rel-

ative geometry relations between the objects in the image.

To construct our image captioning model, we combine the

two modules and apply it to the vanilla self-attention net-

work. We extensively evaluate our proposals on MS-COCO

image captioning dataset and superior results are achieved

when comparing to state-of-the-art approaches. Further ex-

periments on three challenging tasks, i.e. video captioning,

machine translation, and visual question answering, show

the generality of our methods.

1. Introduction

Automatically generating captions for images, namely

image captioning [20, 40], has emerged as a prominent re-

search problem at the intersection of computer vision (CV)

and natural language processing (NLP). This task is chal-

lenging as it requires to first recognize the objects in the

image, the relationships between them, and finally properly

organize and describe them in natural language.

Inspired by the sequence-to-sequence model for machine

translation, most image captioning approaches adopt an

encoder-decoder paradigm, which uses a deep convolution-

al neural network (CNN) to encode the input image as a vec-

torial representation, and a recurrent neural network (RNN)

based caption decoder to generate the output caption. Re-

cently, self-attention (SA) networks, denoted as SANs, have

been introduced by [46, 43] to replace conventional RNNs

in image captioning. Since its first introduction in Trans-

former [32], SA and its variants have shown promising em-

pirical results in a wide range of CV [45, 16, 37, 10, 24, 9]

and NLP [30, 8, 41] tasks. Although SAN-based framework

has achieved state-of-the-art performance in image caption-

ing, it remains two problems to be solved.

Firstly, SA is susceptible to the internal covariate shift

[18] problem. Typically, SA is regarded as a mapping of a

set of query and key/value pairs. We observe, from anoth-

er perspective, that computation of the attention weights in

SA could be considered as feeding the queries into a fully-

connected layer, whose parameters are dynamically com-

puted according to the inputs. Problem could happen when

the distribution of the queries shifts due to the change in

network parameters during training. That is, the subsequent

layers have to continuously adapt to the new input distribu-

tion, and consequently, SA may not be learned effectively.

This problem is called “Internal Covariate Shift” in [18] —

the tendency that the distribution of activations drifts during

training in a feed-forward network.

To eliminate the internal covariate shift problem inside

SA, in this paper, we introduce an effective reparameteriza-

tion of SA, named Normalized Self-Attention (NSA). NSA

performs a novel normalization method on the hidden acti-

vations of SA to fix their distributions. By doing so, we can

effectively decouple the fully-connected layer’s parameters

from those of other layers, leading to a better-conditioned

optimization of SA. While Layer Normalization (LN) [4]
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is proven to be very critical for enabling the convergence

of Transformer, however, LN is only applied outside SA

blocks. To our knowledge, there has not been any deep ex-

ploration to find a suitable normalization method inside SA.

We demonstrate that our NSA can collaborate with LN to

bring improved generalization for SA-based networks.

Another critical issue in SA is its inability to model the

geometric relationships among input elements. The vanil-

la self-attention treats its inputs as “bag-of-features”, sim-

ply neglecting their structure and the relationships between

them. However, the objects in the image, from which the

region-based visual features are extracted for image cap-

tioning, inherently have geometric structure — 2D spatial

layout and variations in scale/aspect ratio. Such inherent

geometric relationships between objects play a very com-

plex yet critical role in understanding the image content.

One common solution to inject position information into

SA is adding representations of absolute positions to each

element of the inputs, as is often used in the case of 1D

sentences. Nonetheless, this solution does not work well

for image captioning because the 2D geometry relations be-

tween objects are harder to infer from their absolute posi-

tions.

We present a more efficient approach to the above

problem: explicitly incorporating relative geometry rela-

tionships between objects into SA. The module is named

Geometry-aware Self-Attention (GSA). GSA extends the

original attention weight into two components: the origi-

nal content-based weight, and a new geometric bias, which

is efficiently calculated by the relative geometry relations

and, importantly, the content of the associated elements, i.e.

query or key.

By combining both NSA and GSA, we obtain an en-

hanced SA module. We then construct our Normalized

and Geometry-aware Self-Attention Network, namely NG-

SAN, by replacing the vanilla SA modules in the encoder

of the self-attention network with the proposed one. Exten-

sive experiments on MS-COCO validates the effectiveness

of our proposals. In particular, our NG-SAN establishes

a new state-of-the-art on the MS-COCO evaluation sever,

improving the best single-model result in terms of CIDEr

from 125.5 to 128.6. To demonstrate the generality of NSA,

we further present video captioning, machine translation,

and visual question answering experiments on the VATEX,

WMT 2014 English-to-German, and VQA-v2 datasets, re-

spectively. On top of the strong Transformer-based base-

lines, our methods can consistently increase accuracies on

all tasks at a negligible extra computational cost.

To summarize, the main contributions of this paper are

three-fold:

• We presented Normalized Self-Attention, an effective

reparameterization of self-attention, which brings the

benefits of normalization technique inside SA.

• We introduce a class of Geometry-aware Self-

Attention that explicitly makes use of the relative ge-

ometry relationships and the content of objects to aid

image understanding.

• By combining the two modules and apply it on the self-

attention network, we establish a new state-of-the-art

on the MS-COCO image captioning benchmark. Fur-

ther experiments on video captioning, machine transla-

tion, and visual question answering tasks demonstrate

the generality of our methods.

2. Related Work

2.1. Image Captioning

Existing image captioning approaches typically follows

the CNN-RNN architecture [36]. Recently, a variety of im-

proving works have been proposed. [40] introduces soft

and hard attention mechanisms to automatically focus on

salient objects when generating each word. [13] mimics

human polishing process with a ruminant decoder. [2] uses

an object detector to propose salient image regions (objects)

and extract for each object a feature vector, which are then

used as inputs for attention mechanism. [28] introduces

reinforcement-learning with a self-critical reward for mod-

el training. Recently, [46] and [43] propose to replace con-

ventional RNN with the Transformer architecture, achiev-

ing state-of-the-art performance. However, more deep ex-

ploration of the self-attention module in Transformer is not

conducted on the task of image captioning, which motivates

our work in this paper.

2.2. Normalization

Normalization [18] has become a critical ingredient in

constructing a deep neural network. It is proposed by Batch

normalization (BN) [18] to control the distributions of the

internal activations of feed-forward neural networks, there-

by reducing internal covariate shift. Several variants of nor-

malization method such as Layer Normalization (LN) [4],

Instance Normalization (IN) [31], and Group Normalization

[39] have been developed mainly to reduce the mini-batch

dependencies inherent in BN. LN operates along the chan-

nel dimension for each individual element in an example.

IN performs BN-like computation but only for each sam-

ple. Though BN and LN have been adopted in networks that

contain the SA module, e.g. Transformer, they are typically

used outside the SA module. For the first time, our normal-

ized self-attention brings the benefit of normalization inside

the SA module.

2.3. Position encoding in self­attention networks

To inject sequence ordering into SA module, in Trans-

former, absolute position encodings based on sinusoids are
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added to the input elements both in the encoder and de-

coder. Recently, [29] modulates SA by incorporating the

relative distances between sequence elements. [16] propos-

es an SA-like module for object detection, which multiplies

a new relation weight on the original self-attention weight,

and is used by [15] in Transformer. Its relation weight is

computed solely with the relative coordinates and sizes be-

tween bounding boxes. Different from these works, our

GSA module explores a broader range of geometric bias-

es that involve not only the geometry information but also

the content of the associated objects.

3. Preliminaries

3.1. Self­Attention (SA)

We first review a basic form of self-attention, called “S-

caled Dot-Product Attention”, which is first proposed as a

core component in Transformer.

The self-attention layer first transforms a set of N dk-

dimensional vectors, packed into a matrix X ∈ R
N×dk ,

into queries Q ∈ R
N×d, keys K ∈ R

N×d, and values V ∈
R

N×d given by Q = XWQ, K = XWK , V = XWV ,

where the projections WQ, WK , and WV are all dk × d pa-

rameter matrices. The energy scores E between any queries

and keys are computed as 1

E = QK⊤, (1)

where E is an N × N weight matrix, on which a softmax

function is applied to obtain the weights of the values. The

output is computed as a weighted sum of the values as

Z = Attention (Q,K, V ) = Softmax (E)V. (2)

3.2. Self­attention network for image captioning

Figure 1 shows self-attention network (SAN), which is

our baseline architecture for image captioning. Similar to

Transformer, the model consists of an image encoder and a

caption decoder, both of which are composed of a stack of

L layers. Each layer consists of one (for the encoder layer)

or two (for the decoder layer) multi-head attention (MHA)

sub-layers followed by a feed-forward network (FFN). The

MHA sub-layer contains h parallel “heads” with each head

corresponding to an independent scaled dot-product atten-

tion function. Besides, a residual connection and layer nor-

malization are used between all the sub-layers.

The inputs to the encoder are the region-based visual

features extracted from Faster-RCNN [27] object detector.

Each input element corresponds to an object in the image.

Before feeding the input vectors into the encoder, they are

first passed through a dense layer followed by a ReLU layer

to adapt their dimension to be consistent with the encoder.

1QKT /
√

d, the scaling factor
√

d is omitted for simplicity.

Self-Attention

Add & LN

Feed Forward

Add & LN

Linear

Self-Attention

Add & LN

Attention

Add & LN

Feed Forward

Add & LN

Softmax

Embed

Position 

Encoding
+

  START a woman is

L× 

L× 

Figure 1. Architecture of the self-attention network (SAN) for

image captioning.

The decoder takes the attended visual features and the em-

beddings of the previous words to predict the next word re-

cursively. Following Transformer, we add sinusoidal “posi-

tional encodings” to the inputs at the bottoms of the decoder.

Because the regions in the image don’t have a natural order

like sequences, no position information is added in the en-

coder side.

4. Approach

4.1. Normalized SA (NSA)

This section introduces a reparameterization of self-

attention that takes advantage of normalization method for

improved training.

We first review the formulation of Batch Normalization

(BN). Consider feeding an input mini-batch x into a feed-

forward layer y = F (x,Θ), where F is an arbitrary trans-

formation, and Θ is the parameter to be learned. The inter-

nal covariate shift happens when the distribution of x shifts

during training. To reduce internal covariate shift, BN nor-

malizes each channel of x using the mean and variance ac-

cumulated over the same channel in the whole mini-batch.

We then take a closer look at the attention weight in E-

qn. 2:

S = Softmax(QK⊤)

= Softmax((XWQ) · (W
⊤

KX⊤)).
(3)

It can be considered as an input instance X ∈ R
N×dk first

goes through a dk × d linear layer parameterized by WQ

to obtain Q = XWQ ∈ R
N×d, which is then further fed

into a d×N linear layer parameterized by K⊤ = W⊤

KX⊤

followed by a Softmax activation to output N probabilities

over the keys. Thus, we can re-formulate Eqn. 3 as a fully-
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connected layer F followed by a Softmax activation:

S = Softmax(F (Q,Θ)),

Q = XWQ, Θ = K⊤ = W⊤

KX⊤.
(4)

Note that the parameter Θ is dynamically calculated

based on X . From this perspective, SA can be susceptible

to the internal covariate shift problem just as in a standard

feed-forward network. That is, when the distribution of in-

put Q shifts due to the change in network parameters during

training, the layer parameter Θ needs to continuously adapt

to the new input distribution. Consequently, SA may not be

learned effectively.

Therefore, to eliminate the internal covariate shift, it is

advantageous for the distribution of Q to remain fixed over

time. Then Θ does not have to readjust to compensate for

the change in the distribution of Q. This can be accom-

plished by performing normalization on Q by

Q̂ = Norm(Q). (5)

We now consider the implementation of Norm. BN is

not directly suitable for Norm because instead of using a

shared layer parameters for all examples in the dataset, the

layer parameter Θ = W⊤

KX⊤ is dynamically computed

with the instance-specific X . Therefore, it is more desirable

to perform normalization, Norm, for every single instance

independently.

Let x ∈ R
B×T×C and xbtc denote the btc−th element

of x, where b is the sample index, c is the channel index,

and t is the index of the additional spatial dimension. We

implement Norm as normalizing each instance in the mini-

batch independently using per-channel feature statistics:

x̂btc =
xbtc − µbc
√

σ2

bc + ǫ
,

µbc =
1

T

T
∑

t=1

xbtc, σ2

bc =
1

T

T
∑

t=1

(xbtc − µbc)
2
.

(6)

The above normalization method is exactly the Instance

Normalization (IN) in the 1D case. Subtracting the mean

from the queries could be considered as highlighting the d-

ifferences among the queries and encourage them to query

information from distinctive aspects.

We represent the normalization operation in Eqn. 6 as

x̂ = IN(x). Finally, we derive our normalized self-attention

that reparameterizes the self-attention as

Q̂ = IN(Q), Z = Softmax(Q̂K⊤)V. (7)

Similar to BN and IN, it is optional to further apply the

channel-wise affine transformation x̃btc = x̂btcγc + βc in

Norm, where γ, β ∈ R
C are learnable scale and shift pa-

rameters. But we empirically found it not necessary in

our experiments. It is also optional to normalize K with

K̂ = IN(K). This is equivalent to normalizing the dynam-

ic parameters Θ, which, however, may limit the capacity of

SA.

Relation to prior works. Our normalization method d-

iffers from Layer Normalization (LN) in that LN normal-

izes along all channels of each individual element, while

our method normalizes along each channel of all input ele-

ments in an instance. As for IN, it is typically used in 2D

CNNs, e.g. on style transfer task. To our knowledge, IN has

not been successfully used for language generation tasks, in

particular for SAN.

4.2. Geometry­Aware SA (GSA)

The inherent geometric structure among the input object-

s is beneficial for reasoning about the visual information,

which, however, is not modeled in the vanilla Transformer.

Therefore, we propose GSA that improves the SA module

by taking into account the pairwise geometry relationships

and the content information of objects.

Denote the relative geometry features between two ob-

jects i and j as f
g
ij , which is a 4-dimensional vector of the

relative position and size of the bounding boxes:

(

log(
|xi − xj |

wi

), log(
|yi − yj |

hi

), log(
wi

wj

), log(
hi

hj

)

)T

, (8)

where (xi, yi), wi, hi are the center coordinate, width, and

height of box i, respectively.

We project f
g
ij to a high-dimensional representation Gij

with a fully-connected (FC) layer followed by a ReLU acti-

vation as

Gij = ReLU
(

FC
(

f
g
ij

))

, (9)

where G ∈ R
N×N×dg .

We then modify the energy score in Eq. 1 to include the

effect of G as

E = QK⊤ + φ(Q′,K ′, G), (10)

where φ is the geometric attention function, which outputs

a score matrix of shape N × N , and Q′,K ′ ∈ R
N×dg are

geometric queries and keys that are computed in the same

way as Q,K, i.e. by projecting the input X . In the above

equation, the first term is related to the queries and keys,

namely content-based weight. The second term represents

the geometric bias, which involves the geometry relations

and the contents of Q′ and K ′.

We now discuss three choices of φ, which can be either

used individually or combined.

Content-independent geometric bias. The geometry re-

lation Gij conveys useful information for understanding the
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relationships between two objects, e.g. object i and j have

“comparable sizes” and object i is “next to” object j. Thus,

we directly project Gij to a scalar score by

φ1

ij = ReLU(w⊤

g Gij), (11)

where wg is the parameter to be learned. The ReLU non-

linearity acts as a zero trimming operation so that only the

relations between objects with certain geometric relation-

ships are considered.

The relation network [16] presented recently for object

detection is a special case of the content-independent geo-

metric bias. Different from the above formulation, it fus-

es the content-independent geometric bias and the original

attention weights by multiplication and use sinusoidal em-

bedding of the geometry feature.

Query-dependent geometric bias. The above “content-

independent” variant assumes a static geometric bias, i.e.

the same geometric bias is applied to all the query-key pairs

in an SA layer. However, the geometric biases are more of-

ten different, depending on what the associated query object

is. For example, for the queries, “sea” and “ball”, their scale

difference are often huge in the image, and thus their sensi-

tivities to the same change of a key’s distance/position vary

widely. Therefore, the geometric biases of the two queries

should be adapted to match their content. To this end, we

decide to dynamically compute the geometric bias for dif-

ferent queries:

φ2

ij = Q′⊤

i Gij . (12)

Here we use dot-product to match Q′
i with Gij since it

is more computation and memory efficient than using the

Concatenation-FC operation.

Key-dependent geometric bias. Similar to the query-

dependent variant, geometric bias can also be associated

with the content of the keys, computed as

φ3

ij = K ′⊤

j Gij . (13)

4.3. Applying NSA and GSA modules to SAN

We first combine both NSA and GSA by replacing Q

in Eqn. 10 with the normalized one, Q̂. We then use this

module to replace the vanilla SA modules in the encoder of

SAN, which results in our full model, namely Normalized

and Geometry-aware Self-Attention Network (NG-SAN).

NSA is not applied in the decoder of SAN because the de-

coder is autoregressive and has variable-length inputs. This

is undesirable for IN because the mean and variance statis-

tics are meaningless when the sequence length is 1.

Epoch
0 5 10 15 20 25 30

C
ID
E
r

95

100

105

110

115

120

125

SAN
N-SAN

Figure 2. Changes of CIDEr scores during training.

5. Experiments on Image Captioning

5.1. Experimental setup

MS-COCO dataset [22]. It is the most popular bench-

mark for image captioning. We use the ‘Karpathy’ splits

that have been used extensively for reporting results in pri-

or works. This split contains 113,287 training images with

5 captions each, and 5k images for validation and test split-

s, respectively. We follow standard practice [35] to pre-

process the text, resulting in a final vocabulary of 9,487

words. We use the region-based image features provided

by Bottom-Up [2] for training.

Evaluation metrics. We use the standard automatic e-

valuation metrics to evaluate the quality of image caption-

s, including BLEU-1/2/3/4 [26], METEOR [7], ROUGE-

L [21], CIDEr [33], and SPICE [1], which are denoted as

B@1/2/3/4, M, R, C and S, respectively.

Implementation details. We follow Transformer-Base

model [32] and [43] to set the model hyper-parameters and

train the model. Specifically, the dimensionality of input

image features is 2048. The latent dimension in the MHA

module is 512, and the number of heads is 8. Inner dimen-

sion in the FFN module is 2,048. We apply dropout with

a probability of 0.1. We use the same number of layers L

for the encoder and decoder. For training, we use the Adam

optimizer [19] We use a step decay schedule with warm-up

for varying the learning rate. The base learning rate is set

to min(t × 10−4; 3 × 10−4), where t is the current epoch

number that starts at 1. After 6 epochs, the learning rate is

decayed by 1/2 every 3 epochs. All models are first trained

for 15 epochs with the cross-entropy loss and then further

optimized with CIDEr reward [28] for additional 15 epochs.

If not specifically mentioned, by default we set L = 4, on-

ly normalize the query and do not apply γ, β in NSA, and

use the query-dependent variant (φ1) of GSA. Beam search

with a beam width of 3 is used during testing stage.
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Table 1. Comparisons between N-SAN and SAN using different

numbers of self-attention layers L.

#Layers Model #params B@4 M R C S

1
SAN 18.1M 36.8 28.0 57.6 123.4 21.8

N-SAN 18.1M 38.2 28.6 58.2 127.2 22.2

2
SAN 25.5M 38.2 28.5 58.3 127.1 22.3

N-SAN 25.5M 38.9 28.9 58.6 129.7 22.6

4
SAN 40.2M 38.4 28.6 58.4 128.6 22.6

N-SAN 40.2M 39.3 29.1 58.9 130.8 23.0

6
SAN 54.9M 38.6 28.6 58.5 128.8 22.5

N-SAN 54.9M 39.3 29.2 59.1 131.1 23.0

Table 2. Comparison of using various normalization methods in

NSA.

Approach B@4 M R C S

SAN 38.4 28.6 58.4 128.6 22.6

LN 38.5 28.6 58.3 128.2 22.5

BN 38.8 28.9 58.7 129.4 22.8

IN 39.4 29.2 59.0 130.7 23.0

IN w/o γ, β 39.3 29.1 58.9 130.8 23.0

5.2. Analysis on NSA

In this section, we examine the effectiveness of NSA

module. We replace the SA modules in the encoder of SAN

with NSA, resulting in a model named Normalized Self-

Attention Network (N-SAN).

Number of attention layers. In Table 1 we compare the

performance of N-SAN and SAN under the same number of

SA layers L ∈ {1, 2, 4, 6}. We can see that the model size

grows linearly as L increases. Regarding the performance,

we have two observations as follows. 1) As L increases,

the performance of both SAN and N-SAN gradually im-

proves and reaches the optimal value when L = 6. Howev-

er, the performance gain of increasing L from 4 to 6 is not

very significant. Therefore, we use L = 4 for later exper-

iments as a compromise between the model’s performance

and complexity. 2) N-SAN consistently outperforms SAN

on all metrics under different L. In Figure 2, we further plot

the CIDEr scores of the one-layer SAN and N-SAN models

during training, evaluated on the validation split at each e-

poch. As we can see, the curve of N-SAN is above that of

SAN for most of the time.

Different normalization methods. Since we introduced

IN into the NSA module for normalization, an intuitive

question to ask is whether we can replace IN with other nor-

malization methods. In Table 2 we show the results of using

different normalization methods including BN, LN, IN and

IN without using the affine transformations (γ and β). We

have the following observations. 1) Using LN slightly de-

creases the performance. We conjecture that is because LN

normalizes activations of all channels with the same nor-

Table 3. Comparison of normalizing query and key in N-SAN.

Query Key B@4 M R C S

✗ ✗ 38.4 28.6 58.4 128.6 22.6

✓ ✗ 39.3 29.1 58.9 130.8 23.0

✗ ✓ 39.2 29.0 58.8 130.1 22.8

✓ ✓ 39.4 29.1 58.8 130.7 23.1

Table 4. Comparison of various variants of GSA.

Approach #params B@4 M R C S

SAN 40.2M 38.4 28.6 58.4 128.6 22.6

absolute 40.2M 38.3 28.5 58.4 128.4 22.6

content-independent 40.2M 39.2 29.1 58.9 131.0 22.9

key-dependent 41.5M 38.9 29.0 58.8 129.5 22.8

query-dependent 41.5M 39.3 29.2 59.0 131.4 23.0

malization terms (µ and σ), thus limiting the expression ca-

pacity of each channel when calculating attention weights.

2) IN and IN w/o γ, β significantly outperform SAN and

all the other normalization methods. Meanwhile, the extra

affine transformations (γ and β) are not necessary. 3) Ap-

plying BN outperforms SAN but is inferior to adopting IN.

BN has a similar effect as IN to reduce the internal covariate

shift by fixing the distribution of the queries. However, as is

described in Sec. 4.1, since the layer parameter Θ in Eqn. 4

depends on instance-specific input, it is more desirable to

perform input normalization also on each instance instead

of on the whole mini-batch.

What if we normalize the keys in addition to the

queries? In Table 3, we compare the variants of Eqn. 7,

including normalizing Q alone, K alone, and both Q and K.

We have the following observations. 1) Normalizing either

of Q and K could increase the performance. 2) The per-

formances of normalizing both Q and K and normalizing

Q alone are very similar, and are both significantly high-

er than that of SAN. 3) Normalizing K alone is inferior to

normalizing Q alone. The reason is that normalizing K is

equivalent to normalizing Θ in Eqn. 4, which may limit the

model capacity of SA.

5.3. Analysis on GSA

In this section, we examine the effectiveness of GSA

module. Similar to N-SAN, we replace the SA modules

in the encoder of SAN with GSA to obtain a model named

Geometry-aware Self-Attention Network (G-SAN).

Variants of GSA. In Table 4 we compare various vari-

ants of GSA module introduced in Sec. 4.2. “+absolute”

denotes adding absolute geometry information of each in-

dividual object to their input representations at the bottoms

of the encoder. It is obtained by embedding the geometry

features, i.e. the center coordinates and the width/height of

the box, normalized by the width/height of the image, to a
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Table 5. Leaderboard of the published state-of-the-art, single-model methods on the online MS-COCO test server, where c5 and c40 denote

using 5 and 40 references for testing, respectively. CIDEr (C40) is the default sorting metric on the leaderboard.

Model
BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr-D

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Up-Down [2] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5

CAVP [23] 80.1 94.9 64.7 88.8 50.0 79.7 37.9 69.0 28.1 37.0 58.2 73.1 121.6 123.8

SGAE [42] 80.6 95.0 65.0 88.9 50.1 79.6 37.8 68.7 28.1 37.0 58.2 73.1 122.7 125.5

VSUA [14] 79.9 94.7 64.3 88.6 49.5 79.3 37.4 68.3 28.2 37.1 57.9 72.8 123.1 125.5

NG-SAN (Ours) 80.8 95.0 65.4 89.3 50.8 80.6 38.8 70.2 29.0 38.4 58.7 74.0 126.3 128.6

sinusoidal representation using the same method as the “po-

sitional encodings” in [32]. We have the following findings.

1) Adding the absolute geometry information (“absolute”)

is not beneficial to the performance. That is probably be-

cause it is too complex for SA to infer the 2D layout of

objects from their absolute geometry information. 2) All

the proposed variants of GSA can improve the performance

of SAN, showing the advantages of using relative geome-

try information. 3) “query-dependent” brings the best per-

formance and outperforms the content-independent variant,

proving that incorporating the content information of the

associated query can help infer a better geometric bias. 4)

“key-dependent” is inferior to “query-dependent”. That is

because when using key-dependent geometric bias, the s-

cores φ3

ij = K ′

j
⊤
Gij condition on different keys K ′

j , thus

the differences in Gij may be overwhelmed by the differ-

ences in K ′

j when performing softmax on the keys’ dimen-

sion. In comparision, when using query-dependent geomet-

ric bias, the effect of Gij could be highlighted since the

scores condition on a common query Q′

i when performing

softmax. We did not observe further improvement when

combing these variants into φ in Eq. 10.

5.4. Analysis on the full model (NG­SAN)

We now validate the effectiveness of NG-SAN that takes

advantage of both NSA and GSA.

Comparisons with state-of-the-arts. We compare NG-

SAN with the state-of-the-art methods, including Up-Down

[2], CAVP [23], SGAE [42], VSUA [14], ORT [15],

AoANet [17], and MT [43]. All the methods except OR-

T, AoANet, and MT are based on single- or multi-layer

Long Short-Term Memory (LSTM) networks. MT adopts

a Transformer-Base architecture, using 6 SA layers for both

the encoder and the decoder, and inserts an additional LST-

M layer in the decoder. ORT also adopts the Transformer-

Base architecture and follows [16] to model the spatial rela-

tionship between inputs. AoANet uses SAN as the encoder

and LSTM as the decoder.

Table 6 compares the results of each method. We can see

that both G-SAN and N-SAN outperform the SAN baseline

across all metrics. Moreover, NG-SAN further outperforms

Table 6. Comparisons with state-of-the-art single-model approach-

es on MS-COCO Karpathy test split.

Model #params B@4 M R C S

Up-Down [2] – 36.3 27.7 56.9 120.1 21.4

CAVP [23] – 38.6 28.3 58.5 126.3 21.6

SGAE [42] – 39.0 28.4 58.9 129.1 22.2

VSUA [14] – 38.4 28.5 58.4 128.6 22.0

ORT [15] – 38.6 28.7 58.4 128.3 22.6

AoANet [17] – 38.9 29.2 58.8 129.8 22.4

MT [43] 57.0M 39.8 29.1 59.1 130.9 –

SAN 40.2M 38.4 28.6 58.4 128.6 22.6

N-SAN 40.2M 39.3 29.1 58.9 130.8 23.0

G-SAN 41.5M 39.3 29.2 59.0 131.4 23.0

NG-SAN 41.5M 39.9 29.3 59.2 132.1 23.3

G-SAN and N-SAN, demonstrating that GSA and NSA are

compatible with each other. NG-SAN significantly outper-

forms all the other methods, including both LSTM-based

and SA-based ones, over all metrics. Particularly, we im-

prove the best CIDEr score from 130.9 to 132.1. Table 5 fur-

ther reports the performance of the top-performing single-

model solutions on the official test server. Compared with

the published methods, our single model significantly out-

performs all the other methods in terms of all evaluation

metrics except BLEU-1. In particular, we establish a new

state-of-the-art score of 128.6 on CIDEr (C40).

Complexity. As can be seen in the “#params” column in

Table 6, NG-SAN requires very few (about 2k) addition-

al parameters compared with SAN. For NSA, it does not

require any parameters, and the computation overhead of

the additional normalization process is almost ignorable.

While GSA indeed requires some additional parameters, the

amount is ignorable. GSA can be efficiently implement-

ed by matrix multiplication and the einstein summation

(einsum) operations provided by mainstream deep learning

frameworks.

6. Extension: Experiments on Other Tasks

We further investigate the effectiveness and generali-

ty of our methods on Video Captioning (VC) [34], Ma-

chine Translation (MT) [5], and Visual Question Answer-
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Table 7. Video captioning results on VATEX dataset.

Model B@4 M R C

VATEX [38] 28.2 21.7 46.9 45.7

Transformer (Ours) 30.6 22.3 48.4 53.4

+NSA 31.0 22.7 49.0 57.1

Table 8. Machine translation results on newstest2014 for WMT

2014 En-De dataset.

Model BLEU

Transformer-Base [32] 27.30

Transformer-Big [32] 28.40

Transformer-Base (Ours) 27.56

+NSA 27.92

ing (VQA) [3] tasks. Since VC and MT are both sequence-

to-sequence problems, we directly use Transformer as the

baseline models, and we replace the SA modules in their

encoder with the proposed NSA module to construct our

methods. As for VQA, we use MCAN [44] as the baseline

model, which uses a SAN-based network to simultaneous-

ly encode image and question information. To build our

method for VQA, we replace all the SA modules in MCAN

with our GSA modules.

6.1. Video Captioning

We use a recently released large-scale video captioning

dataset, VATEX [38]. It contains over 41,250 videos and

412,500 English captions. For a fair comparison with VA-

TEX, we directly use the pre-extracted video features pro-

vided by the paper. Specifically, each video is sampled at

25fps and 1,000-dimensional features are extracted from

these sampled frames using a pretrained I3D [6] model. Be-

cause the dataset is relatively small, we found using one

layer in both the encoder and decoder is satisfactory. We

use a training configuration the same as that of our image

captioning model.

In Table 7, we compare our method with the Transformer

baseline and the VATEX model. We see that the perfor-

mance of Transformer strongly exceeds that of VATEX,

which adopts an LSTM-based architecture. Our Trans-

former+NSA method consistently improves over Trans-

former on all metrics. Particularly, our method improves the

CIDEr score by 3.7 points when compared to Transformer,

and significantly improves the CIDEr score by 11.4 points

when compared to VATEX baseline.

6.2. Machine Translation

We also evaluate NSA on MT task, for which the Trans-

former was originally proposed. We trained on the widely-

used WMT 2014 English to German (En-De) dataset, which

consists of about 4.56 million sentence pairs. The models

were validated on newstest-2013 and tested on newstest-

Table 9. Visual question answering accuracies on the VQA-v2

dataset to compare with the state-of-the-art single-model methods.

Model test-dev test-std

MLIN [12] 70.18 70.28

DFAF [11] 70.22 70.34

MCAN [44] 70.63 70.90

MCAN (Ours) 70.54 70.83

+GSA 70.76 71.28

2014 with BLEU. We use the well-known Transformer-

Base [32] variant of Transformer as the baseline model,

which has 6 layers in both the encoder and decoder. Specif-

ically, we follow the implementation of the fairseq-py

[25] toolkit.

As shown in Table 8, Compared to Transformer-Base

model, NSA increases the BLEU score by 0.36 points with-

out adding any parameters.

6.3. Visual Question Answering

We conduct experiments on the most commonly used

VQA benchmark, VQA-v2 [3]. It contains human-

annotated question-answer pairs relating to the images from

the MS-COCO dataset, with 3 questions per image and 10

answers per question. We strictly follow MCAN [44] to

implement our models. Specifically, images are represent-

ed with region features extracted from Faster R-CNN object

detector and the input questions are transformed with GloVe

word embeddings and an LSTM network.

Table 9 shows the overall accuracies of our methods and

the current state-of-the-art models on the online test-dev and

test-std splits. GSA boosts the test-std accuracy of MCAN

from 70.83 to 71.28.

7. Conclusion

We proposed two improvements to the self-attention

(SA) mechanism, i.e. a Normalized Self-Attention (NSA) to

reduce the internal covariate shift problem inside SA, and a

class of Geometry-aware Self-Attention (GSA) that explic-

itly and dynamically computes the geometric bias between

objects to benefit image understanding. We have conduct-

ed extensive experiments on MS-COCO image captioning

dataset to validate the effectiveness of NSA, GSA, and their

combination. We further show the significance and general-

ity of our methods on video captioning, machine translation,

and visual question answering tasks. On all tasks, simply re-

placing the vanilla SA module with our proposed methods

provides solid improvements over strong baselines.
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