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Abstract—Low-rank tensor decomposition is a widely-used
strategy to compress convolutional neural networks (CNNs).
Existing learning-based decomposition methods encourage low-
rank filter weights via regularizer of filters’ pair-wise force
or nuclear norm during training. However, these methods can
not obtain the satisfactory low-rank structure. We propose a
new method with an adaptive rank penalty to learn more
compact CNNs. Specifically, we transform rank constraint into a
differentiable one and impose its adaptive violation-aware penalty
on filters. Moreover, this paper is the first work to integrate the
learning-based decomposition and group decomposition to make
a better trade-off, especially for the tough task of compression
of 1× 1 convolution.

The obtained low-rank model can be easily decomposed while
nearly keeping the full accuracy without additional fine-tuning
process. The effectiveness is verified by compression experiments
of VGG and ResNet on CIFAR-10 and ILSVRC-2012. Our
method can reduce about 65% parameters of ResNet-110 with
0.04% Top-1 accuracy drop on CIFAR-10, and reduce about
60% parameters of ResNet-50 with 0.57% Top-1 accuracy drop
on ILSVRC-2012.

Index Terms—low-rank decomposition, network compression,
learning-based decomposition, adaptive rank penalty.

I. INTRODUCTION

Deep convolutional neural networks (CNNs) perform re-
markably in many vision-based applications [1], [2]. However,
it is difficult to deploy CNNs on edge devices, such as mobile
phone and embedded devices, due to their huge model size,
heavy run-time memory and computational latency. Compres-
sion of CNNs aims at reducing parameters and computation
with little accuracy drop, and attracts much attention in com-
munity.

Low-rank tensor decomposition has shown much promise
for CNN compression. Many researchers replace convolutional
layers with their low-rank approximations by separable fil-
ter [3], [4], SVD [5], [6], Tucker-2 decomposition [7], [8] or
Canonical Polyadic (CP) decomposition [9], [10]. In this way,
the linearity redundancy of filters is exploited and eliminated.

According to the way of solution, the compression of low-
rank decomposition can be divided into two categories: direct
decomposition and learning-based decomposition. Direct de-
composition is the most frequently-used and simple scheme,
and it directly decomposes a full-size model to obtain its
low-rank compressed version [3], [5], [7]–[10]. However, this
manner reduces the rank of filters too sharply, and thus may
lead to performance degradation and the following fine-tuning
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Fig. 1: Singular values distribution of filter weights before and after applying
our learning-based decomposition method. The number of non-zero singular
values reflects the rank of filter weights. The last singular values are so close
to zero as to be ignored, which indicates the low-rank structure, after applying
our method.

is needed. Unfortunately, the compressed model tends to be
stuck at local minimum [5], [11] during fine-tuning. Thus,
there is usually a relatively large accuracy gap between the
fine-tuned compressed model and the original model.

Different from direct decomposition, learning-based decom-
position methods encourage filter weights to be low-rank or
correlated during training process, and can be seen as training-
based rank reduction (soft reduction). Thus, the post low-rank
decomposition and fine-tuning becomes much easier, and this
scheme can produce better compressed models. In spite of its
soundness, this scheme attracts little study except for several
works [12]–[14]. Wen et al. [12] coordinates filters to spin
around the origin closer together by a regularizer of pair-wise
attractive forces. The regularization on pair-wise distance of
filters is heuristic and has no theoretical connections with the
rank. Alvarez et al. [13] uses a regularizer of nuclear norm, and
optimizes it by soft-thresholding singular values. The nuclear
norm enjoys easy optimization, but this convex relaxation
hardly satisfies the demand of presetting the target rank.
Idelbayev et al. [14] makes rank-constrained optimization on
filters to reduce the rank, which is similar to ours except
that the penalty strength of [14] increases exponentially
as scheduled. That may impose too large strength on rank
constraint and then affect the optimization of the network
loss due to its non-convexity. Thus, the decomposed model
still needs fine-tuning to further optimize the network loss.
Moreover, the pre-defined schedule does not consider the
actual constraint violation. Above all, these methods can not
obtain the satisfactory low-rank weights.

There are two types of decomposition from another perspec-
tive. Single group is adopted in most existing methods [3],



[5], [7]–[10], [12]–[14]. SVD and Tucker-2 decomposition
with single group are shown in Fig.2 (a) and (b), respectively.
Compared with coefficient matrices, the basis filters are main
carriers of parameter and computation load in the classical
networks with a large kernel size, e.g. 3×3 or 5×5. Nowadays,
efficient ResNet frequently uses 1 × 1 convolutions, and
the cost of coefficient matrices becomes relatively prominent
after compression. In this way, acceptable compression ratio
demands severe rank ratio (the ratio of reduced rank to the
original rank), and thus it may cause serious accuracy drop
for the compression of 1 × 1 convolution, which makes it a
tough compression task. We will analyse this difference in the
Sec. III-D. Multi-Group decomposition is an intuitive idea to
achieve better trade-off by introducing group structures. Peng
et al. [11] proposes filter group decomposition, as shown in
Fig.2 (c). However, [11] does not utilize the learning-based
decomposition for compression, and thus may obtain sub-
optimal solution. Besides, the method can neither compress
1× 1 convolution well.

In this paper, our method falls into the category of
learning-based decomposition, and we formulate it as a rank-
constrained optimization problem. Inspire by quadratic penalty
function in constrained optimization [15], [16], we propose a
novel method called adaptive rank penalty. Specifically, we
make rank constraint on filters, transform the rank constraint
into equivalent differentiable constraint, and then use an adap-
tive violation-aware penalty term for the constraint. The rank-
constrained optimization reduces the full rank to the target low
rank, and this direct reduction of rank can be more effective
than the relaxation method of Alvarez et al. [13]. The strength
will grow fast if the violation is large, and grow slowly other-
wise in our adaptive schedule. Moreover, the adaptive schedule
will lead to mild convergence of strength. Compared with the
exponentially increased schedule of Idelbayev et al. [14], our
method can achieve better balance between optimization of
network loss and optimization of rank constraint violation.
The obtained full-size model can have both relatively high
accuracy and low-rank structure, which is shown in Fig. 1,
and thus it can be decomposed while nearly keeping the full
accuracy without additional fine-tuning process.

Both learning-based decomposition and group decomposi-
tion have virtues, but existing methods only adopt one of them.
We are the first to integrate the both. Based on the advanced
and frequently-used Tucker-2 decomposition, we make multi-
group Tucker-2 decomposition by introducing group coeffi-
cient matrices, as shown in Fig.2 (d). More importantly, the
group decomposition can compress 1× 1 convolution, which
is a hard job for the existing methods.

The contributions of this paper can be summarized in three
folds:

• We propose a novel learning-based tensor decomposition
method called adaptive rank penalty to generate low-rank
weights to compress CNNs.

• The paper is the first work to integrate the strategy of
group decomposition with learning-based decomposition,

Fig. 2: Different decomposition of filter weight. Filter weight F ∈
Rcout×cin×w×h is decomposed into basis filters, which are denoted by
symbol “*”, whose dim is Rw×h, and reconstruction coefficient matrices,
which are denoted by solid color filling. (a), (b) and (d) refer to SVD,
Tucker-2 and our multi-group Tucker-2, respectively. (c) refers to filter group
decomposition [11], which is different from ours. (a), (b) and (c) cannot deal
with compression of 1× 1 convolution very well.

and the integrated method can handle the tough task of
compression of 1× 1 convolution very well.

• The obtained model can be decomposed while nearly
keeping the full accuracy without additional fine-tuning
process. We conduct extensive experiments of compres-
sion of VGG and ResNet on CIFAR-10 and ILSVRC-
2012 to validate the effectiveness.

II. RELATED WORKS

Low-rank decomposition based compression is summarized
into two categories: direct decomposition and learning-based
decomposition.

Direct Decomposition directly decomposes the full-size
model to obtain a low-rank one, and it is conducted mostly in
a data-independent manner. (1) Some researchers start from a
pre-trained model. [3] decomposes the 2D d × d kernel into
combinations of separable filter 1× d and d× 1. [4] also uses
the same method, but designs an algorithm to get its closed-
form solution. [9] and [10] decompose the filter weight (4D
tensor) into rank-1 2D tensors by CP decomposition. [5]
uses linear combination of basis filters to reconstruct the
original filters. [7] and [8] consider the linearity redundancy
at both mode-1 and mode-2 dimension, and use Tucker-
2 decomposition. [17] adopts flexible graphical notation to
enumerate a series of decomposition classes. [18] decomposes
the original weight matrices into their low-rank and sparse
components. [19] projects the output and input filter channels
of successive layers to a unified low dimensional space to slim
the channel. (2) Other researchers replace original convolution-
s with their low-rank parameterized expansion from scratch.
[4] also uses separable filters to replace the original filters,
and trains its low-rank model from scratch. [6] learns basis
filters to represent the original filters, and jointly minimizes
filter reconstruction error and network classification loss. [20]
uses tensor-train decomposition to represent original filters,
and studies the effect of initialization.

Learning-based decomposition encourages the weights of
the full-size model to be correlated or low-rank in the training
process, and can learn compact filter weights. Thus, the post
decomposition and fine-tuning become easier. Wen et al. [12]
coordinates filters closer together to spin around the origin
by pair-wise attractive forces, and obtains more correlated



filters. The filters can be reconstructed with fewer basis, but
still needs fine-tuning. Alvarez et al. [13] uses a regularizer
of nuclear norm to induce low-rank structure of weights,
and solves the optimization problem by the method of soft-
thresholding singular values, and this method is proposed by
Cai et al. [21] in the area of matrix completion. The nuclear
norm method can work to some degree, but hardly satisfies the
demand of presetting target rank, which is related with whole
parameter or FLOPs budget. Idelbayev et al. [14] adopts a
dynamic exponential increased schedule of penalty strength
with iterations. However, the pre-defined schedule may not be
suitable for the actual constraint violation at each iteration.

Different from other methods, we propose an improved
method with an adaptive rank penalty to solve the learning-
based decomposition. Moreover, we also integrate group de-
composition with it. By contrast, existing methods do not
integrate the two points.

III. METHODS

We first review Tucker-2 decomposition based compression
and introduce its multi-group version. Then, we formulate
learning-based decomposition as a rank-constrained problem,
and then we introduce an adaptive rank penalty method to get
its solution. Finally, we analyse the theoretical compression
and acceleration ratio of our method.

Preliminaries. Let F ∈ Rcout×cin×w×h denote filter
weights in a convolutional layer, where cin and cout de-
note the number of in-channels and out-channels, and ker-
nel size is w × h. Let F(n) denote mode-n flattening of
F , where F(1) ∈ Rcinwh×cout and F(2) ∈ Rcoutwh×cin .
Filter fout

j ∈ Rcinwh, j ∈ [1, cout], and filter f in
i ∈ Rcoutwh,

i ∈ [1, cin], are column vectors of F(1) and F(2), respectively.
We refer to the rank of filter set {fout

j |∀j ∈ [1, cout]} and
{f in

i |∀i ∈ [1, cin]} as rank(F(1)) = min(cout, cinwh) and
rank(F(2)) = min(cin, coutwh) respectively.

A. Review of Tucker-2 Decomposition Based Network Com-
pression

The linearity redundancy of filters is reflected by the rank
of filter set. Given rank ratio p (compression hyperparame-
ter), Tucker-2 decomposition reduces linearity redundancy by
approximating original filter weights F by tensors with the
reduced rank rout = p rank(F(1)) and rin = p rank(F(2)).
Some researchers [7], [8] use Tucker-2 decomposition to de-
compose filter weight F into slimmed basis filters (core tensor)
K ∈ Rrout×rin×w×h and coefficient matrices A ∈ Rcin×rin

and Z ∈ Rrout×cout 1 under reduced rank rout and rin
according to rank ratio p, as follows:Fj,i,w,h =

rin∑
m=1

ai,m

rout∑
n=1

Kn,m,w′,h′zn,j

F = K ×1 Z ×2 A,

(1)

Compact high order SVD can directly solve the decompo-
sition of Eq.1 in a data-independent manner (without training

1We don’t use Z ∈ Rcout×rout in Tucker-2, but its transposed form for
easy illustration in this paper.

data). ×1 and ×2 denote mode-1 and mode-2 multiply oper-
ator in high order SVD. Let columns of A ∈ Rcin×rin consist
of rin normal orthogonal right singular vectors of F(2), and
rows of Z ∈ Rrout×cout consist of the rout ones of F(1).

For input feature maps X ∈ Rcin×W×H , output feature
maps are Y = X ∗F , Y ∈ Rcout×W×H , after the convolution
operation. The detailed convolution operation is as follows:

Yj,u,v =

cin∑
i=1

w∑
w′=1

h∑
h′=1

Xi,u−w′,v−h′Fj,i,w′,h′ , (2)

The accelerated forward computation is Y = X∗(K×1Z×2A)
after F is substituted by its element-wise decomposition form
of Eq. 1. And its detail is as follows:

Yj,u,v =

cin∑
i=1

w∑
w′=1

h∑
h′=1

Xi,u−w′,v−h′

[
rin∑
m=1

ai,m

rout∑
n=1

Kn,m,w′,h′zn,j

]

=

rout∑
n=1

[
rin∑
m=1

w∑
w′=1

h∑
h′=1

(

cin∑
i=1

ai,mXi,u−w′,v−h′)Kn,m,w′,h′

]
zn,j .

(3)
Feature map X is projected to a low dimensional space (rin

channels) at first, and then is convoluted by a few basis filters
K, and finally is re-projected to the out-channel space to
generate Y . The main parameter and computation load comes
from K and its operation, and thus the network gets accelerated
and compressed.

The multi-group version of decomposition is illustrated as
follows. Assume we use N groups. Let F(1) and F(2) be
divided into N submatrices Fk

(1) ∈ Rcinwh× cout
N and Fk

(2) ∈
Rcoutwh× cin

N along the column dimension, respectively. Let
Ak ∈ R

cin
N × rin

N contain the rin
N right singular vectors of

Fk
(2) and Zk ∈ R

rout
N × cout

N contain the rout

N right singular
vectors of Fk

(1). A or Z is formed by stack of Ak or Bk along
the diagonal, respectively. The N -group decomposition can be
formulated as:

F = K ×1 Diag(Z1, Z2, · · · , ZN )×2 Diag(A1, A2, · · · , AN ).
(4)

B. Problem Formulation of Learning-based Decomposition

Since Tucker-2 decomposition aims to reduce mode-1
rank and mode-2 rank of F , we want to learn a full-size
model F with low-rank constraint of rank(F(1))=rout and
rank(F(2))=rin in a data-dependent manner. The learning-
based decomposition can be formulated as follows:

min
F

Lcls(F ; {X,Y })

s.t. rank(F(1)) = rout

rank(F(2)) = rin,

(5)

Where, Lcls is the task loss (network loss), e.g. cross en-
tropy loss in classification task, and {X ,Y } is training da-
ta. Since low-rank constraint is not convex and differen-
tiable, we transform it to the equivalent equality constraints
B1B1

TF(1) = F(1) and B2B2
TF(2) = F(2), where B1 =



{b1, b2, · · · brout} ∈ Rd×rout . B1 contains rout normal orthog-
onal basis vectors and spans the out-channel subspace. So
does B2 ∈ Rd×rin for the in-channel subspace. The original
problem of Eq. 5 can be converted as follows:

min
F,B1,B2

Lcls(F ; {X,Y })

s.t. B1B1
TF(1) = F(1)

B2B2
TF(2) = F(2).

(6)

The meaning of the equality constraint can be interpreted as:
as long as the projection of each vector in F(1) into subspace
B1 equals itself, the rank of F(1) will equal the dimension of
B1, which is equivalent to rank(F(1))=rout. Both the subspace
and filter weights are optimized to get the optimal solution in
Eq. 6.

Under the setting of multi-group decomposition, we let Bk
1

span a target subspace which Fk
(1) is projected to, k ∈ [1, N ].

For simplicity, we assume the dimension of each subspace
share the same bound, so we let dim(Bk

1 ) = rout

N . In the
same way, we have dim(Bk

2 ) = rin
N . The optimization problem

of decomposition with N group subject to constraints of
Bk

1B
k
1
TFk

(1) = Fk
(1) and Bk

2B
k
2
TFk

(2) = Fk
(2) can be given

as minF,Bk
1 ,B

k
2
Lcls(F ; {X,Y }).

C. Optimization Algorithm

Quadratic Penalty [15] is the most common method of
solving constrained optimization problem. It adds penalty term
to the task loss Lcls to transform the original problem into a
sequence of unconstrained optimization. When the strength on
penalty term approaches infinity, the transformed problem is
theoretically equivalent to the origin.

In this section, we omit the superscript k in all formulations
for easy illustration, and only give the algorithm for single
group decomposition. The same principle is shared by multi-
group version. The transformed optimization problem of Eq. 6
can be formulated as follows: (∥.∥ denotes Frobenius norm)

min
F,B1,B2

Lcls(F ; {X,Y }) + λ1

2
∥B1B1

TF(1) −F(1)∥2

+
λ2

2
∥B2B2

TF(2) −F(2)∥2,
(7)

By penalizing the reconstruction error, we push filters gradu-
ally into a low dimensional subspace.

Inspired by the concept of adaptive penalty strength [16],
we consider that the penalty strength should be related with the
constraint violation. For simplicity, we update penalty strength
λ in a violation-aware manner, as follows:{

λ1 := λ1 + η∥B1B1
TF(1) −F(1)∥2

λ2 := λ2 + η∥B2B2
TF(2) −F(2)∥2.

(8)

When the constraint violation does not equal zero, λ will
increase. That will penalize the violation more severely and
force the weights closer to the feasible region (low-rank
structure). The advantage of this adaptive penalty is that
increasing of the penalty strength will be determined by the
current actual constraint violation. In the experiments, we find

Algorithm 1 Adaptive rank penalty method

Input: Original model F
Output: Low-rank model F∗

1: for m = 1 → Max do
2: B1 := argminB1 ∥B1B1

TF(1) −F(1)∥2
3: B2 := argminB2 ∥B2B2

TF(2) −F(2)∥2
4: F := F − lr∇FL(F , B1, B2; {X,Y })
5: adaptively update λ by Eq. 8
6: if ∥B1B1

TF(1) −F(1)∥2 < ϵ

and ∥B2B2
TF(2) −F(2)∥2 < ϵ then

7: break
8: end if
9: end for

it beneficial to limit the maximum value of λ by λ = max(λ,
M ).

This unconstrained optimization of Eq. 7 with adaptive
penalty term can be solved by alternating optimization on F
and (B1, B2). The penalty strength is adaptively scheduled by
Eq. 8 with iteration. The alternating algorithm is illustrated as
follows:

Update B1 and B2 when fixing F . For current filters, B1

and B2 are optimized by minimizing the violation of constrain-
t, which is formulated as B1 = argminB1 ∥B1B1

TF(1) −
F(1)∥2 and B2 = argminB2 ∥B2B2

TF(2) − F(2)∥2. The
closed-form solution of the problems can be given by SVD.
B1 is taken from the first rout eigenvectors of SVD of F(1)

while B2 is taken from the first rin ones of F(2).
Update F when fixing B1 and B2. For current B1 and B2,

optimal F is obtained by solving argminF Lcls(F ; {X,Y })+
λ1

2 ∥B1B1
TF(1) − F(1)∥2 + λ2

2 ∥B2B2
TF(2) − F(2)∥2. Due

to the complexity of Lcls, the problem is usually solved by
gradient method, such as SGD, instead. The gradient of filter
weight ∇FL(F , B1, B2; {X,Y }) comes from the sum of two
parts: gradient of task loss ∇FLcls(F ; {X,Y }) and gradient
of constraint violation λ1(F(1) − B1B1

TF(1)) + λ2(F(2) −
B2B2

TF(2)). The latter part should be reshaped as 4D tensor
before adding.

Above all, the algorithm can be summarized as Alg.1. After
convergence, the ranks of F(1) and F(2) are reduced to rout
and rin respectively, which indicates the low-rank structure
of the full-size model. Then, the post decomposition of F in
Eq.1 leads to negligible reconstruction error.

D. Theoretical Compression and Acceleration

The original weight F is decomposed into a slimmed weight
K with N block matrices Ak and Zk. There is sparse matrix
factorization Z = [Z

′ |Z ′′
] = Z

′
[I|Z ′′′

] = Z
′
Zs to reduce

parameters further, where Zs ∈ Rrout×cout , Z
′ ∈ Rrout×rout

and Z
′′
, Z

′′′ ∈ Rrout×(cout−rout). Z
′

can be merged into K.
Since the identity submatrix Zs needs no storage, the number
of parameters is reduced from routcout to rout(cout − rout)
after sparse matrix factorization of Z. In the same way, we
can factorize Ak and Zk to get As

k and Zs
k, respectively. Thus,

the reduction ratio of parameters is:



R = 1− Paramcompressed

Paramoriginal

= 1− rinrout
cincout

− rin(cin − rin) + rout(cout − rout)

cincoutwhN
.

(9)

Given output feature maps W × H × cout, the com-
putation of convolution operation on slimmed filter K is
WHcoutcinwh, and the computation of reconstruction opera-
tion is N( rout

N ( cout

N − rout

N )HW ) and N( rinN ( cinN − rin
N )HW )

at the dimension of out-channel and in-channel, respectively.
Thus, the reduction of computation (FLOPs) equals R.

3×3 convolution and 1×1 convolution are frequently-used
in most CNNs. Thus, we give a discussion on the R for the
two kinds. Assume the numbers of in-channel and out-channel
are equal. 3×3 convolution has relatively large kernel-size, e.g.
wh = 9, and R can be simplified as 1 − p2 − 2p

9N . For 1×1
convolution, R is simplified as 1−p2− 2p

N . The third term 2p
9N

or 2p
N refers to the part of parameters of coefficient matrices.

Given the same rank ratio p, R of 1×1 convolution is smaller
than that of 3×3 convolution due to the larger third term,
which is caused by small kernel-size. The comparasion shows
that the compression of 1× 1 convolution needs more severe
rank ratio p to achieve comparable R, and that may cause
worse accuracy. It suggests that we should apply large group
number N to hedge the small kernel size for compression of
1 × 1 convolution. We also experimentally demonstrate the
necessity of large N in Sec. IV-C.

IV. EXPERIMENTS

We conduct compression experiments for VGG [23] and
ResNet [24] to make comparisons with previous methods in
terms of metrics, such as the reduction of parameters (or
FLOPs) (in Eq.9) and absolute accuracy drop, and also make
some ablation study experiments.

Datasets. CIFAR-10 [25] contains 50000 training color
images and 10000 testing colorful images, whose size is 32 ×
32, in 10 different classes. ILSVRC-2012 [26] is a large-scale
classification dataset, which contains 1.28 million training
color images and 50k validation colorful images, whose size
is 224 × 224, in 1000 classes.

Baseline training settings. Models are trained on CIFAR-
10 with the common optimizer, data-augmentation and
scheduling of learning rate as [24], [27]. The training is
scheduled for about 300 epochs with learning rate initialized
to 0.1 and divided by 10 at 150, 250 epoch. The optimizer
uses SGD with 0.9 momentum and 1e−4 weight decay. We
adopt the common data-augmentation [24], including random
32 × 32 cropping from a zero-padded 40 × 40 image or its
flipping. The models are trained with a mini-batch size of 64
on a single GPU. On ILSVRC-2012, the training is scheduled
for about 90 epochs with the learning rate initialized to 0.1
and divided by 10 at 30 and 60 epoch, which is the same
as [24]. We adopt the same optimizer as CIFAR-10. We use
the similar data-augmentation in torch example [28], [29]. The
models are trained with a mini-batch size of 256 on 4 GPUs.

Training settings of adaptive rank penalty. These are the
same as baseline training settings, except for the scheduling
of learning rate. On CIFAR-10, we use the same scheduling
as [27]. The learning rate is scheduled for about 450 epochs,
initialized to 3e−3 and divided by 10 at 150, 350 epoch. η and
M are set to 1e−6 and 0.1, respectively. On ILSVRC-2012,
learning rate is scheduled for about 70 epochs, initialized to
3e−3 and divided by 10 at 20, 40, 60 epoch. η and M are set to
1e−5 and 1.0, respectively. There is no additional fine-tuning
process after decomposition in ALL experiments.

A. Results on CIFAR-10

We compare our method with previous methods for com-
pression of ResNet-32, 56 and 110. There are almost 3 × 3
large convolutions in these networks, and we set group number
N = 1. Small rank ratio will produce more reduction of
parameters and FLOPs.

The results on CIFAR-10 are shown in Tab.I. For ResNet-32,
our method (p = 6

16 ) outperforms previous methods with less
accuracy drop while making more or comparable reduction of
parameters. When more relaxed rank ratio p = 10

16 is taken, the
compressed model is a little better than baseline model, which
we attribute to the effect of regularizer. For ResNet-56, our
method (p = 8

16 ) reduces much parameters and FLOPs while
keeping nearly lossless accuracy. Learning Basis [6] makes
more parameter reduction, but the accuracy drop is worsen. For
ResNet-110, our method (p = 8

16 ) produces more reduction of
FLOPs than C-SGD [27], which is a channel pruning method,
with a large margin. That may result from that our method can
exploit linearity redundancy in very deep network, and doesn’t
suffer from constraint pruning problem [27]. Our method also
outperforms Minnehan et al. [19] in terms of reduction of
FLOPs, which is another learning-based decomposition, due
to more optimal solution.

B. Results on ILSVRC-2012

Compressions of ResNet-50 and VGG-16 are made on
ILSVRC-2012. VGG-16 is compressed with group number
N = 1. We compress 3 × 3 convolution with group number
N = 1 and rank ratio p = 8

16 and compress 1× 1 convolution
with group number N = 4 and rank ratio p = 12

16 in ResNet-
50.

The results of ILSVRC-2012 are shown in Tab.II. For VGG-
16, our method (p = 6

16 ,N = 1) outperforms Asymmetric [5],
Tucker-2 [7], Separable Filter [4] and Group [11] in terms of
accuracy drop and FLOPs reduction. Our method also pro-
duces more reduction of parameters than Yu et al. [18] under
acceptable accuracy drop. There are lots of 1×1 convolutions
in ResNet-50, and there is little previous evaluation of tensor
decomposition methods on ResNet-50, except for Alvarez et
al [13]. That may due to the difficulty of low-rank compression
of 1 × 1 convolutions. Our method (p = 12

16 ,N = 4) reduces
more FLOPs than not only Alvarez et al [13]. but also previous
filter pruning methods, like C-SGD [27], CCP [32], and
GBN [31], by a large margin. It can verify the effectiveness
on compression of 1× 1 convolution.



TABLE I: Compression results on CIFAR-10. ResNet-32, 56 and 110 have 464.15K, 853.02K and 1.73M parameters respectively. Our method is implemented
with group number N = 1. Param↓ and FLOPs↓ mean reduction of parameters and computation (the more the better), and Acc↓ means accuracy drop (the
less the better). The result of TNN is cited form TRN [20].

Model Method Baseline
Top1(%)

Compressed
Top1(%) Acc↓(%) Param↓(%) FLOPs↓(%)

ResNet-32

TNN [30] 92.50 88.30 4.20 79.13 -
TRN [20] 92.50 90.60 1.90 80.43 -
Our(p = 6

16
) 92.30 91.32 0.98 80.00 80.00

Our(p = 10
16

) 92.30 92.36 -0.06 56.22 56.22

ResNet-56

Minnehan et al. [19] 93.60 93.70 -0.10 - 50.20
GBN-40 [31] 93.10 93.43 -0.33 53.50 60.1
Learning Basis [6] 93.72 93.40 0.32 78.10 -
C-SGD-5/8 [27] 93.39 93.44 -0.05 - 60.85
Our(p = 8

16
) 93.53 93.52 0.01 64.00 64.00

ResNet-110 Minnehan et al. [19] 94.29 94.14 0.15 - 50.10
C-SGD [27] 94.38 94.27 0.11 - 60.89
Our(p = 8

16
) 94.38 94.34 0.04 64.98 64.98

TABLE II: Compression results on ILSVRC-2012. FLOPs↓ means reduction of computation (the more the better), and Acc↓ means accuracy drop (the less
the better). FLOPs↓ only involves convolutional layers in VGG-16, same practice as [4], [5], [7], [11]. We calculate the compression ratio of convolutional
layers from the statistics of Yu et al. [18] by ourselves.

Model Method Baseline(%) Compressed(%) Acc↓(%) FLOPs↓(%)Top1 Top5 Top1 Top5 Top1 Top5

VGG-16

Separable Filter [4] - 90.60 - 90.31 - 0.29 63.63
Yu et al. [18] 68.50 88.68 68.75 89.06 -0.15 -0.38 72.71
Asymmetric(SVD) [5] - 89.91 - 89.61 - 0.30 75.00
Group [11] - - - - 0.28 0.07 77.86
Tucker-2 [7] - 89.90 - 89.40 - 0.50 79.72
Our(p = 6

16
,N = 1) 71.59 90.38 71.42 90.48 0.17 -0.10 80.60

ResNet-50

Alvarez et al. [13] - - 75.2 - - - 48.59
CCP [32] 76.15 92.87 75.32 92.54 0.83 0.33 54.10
GBN-50 [31] 75.85 92.67 75.18 92.41 0.67 0.26 55.06
C-SGD-50 [27] 75.33 92.56 74.54 92.09 0.79 0.47 55.76
Our(p = 12

16
,N = 4) 76.15 92.87 75.58 92.68 0.57 0.19 60.23

C. Ablation Study on Group Number N

We will empirically explore the effect of group number on
parameter (FLOPs) reduction and accuracy. ResNet-56 and
110 are representatives of 3 × 3 convolution. For 1 × 1 con-
volution, we focus on the ablation study of 1× 1 convolution
in ResNet-50.

There are consistent trendies of accuracy and parameter
reduction with group number N incrementally set to 1, 2
and 4, in Fig.3 (a), (b) and (c). The metric of accuracy
will decrease, which indicates the drop of network capacity,
while the metric of parameter reduction will increase. We are
interested in how to choose suitable group number to achieve
better tradeoff. The inconsistent conclusion is that there are
different suitable group number for 3 × 3 convolution and
1×1 convolution, respectively. Lower rank ratio p with smaller
group number N is better for 3 × 3 convolution in Fig.3 (a)
and (b). For expample, the result of p = 8

16 with N = 1
can produce more reduction of parameters and achieve more
accuracy than the result of p = 10

16 with N = 4 in Fig.3 (a)
and (b). By contrast, higher rank ratio p with larger group
number N is better for 1 × 1 convolution in Fig.3 (c). Thus,
We choose N = 1 for 3× 3 convolution and N = 4 for 1× 1
convolution in aforementioned compression experiments.

CONCLUSION

In this paper, we propose a novel method called adaptive
rank penalty for low-rank compression of CNNs. The obtained
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Fig. 3: Effect of N -group decomposition on tradeoff between accuracy and
reduction of parameters. The number tagged around data points denotes group
number N . (a) and (b) focus on compression of 3× 3 convolution, while (c)
focuses on compression of 1×1 convolution. (a) and (b) is made on CIFAR-
10, while (c) is made on ILSVRC-2012.

low-rank model can be easily decomposed while nearly keep-
ing full performance without additional fine-tuning process.
We also lead the first to integrate learning-based decompo-
sition with the strategy of group decomposition, which can
handle the tough task of compression of 1 × 1 convolution.
Extensive compression experiments for VGG and ResNet on
CIFAR-10 and ILSVRC-2012 prove that our method is more
effective than previous methods. In the future, we will explore
adaptive configuration of rank ratio p across different layers
to make the method more automated.
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