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Abstract
Using lower limb rehabilitation robots (LLRRs) to help stroke patients recover their walking ability is attracting more and 
more attention presently. Previous studies have shown that gait rehabilitation training with natural gait pattern can improve 
the therapeutic outputs. However, how to generate the personalized gait trajectory has not been well researched. In this paper, 
a personalized gait generation method based anthropometric features is proposed. Firstly, gait trajectories are fitted and 
simplified into Fourier coefficient vectors, which are used to represent gait trajectories. Secondly, fourteen body features are 
used to generate the personalized gait trajectories and the feature set is further optimized based on the minimal redundancy 
maximal relevance criterion for easy application on the LLRR. Then, the relationship between the optimized feature set and 
gait trajectories is modeled by using the RF algorithm. Finally, the performance of the proposed method is demonstrated 
by several comparison experiments.
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1 Introduction

Stroke and spinal cord injury are leading causes of the motor 
dysfunction, which has a long-term impact on patients’ 
mobility, muscle control ability and gait patterns (Winnen 
et al. 2014). It has been shown that patients’ motor func-
tion can be improved by rehabilitation training (Barbeau 
et al. 1987; Niu et al. 2014; Wirz et al. 2011). Furthermore, 
the earlier the rehabilitation training is carried out, the bet-
ter the rehabilitation results will be (Bernhardt et al. 2008; 
Hu et al. 2010). In traditional rehabilitation training, each 
patient needs one or two physiotherapists’ assistant. With 
the increase of patients, the number of physiotherapists is 
difficult to meet the requirements by the traditional method. 
At the same time, the intensive labor is a heavy load for 
physiotherapists. Hence, a large number of patients cannot 
get effective rehabilitation.

Rehabilitation robots can be used to help patients do 
rehabilitation training with the advantages of repeatability, 
reliability and intellectualization (Calabro et al. 2016; Chen 
et al. 2013). With robotics’ assist, patients can perform more 
daily living activity training (Song 2016), and the same and 
even better therapeutic outputs can be obtained by rehabili-
tation robots (Kwakkel et al. 2008; Amirabdollahian et al. 
2007; Hogan et al. 2006). Under the assistant of lower limb 
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rehabilitation robotics (LLRRs), the legs of patients can be 
trained in several actions, such as walking and cycling, to 
prevent muscle atrophy and strengthen control ability of 
muscle.

Walking is a very important ability in daily life, and 
plenty of LLRRs focus on walking training. For example, 
the famous treadmill training system, Lokomat (Colombo 
et al. 2000), is designed to help stroke patients do walking 
training by two exoskeleton legs. Patients with spinal cord 
injury can stand up and walk with assistant of eLEGS, which 
passed the certification by the United States Food and Drug 
administration in 2012 (Ming et al. 2017).

It has been indicated that training with the reasonable and 
personalized training trajectory, the patients’ participation 
and the efficiency of rehabilitation can be improved (Vallery 
et al. 2009). Human gait trajectories are definitely personal-
ized (Murray 1967). Thus, the training trajectory provided 
by LLRRs must be suitable for patients and adjusted accord-
ing to patients’ features. However, present LLRRs usually 
cannot provide the personalized gait trajectory and only 
rough methods to replicate the gait trajectories are applied 
(Colombo et al. 2000; Wang et al. 2005). Lokmat, as an 
example, only allows therapists to adjust the gait trajectory 
according to patients’ height (Aoyagi et al. 2007). Hence, 
how to generate personalized trajectory based on patients’ 
features is an important research topic.

In this paper, a personalized gait trajectory generation 
method based on Random Forest (RF) algorithm is proposed 
to model the relationship between anthropometric features 
and gait trajectory. In order to obtain the low computational 
load and the convenience of control, the finite Fourier series 
(FFS) are adopted to fit the discrete joint trajectories. The 
obtained Fourier coefficient vectors, are taken as the repre-
sentatives of gait trajectories. Meanwhile, for the purpose of 
easy application on LLRRs, fourteen body features are used 
and optimized by using the minimal redundancy maximal 
relevance criterion, which is based on the mutual informa-
tion between inter-body features and Pearson correlation 
coefficients between features and Fourier coefficients. The 
experiment results show that the performance of gait pre-
diction model based on the optimized feature set is better 
than that based on feature set adopted by Luu et al. (2011). 
Besides, the gait generation model based on RF has shown 
better prediction accuracy than other four regression predic-
tion models.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the works relating to gait generation. 
A lower limb rehabilitation robot developed at Institute of 
Automation, Chinese Academy of Sciences and the gait 
data are introduced in Sect. 3. Section 4 describes the gait 
trajectory fitting method and the feature subset optimiza-
tion and gait generation methods. The comparison results 
of the RF models based on different feature subsets, and the 

performance comparison between RF model and other four 
trajectory generation models are given in Sect. 5. Finally, 
the discussion and conclusion of this paper are presented 
in Sect. 6.

2  Related work

In the last decade, many studies on the gait generation 
methods have been carried out. Some studies are applied 
mainly for hemiplegic patients. For example, Vallery et al. 
(2009) proposed an approach, named as complementary 
limb motion estimation (CLME), to ensure stable gait 
for the LOPES rehabilitation robot. The gait trajectory of 
patient’s affected limb could be generated according to the 
healthy limb. The experiment results indicated that walking 
training with CLME was relatively natural. Liu et al. (2016) 
adopted a long-short term memory model trained by the 
collected normal gait data, to predict and correct knee joint 
trajectory based on other joints. The pre-collected gait data 
was collected via the encoders of lower-limb exoskeletons. 
Although these methods can obtain good results, they are 
not suitable for patients with two affected legs.

Some results can be applied for both hemiplegic and 
paraplegia patients. For example, Feng et al. (2008) sim-
plified each human lower limb into two-links, and hence, 
two lower limbs formed a four-links model with a common 
connected point on the hip joint. Based on the constraints 
between swim limb tip and hip joint, they modeled a con-
straint function to calculate trajectories of limb tips. Finally, 
the angle trajectories of knee and hip joints can be obtained 
by limb tips’ trajectories, and also adjusted by three con-
straint parameters. Luu et al. (2010) proposed a multiple 
linear regression model based on FFS for gait prediction. 
Stride length and cadence were used as the inputs of regres-
sion models. Furthermore, Luu et al. also adopted the multi-
layer neural network and the general regression neural net-
work algorithm to learn the relationship between Fourier 
coefficients and some features including stride parameters 
and features of human legs. Koopman et al. (2014) selected 
six key events to describe individual’s gait patterns in a 
gait cycle. Then linear models were established to predict 
timing, angle, angle velocity and acceleration for each key 
event based on the walking speeds and the subject’s height. 
When the specified walking speed and height were given, 
dynamic parameters of six key event could be predicted. 
Then, a new gait trajectory could be reconstructed by these 
six key events. For the above researches, the body features 
were taken into account in gait generation models, but the 
number of body features are still not enough for accurate 
estimation of the personalized gait trajectories.

Yun et al. (2013) applied a Gaussian process regres-
sion algorithm (GPR) to build relationship model between 
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multiple body features and human gait trajectories. Fourteen 
body features recorded from healthy subjects were selected 
as the inputs of GPR model and the discrete joint trajec-
tory points were directly used as the outputs of GPR model. 
Although multiple body feature are taken account into GPR 
model, it will take more than one or two days to optimize 
the hyperparameters of GPR model. Furthermore, when the 
training gait data are changed, the hyperparameters need to 
be optimized.

At present, deep learning methods have shown tremen-
dous potential and have achieved good results in many 
fields. However, the difficulty of collecting gait trajectories 
data leads to small gait trajectory data. The application of 
deep learning methods is limited by small data in the gait 
generation.

3  Lower limb rehabilitation robot and gait 
data

3.1  A lower limb rehabilitation robot

Because the disease severity and onset time of patients are 
different with each other, the required rehabilitation training 
strategies also should be different for each patient (Meng 
et al. 2015). While the rehabilitation training provided by 
each LLRR is only suitable for patients at specific reha-
bilitation phases. Therefore, a multi-pose LLRR has been 
developed at Institute of Automation, Chinese Academy of 
Sciences recently. Based on this LLRR, multiple training 
modes can be provided for patients at different rehabilitation 
phases. For example, patients can carry out cycle training at 
early rehabilitation phases. At middle and later rehabilitation 
phases, patients can perform gait training and up and down 
stair activity training.

As shown in Fig. 1, the LLRR is in gait rehabilitation 
training mode. Each lower limb exoskeleton has three active 
joints include hip, knee and ankle joints, which are driven 
by DC motors. The length of lower limb exoskeletons’ thigh 
and calf can be adjusted according to patients’ height. In 
order to ensure the safety of patients, the maximum scope 
of each joint is restricted in the mechanical structure. At 
the same time, two limited switches are used to detect the 
maximum angle of each joint. Meanwhile, the body weight 
supported system (BWS) is designed to load partial weight 
of patient. With the help of BWS, patients can be assured 
of adequate safety in gait rehabilitation training. Previous 
studies have shown that with the natural and personalized 
training trajectory, the efficiency of rehabilitation training 
can be improved (Vallery et al. 2009). Therefore, how to 
generate natural and personalized gait trajectories based on 
this LLRR will be studied in the next contents.

3.2  Gait data

In this paper, the body features and gait trajectory data are 
from Yun et al. (2013). And the feature set consists of twelve 
anthropometric parameters, age and gender. The ranges of 
the body features are shown in Table 1, and the definition of 
some body features can be found in Chandler et al. (1975).

The angle definitions of three joints are shown in Fig. 2. 
The angle between the centerline of thigh and the line of 
gravity of the body is hip joint angle �h , the angle between 
thigh’s centerline and calf’s centerline is knee joint �k . l1 is 
the line that is perpendicular to calf’s centerline, and l2 is 
the line connecting toe and center of ankle joint. �′

a
 is the 

angle between l1 and l2 , and the ankle angle �a = �
�

a
− c , 

where c is the value of �′

a
 at standing position. Because 

the gait trajectory is applied on LLRR, there must be no 

Fig. 1  Lower limb rehabilitation robot developed by Institute of 
Automation, Chinese Academy of Sciences
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trajectories which does not comply with structure design 
constraints. Hence, the number of retained samples is 
eighty.

4  Method

4.1  Fitting of the joint trajectory

The angle variations of the joint are continue and smooth in 
walking, so the similar angle variations should be provided 
by the LLRR. But the collected joint trajectory points are 
discrete, it’s not applicable for motor control on the LLRR. 
At the same time, it can be seen that the joint trajectories 
have one or two peaks and troughs. Hence, the FFS are 
adopted to fit joint angle trajectories, as follows:

where � =
2�

T
 , T is the period of the gait pattern. n is the 

order of FFS, ai and bi are Fourier coefficients.
The precise of fitting is closely related to the order n. In 

order to select the optimal order n, the orders from 1 to 8 are 
used to fit three joint trajectories. The mean absolute devia-
tion (MAD) is calculated for evaluation:

where m is the number of joint trajectory sampling points. 
d∗
j
 and dj are sampling points of the actual joint trajectory 

and the fitting joint trajectory, respectively.
As shown in Fig. 3, with the increase of Fourier order, 

the MAD decreases gradually and becomes relatively stable 
when the order is five. It also can be found in the Fig. 4 that 

(1)
f (tn) = a0 +

n∑
i=1

(ai cos(i�t) + bi sin(i�t)),

i = 1,… , n,

(2)MAD =
1

m

m∑
j=1

|||d
∗

j
− dj

|||, j = 1,… ,m.

Table 1  Ranges of the body features

Features Ranges

Age (years old) 20–69
Bi-iliac width (cm) 26.1–35.8
Height (cm) 149.0–185.0
ASIS breath (cm) 20.0–30.6
Mass (kg) 43.3–99.0
Knee diameter (cm) 8.2–13.0
Gender F/M(0/1)
Foot length (cm) 20.5–28.0
Thigh length (cm) 27.5–41.6
Malleolus height (cm) 5.2–9.0
Calf length (cm) 30.5–46.3
Malleolus width (cm) 5.5–8.0
Bi-trochanteric width (cm) 28.8–38.6
Foot breath (cm) 6.4–11.0

Fig. 2  Angle definitions of hip joint, knee joint and ankle joint
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Fig. 3  The MAD between actual trajectories and fitting trajectories 
using different Fourier order
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the fitting results of three joint trajectories are quite good 
when the order is five. Therefore, the five order FFS are 
adopted to fit joint trajectories. By Eq. (1), 11 Fourier coef-
ficients of each joint trajectory can be calculated, as follows:

where i = 1, 2,… ,P . P is the number of subjects. j is equal 
to 1, 2, 3,  corresponding to the hip, knee and ankle joint, 
respectively. In order to reduce the computational load, each 
joint trajectory can be represented by a Fourier coefficient 
vector which consists of 11 coefficients. The Fourier coef-
ficient vector is to be used as the output of the gait genera-
tion model.

4.2  Feature optimization based on the minimal 
redundancy maximal relevance criterion

Selecting an optimized feature set, in which features are 
closely related with the gait trajectory, can improve the per-
formance of gait trajectory generation model. Moreover, 
reducing the number of redundancy feature is also helpful 
to relieve the load of body feature measurement. For exam-
ple, when a patient firstly participates in gait rehabilitation 
training, it will take little time to generate a personalized gait 
trajectory for him/her.

So, the minimal redundancy maximal relevance criterion 
is applied to optimize the feature data set. There are two 
optimization principles: one is that the redundancy informa-
tion of inter-features is least in the optimized feature subset, 
another one is that the selected features must have high cor-
relation with Fourier coefficients.

(3)�(i,j) = (a0
i,j
, a1

i,j
, b1

i,j
, a2

i,j
, b2

i,j
, a3

i,j
, b3

i,j
, a4

i,j
, b4

i,j
, a5

i,j
, b5

i,j
)

For the first principle, the mutual information (MI) are 
used to evaluate the redundancy (Peng et al. 2005; Ding and 
Peng 2005). And the mutual information of two feature sets 
Fm and Fn is calculated, as follows:

where N is the number of features. P is the number of sub-
jects. p(fm,i) and p(fn,j) are the marginal probability functions 
and p(fm,i, fn,j) is joint probability distribution function. For 
a feature set DN consisting of N features ( F1,… ,FN ), the 
mutual information of set DN is defined by:

For the second principle, the Pearson correlation coefficient 
is adopted for the criterion of the relevance information. 
Moreover, the relevance between the features Fm and Fourier 
coefficients Yc can be defined by:

where c = 1, 2… 11 . �Fn
 and �Yc are standard deviations. The 

relevance between features set DN and Fourier coefficients 
Yc can be calculated by:

By minimizing Eq. (5) and maximizing Eq. (7), the above 
two principles can be guaranteed. And an optimization cri-
terion can be obtained through the combination of Eqs. (5) 
and (7), as follow:

where Dk1 is an already selected feature subset with k1 fea-
tures, Dk2 is an unselected feature subset with k2 features 
( N = k1 + k2 ). One feature can be selected from Dk2 into 
Dk1 by maximizing Eq. (8) each time. Therefore, the fea-
ture importance ranking can be obtained according to the 
selection sequence. The specific process can be found in 
Algorithm. 1.

(4)
I(Fm,Fn) =

P∑
i

P∑
j

p(fm,i, fn,j) log

(
p(fm,i, fn,j)

p(fm,i)p(fn,j)

)
,

0 ≤ m, n ≤ N,m ≠ n, fm,i ∈ Fm, fn,i ∈ Fn.

(5)I(DN) =
1

N2

N∑
m=1

N∑
n=1

I(Fm,Fn).

(6)R(Fn, Y
c) =

∑I

i=1
(fn,i − F̄n)(y

c
i
− Ȳc)

𝜎Fn
𝜎Yc

, yc
i
∈ Yc.

(7)R(DN) =
1

N

N∑
n=1

R(Fn, Y
c).

(8)

W = I(Fn, Y
c) −

k2∑
m

I(Fn,Fm), Fn ∈ Dk1, Fm ∈ Dk2.

0 10 20 30 40 50 60 70 80
The sapmle point

-30

-20

-10

0

10

20

30

40

50

60
A

ng
le

(d
eg

re
e)

Atcual trajectory
Fitting trajectory

Fig. 4  Actual joint trajectories and fitting joint trajectories



 S. Ren et al.

1 3

Algorithm 1 Feature selection based on the minimal

redundancy maximal relevance criterion for a Fourier

coefficient
Input: Feature set DN , Fourier coefficient set Y c

Output: The feature importance ranking for Y c

1: Initialize Dk1 to an empty set.

2: for each m ∈ [1, 14] do

3: R(m) ← the relevance of Fm and Y c;

4: end for

5: k1 = 1, Fk1 ← max
Fm∈DN

R(m) ;

6: Put the Fk1 into Dk1;

7: for each k1 ∈ [2, 14] do

8: K1 ← the number of Dk1;

9: K2 = N −K1;

10: for each k2 ∈ [2,K2] do

11: R(k2) ← the relevance of Fk2 and Y c;

12: I(k2) ← the average MI of Fk2 and

13: every Fk1(in Dk1);

14: end for;

15: Fk1 ← max R− I ;

16: Put the Fk1 into Dk1;

17: end for;

For Fourier coefficient vector of each joint, there are 11 
feature importance rankings corresponding to every Fou-
rier coefficient, and the 11 feature importance rankings are 
merged into a ranking. According to property of FFS, the 
amplitude of each frequency item is decided by the cor-
responding coefficient (Tolstov 2012). Therefore, the mean 
absolute value of each Fourier coefficient is adopted to deter-
mine the corresponding weight value of feature importance 
ranking in the average process. Then, the feature importance 
ranking for three joints is obtained through mean way. The 
overall flow chart of feature importance ranking is shown 
in Fig. 5.

4.3  The gait generation model based on Random 
Forest algorithm

Random Forest (RF) is a machine learning algorithm that 
combines the advantages of Bagging and Decision trees in 
classification or regression (Breiman 2001). It is good inter-
pretable, concise, and robust. Meanwhile, in the RF algo-
rithm, the number of parameters that should be adjusted is 
relatively small. Due to the good performance of RF algo-
rithm, it has been adopted in many fields (Wager and Athey 
2017; Malekipirbazari and Aksakalli 2015; Youssef et al. 
2016). RF model is an ensemble of decision trees which can 

map discrete inputs to continue outputs for regression. The 
original difficult problem can be split into many smaller and 
simpler problems by each decision tree. At the same time, 
the generation and robustness of RF model can be improved 
by Bagging. Hence, the complex relationship between 
inputs and outputs can be learned better. So, RF algorithm 
is applied to describe the relationship of body features and 
Fourier coefficients.

In this paper, there is a training dataset SN×P , which con-
sists of feature dataset DN×P and Fourier coefficient dataset 
YC×P . P is the number of subjects. N and C are the number 
of body features and Fourier coefficients, respectively. The 
process of RF algorithm designed is as follows:

• According to the presetting number of T decision trees, 
T(T < P) sample subsets are randomly extracted from 
dataset SN×P based on the bootstrap method.

• Building T regression trees based on T sample subsets. 
For each node of every regression tree, K(K < N) fea-
tures are randomly selected from N features and form 
a subset �K . Then, according to optimization rules, the 
optimum feature of �K is selected to split data into two 
sets. Based on the above way, every regression tree con-
tinues to grow until termination conditions are reached.

• Let the response value of a tree for an input sample x be 
ft(x) , the output value of the RF model can be given, as 
follows: 

In the training process of RF model, the final RF model’s 
performance has high correlation with two parameters (Liaw 
and Wiener 2002): ntree (number of the trees), and mtry 
(number of the features in the subset �K ). The value of mtry 
is p / 3 recommended by Breiman (2001). For parameter 
ntree, the N-fold cross validation method (Kohavi 1995) is 
used to determine its value.

5  Results

5.1  Results of feature optimization

In Sect. 4.2, the feature importance ranking for one joint 
can be obtained through weighted mean method, and the 
feature importance ranking for three joints is also obtained 
through mean method. The mean feature importance ranking 
is shown in Table 2.

In order to select the optimal feature subset, all feature 
data is divided into fourteen subsets. The rules of division 
are as follows: The first feature subset Ds1 consists of the 

(9)H(x) =
1

T

T∑
t=1

ft(x).
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first feature in the order of feature importance ranking; The 
second subset Ds2 consists of the first and second features 
in the order of features importance ranking, and so on. By 
adding one feature into the subset each time, fourteen feature 
subsets can be finally obtained.

Based on each one of the fourteen feature subsets, there 
are fourteen RF models trained individually. Fivefold 
method is adopted to test the performance of each RF model, 
and MAD is used as the criterion of evaluation. The results 
of each fold are shown in Fig. 6. It can be found that MAD is 
the smallest based on the feature subset including the first six 

Fig. 5  The overall flow chart of features importance ranking

Table 2  The importance ranking of anthropometric features based on 
mRMR

Features Hip joint Knee joint Ankle joint Mean order

mas 1 9 2 1
thigh 3 8 1 1
gender 7 2 4 3
calf 2 3 8 3
bi-t 4 1 9 5
ASIS 5 6 3 5
age 9 4 5 7
bi-i 6 7 6 8
height 10 5 7 9
Knee 8 10 11 10
Footlength 11 11 10 11
Malleolusheight 12 12 13 12
Footbreath 13 14 12 13
Malleoluswidth 14 13 14 14

14 12 10 8 6 4 2
Number of features in the feature subset

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

M
A

D
 (d

eg
re

e)

First
Second
Third
Fourth
Fifth
Mean line

Fig. 6  The MAD of RF models based on different feature subsets for 
hip joint
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features for hip joint. And the similar trends are also found 
for ankle and knee joints.

5.2  Training and optimization of the RF model

The gait dataset is randomly divided into training set (75%) 
and testing set (25%). The six features and 11 Fourier coef-
ficients are used as the inputs and outputs of models, respec-
tively. The performance of RF model is influenced by two 
parameters: ntree, and mtry. The value of mtry is 3, which 
is recommended by Breiman (2001). For another parameter 
ntree, the numerical searching method is applied to deter-
mine the parameter. The search range of ntree is from 50 
to 600, and the interval is 50. The optimization results of 
ntree are shown in Fig. 7, it can be found that the MAD is 
no longer reduced with the number of trees increasing from 
200 trees. Therefore, the parameter ntree of RF model is 
set to 200.

5.3  Comparison of the RF models based on different 
feature sets

The optimized feature subset has been obtained in Sect. 5.1. 
Based on this feature subset, gait trajectory generation mod-
els of Fourier coefficients can be obtained through training. 
And predicted Fourier coefficients are used to reconstruct 
gait trajectories further.

In order to verified whether the optimized feature sub-
set D1 is more helpful to the generation of gait trajectory, 
the feature subset D2 adopted by Luu et al. is also used to 
generate the gait trajectory (Luu et al. 2011). In the feature 
subset D2 , there are six features including four anthropo-
metric features and two gait parameters (stride length and 
cadence). Four body features can be obtained directly in 

this paper, but two gait parameters can only be obtained by 
calculation, as follow:

where T is the period of a gait. V is the walking speed.
Therefore, two RF models based on feature dataset D1 and 

D2 are obtained. Fivefold cross validation is used to evaluate 
the performance of two models. The comparison results are 
shown in Table 3. The e and r are average values of MAD 
and Pearson correlation coefficients of fivefold cross valida-
tion for five times, respectively. The results show that MAD 
of RF models based on D1 is lower than that based on D2 for 
all three joints, and the correlation coefficients of RF models 
based on D1 are more higher. It also indicates the optimized 
feature subset in this paper is more helpful to improve the 
performance of gait trajectory generation models based 
on RF. Moreover, the actual and predicted trajectories of 
three joints based on D1 and D2 are shown in Fig. 8. It can 
be found that the predicted trajectories are closer to actual 
trajectories.

5.4  Comparison of the different gait trajectory 
generation models

In order to validate the performance of gait trajectory gener-
ation models based on RF, multiple linear regression (MLR) 
model method (Luu et al. 2010) is used for comparison. 
Based on MLR, the relationship between body features and 
Fourier coefficient vector is described, as follows:

where U is 11 × 7 coefficients matrix. F is a vector including 
1 and six features of the optimized feature subset. By using 
the training data set, coefficients matrix U can be calculated 

(10)Cadence =2 ×
1

T
,

(11)Length =
V

T
.

(12)� =

⎡⎢⎢⎢⎢⎢⎢⎣

a0
⋮

a5
b1
⋮

b5

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

0
0

⋯ u6
0

⋮ ⋯ ⋮

u0
5

⋯ u6
5

u0
6

⋯ u6
6

⋮ ⋯ ⋮

u0
10

⋯ u6
10
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Fig. 7  The MAD of the RF models at each folder of fivefold cross 
validation for hip joint

Table 3  The performance 
comparison by using feature 
dataset D

1
 and D

2

Joint D
1

D
2

e c e c

Ankle 4.74 0.76 4.91 0.74
Knee 7.38 0.91 7.41 0.90
Hip 4.60 0.93 4.81 0.92
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based on the least squares approach. When new features are 
given, Fourier coefficient vector can be calculated through 
coefficients matrix U to reconstruct the joint trajectory.

Further more, three regression algorithms, which include 
� support vector regression ( �-SVR) (Chang and Lin 2011), 
back propagation neural network (BPNN) and eXtreme gra-
dient boosting (Xgboost) (Chen and Guestrin 2016), are also 
added to comparison experiments in this study. For the fair 
comparison, the parameters � and � of �-SVR are optimized 
by grid search method. For the optimized BPNN, the num-
ber of hidden neurons and training function are set to fifty 
and bayesian regularization, respectively. At the same time, 
the parameters max_depth , learning_rate and n_estimatos of 
Xgboost are also determined by grid search method, and are 
0.3, 0.1 and 150, respectively.

The performance of RF models and other four models 
is evaluated by MAD and Pearson correlation coefficients 
using fivefold cross validation. The comparison results are 
shown in Table 4. It can be seen that RF models have better 
performance, i.e., lower MAD and higher correlation than 
other models.

To evaluate the consistency of the algorithm, the fivefold 
cross validation are used for five times. The results of every 
time are shown in Fig. 9. It can be seen that the variance of 
RF models is smaller than other models in terms of MAD 
and Pearson correlation coefficients. This indicates that good 
consistency can be obtained by using RF algorithm. In addi-
tion, for the ankle joint, the Pearson correlation coefficients 
between actual and reconstructed trajectories based on all 
models are small. This may due to that the angle variations 
of the ankle joint are relatively complex, and the relationship 
between anthropometric features and the hip joint is hard to 
be described.

6  Discussion and conclusion

In this study, a personalized gait generation model based 
on anthropometric features is proposed by using RF algo-
rithm for the LLRR. Based on this model, Fourier coefficient 
vectors can be obtained and further to reconstruct the joint 
trajectories. At the same time, anthropometric features set 
are optimized through mRMR method and the number of 
trees in RF model is determined by the numerical searching 
method. From the experiment results, it can be found that the 
performance of proposed gait trajectory generation model 
based on the optimized feature subset by using RF algorithm 
is satisfactory.

It is worth noting that there are some limitations in this 
paper. One is that a lower limb rehabilitation robot lacks 
the degrees of freedom on the hip adduction. However, the 
gait trajectories dataset is collected from the normal subjects 
walked on the treadmill. The influences of lack of DoFs on 

0 10 20 30 40 50 60 70 80
The sample point

0

10

20

30

40

50

60

70
K

ne
e 

an
gl

e 
(D

eg
re

e)
Acutual trajectory
predicted trajectory based on D1
predicted trajectory based on D2

0 10 20 30 40 50 60 70 80
The sample point

-20

-15

-10

-5

0

5

10

A
nk

le
 a

ng
le

 (D
eg

re
e)

Acutual trajectory
predicted trajectory based on D1
predicted trajectory based on D2

0 10 20 30 40 50 60 70 80
The sample point

-30

-25

-20

-15

-10

-5

0

5

10

15

H
ip

 a
ng

le
 (D

eg
re

e)

Acutual trajectory
predicted trajectory based on D1
predicted trajectory based on D2

Fig. 8  The comparison results of actual joint trajectories, recon-
structed joint trajectories based on different feature subsets
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Fig. 9  MAD and Pearson correlation coefficients between actual tra-
jectories and generated trajectories based on RF models and other 
four models for three joints. Each bar is obtained from a fivefold cross 

validation. The middle point in bar is the average, and two end points 
of the bar indicate the standard deviation

Table 4  The comparison 
experiment results

Joint RF MLR SVR BPNN XGboost

e c e c e c e c e c

Ankle 4.74 0.76 5.12 0.71 5.04 0.73 5.41 0.69 5.33 0.72
Knee 7.38 0.91 7.81 0.89 8.00 .88 7.73 0.90 8.79 0.87
Hip 4.60 0.93 4.76 0.92 5.63 0.88 4.86 0.92 5.14 0.91
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the gait pattern need to be analysed. In the future work, more 
features which have the high relationship with the gait pat-
terns will be considered into the prediction of the gait pat-
terns. The personalized gait patterns will be added more gait 
characters, like the step length and step speed. In order to 
ensure that the predicted gait patterns can be easily applied 
to the lower limb rehabilitation robot, the gait pattern dataset 
collection will be done on the robot. Another important work 
is that the stroke patients will participate in the rehabilitation 
experiment to prove the efficiency of LLRR.
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