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Abstract—Convolutional Neural Network (CNN) based scene
text detection methods mostly employ the semantic segmentation
(text/non-text classification) task to localize the regions of texts.
However, they cannot distinguish different text-lines like instance
segmentation. In this paper, we propose a novel framework
based on Fully Convolutional Networks (FCN) and Recurrent
Neural Network (RNN) to achieve both scene text detection and
instance segmentation. The FCN is used to classify text and
non-text regions, and the RNN utilizes the features extracted
by FCN to simultaneously detect and segment one text instance
at each time step. Meanwhile, it also extracts bounding boxes by
a much simpler way than the non-maximum suppression (NMS)
method. The proposed method achieves competitive results on two
public benchmarks including ICDAR 2015 Incidental Scene Text
Dataset and ICDAR 2013 Focused Scene Text Dataset. Moreover,
the benefits of adding regression task in the RNN module are
manifested.

I. INTRODUCTION

Scene text detection is a challenging problem due to the
cluttering of background, as well as the variation of illu-
mination and perspective of camera. Current state-of-the-art
results are almost achieved by Convolutional Neural Network
(CNN) based methods, which contain two main subtasks. First,
a segmentation task is used to classify text/non-text regions.
Second, a regression task is used to determine the bounding
boxes. Segmentation task plays an important role in scene text
detection as it is the basis of other tasks in either an explicit
or implicit way. In [1] [2], the segmentation task localizes
text regions explicitly as it directly predicts the text score
map. While in methods [3] [4] based on the Regional Proposal
Network (RPN) in [5], the segmentation task plays implicitly
since text regions that are similar to anchor shape priors are
highlighted. However, when text-lines lie close to each other
and features are down-sampled, semantic segmentation usually
suffers from adhesion problem as shown in Fig 1.(b).

Recently, instance segmentation [6] [7] [8] has proposed
to combine semantic segmentation and object detection to-
gether, and can localize objects at pixel-level as shown in
Fig 1.(c). Unlike segmentation, instance segmentation can
distinguish different instances of the same category, and unlike
detection, it can localize the object at pixel-level rather than
roughly gives a bounding box. To take advantage of multi-
task learning, some methods are proposed to learn detection
and instance segmentation simultaneously. For example, He et

(a) (b) (c)

Fig. 1. Semantic segmentation usually suffers from adhesion problem. (a):
original image. (b): ground truth for semantic segmentation. (c): ground truth
for instance segmentation. Best view in color.

al. [9] propose Mask-RCNN which is extended from Faster R-
CNN by adding a branch for predicting segmentation masks in
parallel with the existing branches for bounding box regres-
sion and classification. However, these methods may not be
effective for scene text detection and instance segmentation.
The reasons are mainly in two folds. First, most existing
methods for instance segmentation rely on object proposals,
and then segmentation is conducted within each proposal. As a
consequence, instance segmentation is sensitive to the quality
of proposals. In other words, if the proposal generation task
fails, the instance segmentation task would not be proceeded.
Second, anchor mechanism in Faster-RCNN may not be able
to generate suitable text proposals as multi-oriented scene texts
could be long and heavily inclined as illustrated in [1]. Based
on the analysis above, methods for detecting and segmenting
text instances simultaneously with no proposals could be a
better choice. Recent works like those in [10] [11] adopt
Recurrent Neural Network (RNN) to realize instance-level
detection or segmentation at each time step with no bounding
box proposals. These works provide a new clue to deal with
the problem of scene text detection.

In this paper, we propose an end-to-end trainable scene
text detection and instance segmentation framework without
region proposals. The proposed framework achieves both
detection and instance segmentation using Fully Convolutional
Networks (FCN) [12] and RNN. The FCN is used to classify
text and non-text regions and the RNN utilizes the features ex-
tracted by FCN to detect and segment text instances iteratively,
one at each time step. Meanwhile, it can extract text bounding
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boxes directly without the commonly used non-maximum sup-
pression (NMS). Moreover, irregular quadrilateral boundaries
can be predicted by adding a regression task.

Our contributions are in three folds: first, we propose a novel
scene text detection framework which achieves both detection
and instance segmentation. Second, this is the first RNN based
method needing no proposals for text instance segmentation
and detection. Third, the RNN can predict irregular quadrilat-
eral boundaries of text instances, and this gives more accurate
location of text instances.

The remainder of this paper is organized as follows: Section
II reviews related works of scene text detection and instance
segmentation. Section III describes the proposed method.
Section IV presents experimental results on benchmarks and
analyses the benefits of regression task. This paper is con-
cluded in Section V.

II. RELATED WORK

A. Scene Text Detection

The existing methods for scene text detection can be roughly
grouped into three categories: character based, text-line based
and word based methods.

Character based methods like [13] [14] first localize char-
acters in sliding window fashion or utilizing connected com-
ponents and then integrate them into words by either rule
based methods or graphic models. Text-line based methods
like [15] [16] detect text-lines firstly by exploiting symmetry
property or salient maps and then separate each line into mul-
tiple words. These methods are prone to error accumulation
and inefficiency because of the multiple stages.

Recently, some word based methods detect words directly
in the similar way as generic object detection. On the basis of
Faster R-CNN, Zhong et al. [3] propose DeepText in which
the Region Proposal Network (RPN) and the RoI pooling layer
are redesigned. Liao et al. [4] follow SSD [17] and adapt the
model to text by adjusting the network parameters. Similar to
Densebox [18], He et al. [1] use the FCN to detect multi-
oriented scene text. These methods have achieved superior
performance over conventional methods as they eliminate
unnecessary intermediate steps. The proposed method in this
paper belongs to this category.

B. Instance Segmentation

Recent deep neural network based instance segmentation
methods can be roughly grouped into two categories: proposal
based and proposal-free methods.

Proposal based methods firstly generate object proposals by
RPN or sliding windows and then segmentation is proceeded
within the proposals. Dai et al. [8] integrate RPN into a multi-
task network cascade (MNC) for instance segmentation. Li et
al. [19] utilize the segment proposal system to predict a set
of position-sensitive output channels for fully convolutional
instance segmentation. However, these methods all cascade
proposal generation module and instance segmentation mod-
ule, which cause errors accumulation and inefficiency.

Feature
Extraction

FCN

●●●ConvLSTMConvLSTM ConvLSTM ConvLSTM

0.99 0.97 0.070.95

Extract bounding boxes

Fig. 2. The diagram of the proposed method.

Proposal-free methods attempt to achieve instance segmen-
tation directly without proposals. Liang et al. [20] propose
the Proposal-free Network (PFN) which predicts the number
of instance, each pixel’s label and its enclosing bounding box,
but their result is sensitive to predicting the number of in-
stance accurately. The method of [21] identifies the individual
instances based on their depth ordering. However, it’s hard
to distinguish instances at roughly identical depths. Above
all, these proposal-free methods cannot perform detection and
segmentation at the same time. The proposed framework is
also a proposal-free method. It can further detect and segment
text instance-by-instance with RNN.

III. METHODOLOGY

A. Network Architecture

The proposed framework is diagrammed in Figure 2. The
framework consists of two major parts: a FCN for text
segmentation (text/non-text classification) and a RNN for text
instance segmentation and bounding box regression. As the
FCN and RNN can share features, the whole framework is
end-to-end trainable.

The FCN is designed for pixel-level classification. As scene
text feature is not as complicated as that of generic objects,
we replace the network proposed in [12] with a simpler one
which has fewer channels. Meanwhile, considering the sizes of
word regions vary tremendously, we also fuse convolutional
feature in multiple scales. Furthermore, we only up-sample
the fused feature to quarter size of the input image to save
computation. At last, we use a 1×1 convolution to project
128 channels of feature maps into 2 channels for pixel-wise
classification between text and non-text. The detailed structure
and parameters are diagrammed in Figure 3.

The goal of RNN is to segment and detect text instances
sequentially. To avoid the vanishing gradient problem, we
adopt the Long Short-term Memory (LSTM) networks in [22].
However, traditional LSTM may not work well in this problem
as both the input and the output are feature maps rather than
feature vectors. In remedy of this, we change the LSTM
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Fig. 3. The structure of the FCN.
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Fig. 4. The structure of the three output branches.

units to Convolutional Long Short-term Memory (ConvLSTM)
units, in which fully connected layers are replaced by convolu-
tional ones. The ConvLSTM takes the 128-channel of feature
maps extracted by the FCN as input for each time step. The
initial hidden state of the ConvLSTM is initialized to 0. After
the first iteration, the hidden state is updated which contains
the information about the former instance.

For each iteration, the RNN has three output branches. The
first output is a map that indicates pixels within the text
instance that should be segmented in the current iteration.
The second output is 8-channel map which means the offset
from coordinate of each quadrilateral vertex to each point.
The third output is the estimated probability that the current
segmented candidate is a text instance, which can be used as
the stop condition in the test phase. The detailed structure and
parameters are diagrammed in Figure 4.

B. Ground Truth and Loss Function

For end-to-end training of the framework, the whole loss
function can be formulated as

L = Lseg + λinsLins + λregLreg + λstopLstop, (1)

where Lseg is for text segmentation task in FCN, Lins, Lreg

and Lstop represent losses for instance segmentation, bounding
box regression and stop condition task in RNN respectively.
λins, λreg and λstop are the hyper-parameters to control the
balance among each task.
Loss for Text Segmentation. Text segmentation task in FCN
uses the cross-entropy loss as the task can be regarded as a
pixel-wise classification task. Denote the predicted value for a

given pixel as yi which is a 1D tensor of size 2 and y∗i ∈ {0, 1}
is the ground truth. Lseg is give by

Lseg =
1

N

∑
i∈Lseg

−log(exp(yi[y
∗
i ]))∑

j exp(yi[j])
. (2)

In particular, some pixels don’t produce any loss or gradient
in two cases. First, text is taken as a positive sample only
when its short side length ranges in

[
32× 2−1, 32× 21

]
.

If the short side length falls in
[
32× 2−1.5, 32× 2−1

)
∪(

32× 21, 32× 21.5
]
, we ignore this text instance, otherwise

negative. Second, we enclose positive region with a “NOT
CARE” boundary as transition from positive to negative. The
boundary thickness is proportional to the short side length of
text and the ratio is 0.1. In addition, we use the class balancing
and hard negative sample mining introduced in [18] for better
performance and faster loss convergence.
Loss for Text Instance Segmentation. Text instance seg-
mentation task in RNN uses the IoU loss because the task
is focused on distinguishing different instances and the areas
of text regions vary tremendously. Denote the predicted map
for a given sequence length n as Y = {Y1, Y2, ..., Yn} and
Y ∗ = {Y ∗1 , Y ∗2 , ..., Y ∗n∗} is the ground truth for a given image
which has n∗ instances.

Instead of imposing a specific instance order, we hope the
model to find the optimal matching between the elements in
Y and Y ∗ by itself. Therefore, we firstly construct a matching
matrix M whose size is ñ × n∗ and ñ = min(n∗, n). The
element in M is formulated as

M(t, t∗) = fIoU (Yt, Y
∗
t∗), (3)

fIoU (Yt, Y
∗
t∗) =

< Yt, Y
∗
t∗ >

||Yt||1 + ||Y ∗t∗ ||1− < Yt, Y ∗t∗ >
. (4)

Eq.(4) is a relaxed version of the intersection over union (IoU)
for the input which ranges in [0, 1] in [23].

Then we put Y and Y ∗ in a bipartite graph and find
the optimal matching matrix ∆ by means of the Hungarian
algorithm which is similar as [10]. Denote the ∆(i, j) = 1 if
and only if Yi is assigned to Y ∗j , otherwise ∆(i, j) = 0, Lins

is given by

Lins = −
ñ∑

t=1

n∗∑
t∗=1

fIoU (Yt, Y
∗
t∗)∆(t, t∗). (5)

Loss for Text Bounding Box Regression. Text bounding box
regression task in RNN uses the smooth L1 loss because it
is less sensitive to outliers than the L2 loss according to [5].
Meanwhile, we only calculate the loss and gradient in the text
region which is denoted as T . Denote the predicted value for a
given pixel at the step t as zti and zt

∗

i is the ground truth which
is assigned to zti according to the optimal matching matrix ∆,
Lreg is given by

Lreg =

ñ∑
t=1

∑
i∈T

[
zt

∗

i > 0
]
· smoothL1(zt

∗

i − zti), (6)

smoothL1
(x) =

{
0.5x2 if|x| < 1,
|x| − 0.5 otherwise. (7)
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Fig. 5. Ground truth of each text instance. Top-left: original image. Top-right:
ground truth for text segmentation. Bottom-left: ground truth for text instance
segmentation. Bottom-right: ground truth for text bounding box regression.

Loss for Stop Condition. Stop condition task in RNN uses
binary cross entropy loss because the task can be regarded as
a binary classification task. If the number of iterations so far
is equal or less than the total number of instances, we let the
ground truth s∗t = 1 at step t, otherwise s∗t = 0. Denote the
predicted probability is st at step t, Lstop is given by

Lstop =

ñ∑
t=1

fBCE(s∗t , st), (8)

fBCE(a, b) = −(alog(b) + (1− a)log(1− b)). (9)

Ground truth of each text instance is diagrammed in
Figure 5. For each instance, we directly generate instance
segmentation ground truth from quadrilateral coordinates and
calculate the offset from coordinate of a quadrilateral vertex
to each point in the text region as the bounding box regression
ground truth which is similar as [1].

C. Extraction of Bounding Boxes

Traditional text detection algorithms need NMS and other
post-processing. NMS is quite tedious when the number of
bounding boxes is large or it needs to calculate an IoU among
arbitrary quadrilaterals. As our method is from an instance seg-
mentation perspective, we can extract each instance’s bounding
box in a much simpler way in the test phase. Denote the
bounding boxes’ scores at step t as St. The bounding box
of the text instance is then obtained as the one with maximum
score as

Bt = argmax
i

St(i). (10)

IV. EXPERIMENTS

A. Datasets

To compare our method with existing ones, we conduct ex-
periments on two public benchmarks: ICDAR 2015 Incidental
Scene Text Dataset [24] and ICDAR 2013 Focused Scene Text
Dataset [25].
ICDAR 2015 Incidental Scene Text Dataset. There are 1000
training images and 500 test images in this dataset. It focuses
on incidental scene text where the texts have various scales,

TABLE I
RESULTS ON ICDAR 2015 CHALLENGE 4 INCIDENTAL SCENE TEXT

LOCALIZATION TASK.

Method Recall Precision F-measure

Proposed 0.7554 0.8560 0.8026

He et al. [1] 0.7968 0.8234 0.8099

EAST [2] 0.7833 0.8327 0.8072

Yao et al. [29] 0.5869 0.7226 0.6477

Tian et al. [30] 0.5156 0.7422 0.6085

Zhang et al. [16] 0.4309 0.7081 0.5358

resolution, blurring, orientations and viewpoints. In addition,
each text word region is annotated by a quadrilateral with four
corners.
ICDAR 2013 Focused Scene Text Dataset. There are 299
training images and 233 test images in this dataset, which
focuses on the text content of interest. Meanwhile, all the text
regions are annotated by horizontal rectangles.

B. Implementation Details

To prepare the training samples, we use the datasets from
ICDAR 2013 and ICDAR 2015. The image with size of
320×320 is cropped from images after random distortions
like scaling and rotation. In the optimization stage, we first
set the loss weight λseg to be 1 and other loss weights to
be 0, then all loss weights are set to 1 after the segmentation
task is well trained. For the training of RNN module, we adopt
the curriculum learning by gradually increasing the number of
objects that are required to be segmented and detected from
the images. At the beginning, we only expect the network
to extract at most 2 text words per image. After the training
procedure converges, we increase this number to fine-tune the
network until convergence, and keep iterating the process. At
the test stage, the threshold of the stop condition is 0.5.

The whole network is optimized by Adam [26] and the
initial learning rate is 0.001. When the training error plateaus,
we multiply it by 0.1. All layers in the FCN model are
initialized by xavier [27] and the rest layers in the recurrent
structure are initialized at random, sampling them uniformly
from the interval [−0.08, 0.08]. We conduct our experiments
on 4 GPUS, with each GPU hosting 2 images (so the ef-
fective mini-batch size per iteration is 8 images). The whole
experiments are implemented on the Lua/Torch deep learning
frameworks [28] and run on a workstation with 2.9GHz 12-
core CPU, 256G RAM, GTX Titan X and Ubuntu 64-bit OS.

C. Experimental Results

In Figure 6, we show some detection and instance segmen-
tation results of our model. In these images we see that our
model can handle various forms and numbers of text instances.
The main errors are due to the difficulty to segment vague and
perspective text lines.
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Fig. 6. Examples of detection results. First line: ICDAR 2015; second line: ICDAR 2013.

TABLE II
RESULTS ON ICDAR 2013 CHALLENGE 2 FOCUSED SCENE TEXT

LOCALIZATION TASK.

Method Recall Precision F-measure

Proposed 0.8595 0.9513 0.9031

RTN [31] 0.8902 0.9420 0.9154

Hu et al. [32] 0.8753 0.9334 0.9034

Tian et al. [30] 0.8298 0.9298 0.8769

Zhu et al. [33] 0.8164 0.9340 0.8713

He et al. [1] 0.81 0.92 0.86

As shown in Table I and Table II, the proposed method
can achieve competitive results on ICDAR 2015 and ICDAR
2013. Meanwhile, our method can extract the bounding box
in a simple way without NMS which greatly simplifies post-
processing. Furthermore, our method outperforms previous
methods in precision on ICDAR 2015 and ICDAR 2013 due
to the stop condition branch can reduce some noise.

D. The Benefits of Regression Task

In order to further explore the benefits of regression task,
we also evaluate a variant of our method when removing
the bounding box regression branch. Although removing this
branch, our method can still extract the bounding box of hor-
izontal text line easily according to the instance segmentation
results.

In Table III, model A is the baseline model which adopts
the bounding box regression branch outputs. Model B extracts
bounding boxes based on the results of model A’s instance
segmentation. Model C is the model which removes bounding

TABLE III
ABLATION STUDIES ON THE ICDAR 2013 TEST SET.

Method Recall Precision F-measure

model A 0.8595 0.9513 0.9031

model B 0.8539 0.9428 0.8962

model C 0.8283 0.9103 0.8674

box regression branch and extracts bounding boxes in the same
way as model B.

The results of models B vs C shows that removing the
bounding box regression branch reduces F1-measure score by
2.8%. This result indicates the benefits of the regression task to
the instance segmentation task. The regression task constructs
a multi-valued map rather than directly infers a binary mask,
which encodes the boundaries of the text instance, so it can
be regarded as a kind of boundary-aware segment prediction.
Therefore, the regression task can make the instance segmen-
tation results more accurate.

The results of models A vs B shows that obtaining the
bounding box results directly from the instance segmentation
results just reduces F1-measure score slightly by 0.7%. This
indicates that the main role of regression task is describing the
shape of each instance segmentation result. The improvement
comes mainly from a few inclined text instances in ICDAR
2013.

V. CONCLUSION

In this paper, we propose a novel text detection method
based on FCN and RNN to perform both detection and
instance segmentation. The FCN is firstly used to classify text
and non-text regions, and then the RNN utilizes the features
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extracted by FCN to simultaneously detect and segment one
text instance at each time step. Meanwhile, it can extract
bounding boxes directly which is conceptually simpler than
existing methods relying on NMS. Our experiments on ICDAR
2015 and ICDAR 2013 have demonstrated that our method
is competitive to the state-of-the-art methods and performs
better in accurate location of text instances. We also evaluate
a variant of our method in order to explore the benefits of
regression task. We believe this work could provide more
insight and promotion to scene text detection.

ACKNOWLEDGEMENT

This work has been primarily supported by National Nat-
ural Science Foundation of China (NSFC) Grants 61721004,
61411136002 and 61733007.

REFERENCES

[1] W. He, X. Y. Zhang, F. Yin, and C. L. Liu, “Deep direct regression
for multi-oriented scene text detection,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 745–753.

[2] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang,
“East: An efficient and accurate scene text detector,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 2642–2651.

[3] Z. Zhong, L. Jin, S. Zhang, and Z. Feng, “Deeptext: A unified framework
for text proposal generation and text detection in natural images,” in
arXiv preprint arXiv:1605.07314, 2016.

[4] M. Liao, B. Shi, X. Bai, X. Wang, and W. Liu, “Textboxes: A fast
text detector with a single deep neural network,” in Proceedings of the
Association for the Advance of Artificial Intelligence, 2017, pp. 4161–
4167.

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks.” in Proceedings
of IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, no. 6, 2017, pp. 1137–1149.

[6] X. Liang, Y. Wei, X. Shen, Z. Jie, J. Feng, L. Lin, and S. Yan, “Re-
versible recursive instance-level object segmentation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 633–641.

[7] S. Liu, X. Qi, J. Shi, H. Zhang, and J. Jia, “Multi-scale patch aggregation
(mpa) for simultaneous detection and segmentation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 3141–3149.

[8] J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation via
multi-task network cascades,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 3150–3158.

[9] K. He, G. Gkioxari, P. Dollr, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 2980–2988.

[10] R. Stewart, M. Andriluka, and A. Y. Ng, “End-to-end people detection in
crowded scenes,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 2325–2333.

[11] B. Romera-Paredes and P. H. S. Torr, “Recurrent instance segmentation,”
in Proceedings of the IEEE Conference on European Conference on
Computer Vision, 2016, pp. 312–329.

[12] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.

[13] S. Tian, Y. Pan, C. Huang, and S. Lu, “Text flow: A unified text
detection system in natural scene images,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 4651–4659.

[14] T. He, W. Huang, Y. Qiao, and J. Yao, “Text-attentional convolutional
neural network for scene text detection,” in Proceedings of the IEEE
transactions on image processing, vol. 25, no. 6, 2016, pp. 2529–2541.

[15] Z. Zhang, W. Shen, C. Yao, and X. Bai, “Symmetry-based text line
detection in natural scenes,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 2558–2567.

[16] Z. Zhang, C. Zhang, W. Shen, C. Yao, W. Liu, and X. Bai, “Multi-
oriented text detection with fully convolutional networks,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 4159–4167.

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in Proceedings of the
IEEE Conference on European conference on computer vision, 2016,
pp. 21–37.

[18] L. Huang, Y. Yang, Y. Deng, and Y. Yu, “Densebox: Unifying land-
mark localization with end to end object detection,” in arXiv preprint
arXiv:1509.04874, 2015.

[19] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully convolutional instance-
aware semantic segmentation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 4438–4446.

[20] X. Liang, Y. Wei, X. Shen, J. Yang, L. Lin, and S. Yan, “Proposal-free
network for instance-level object segmentation,” in Proceedings of the
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,
pp. 1–1.

[21] Z. Zhang, A. G. Schwing, S. Fidler, and R. Urtasun, “Monocular object
instance segmentation and depth ordering with cnns,” in Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp.
2614–2622.

[22] A. Graves, “Long short-term memory,” in Proceedings of the Neural
computation, vol. 9, no. 8, 1997, pp. 1735–1780.

[23] V. Koltun, “Parameter learning and convergent inference for dense
random fields,” in Proceedings of the International Conference on
Machine Learning, 2013, pp. 513–521.

[24] D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, S. Ghosh, A. Bagdanov,
M. Iwamura, J. Matas, L. Neumann, V. R. Chandrasekhar, and S. Lu,
“Icdar 2015 competition on robust reading,” in Proceedings of the
International Conference on Document Analysis and Recognition, 2015,
pp. 1156–1160.

[25] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, L. G. I. Bigorda, S. R.
Mestre, J. Mas, and D. F. Mota, “Icdar 2013 robust reading competition,”
in Proceedings of the International Conference on Document Analysis
and Recognition, 2013, pp. 1484–1493.

[26] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in arXiv preprint arXiv:1412.6980, 2014.

[27] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, 2010,
pp. 249–256.

[28] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in Proceedings of the Advances in
Neural Information Processing Systems Workshop, 2011.

[29] C. Yao, X. Bai, N. Sang, X. Zhou, S. Zhou, and Z. Cao, “Scene
text detection via holistic, multi-channel prediction,” in arXiv preprint
arXiv:1606.09002, 2016.

[30] Z. Tian, W. Huang, T. He, P. He, and Y. Qiao, “Detecting text in natural
image with connectionist text proposal network,” in Proceedings of the
IEEE Conference on European Conference on Computer Vision, 2016,
pp. 56–72.

[31] X. Zhu, Y. Jiang, S. Yang, X. Wang, W. Li, P. Fu, H. Wang, and Z. Luo,
“Deep residual text detection network for scene text,” in Proceedings of
the International Conference on Document Analysis and Recognition,
2017, pp. 807–812.

[32] H. Hu, C. Zhang, Y. Luo, Y. Wang, J. Han, and E. Ding, “Wordsup:
Exploiting word annotations for character based text detection,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 4950–4959.

[33] S. Zhu and R. Zanibbi, “A text detection system for natural scenes
with convolutional feature learning and cascaded classification,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 625–632.

2232

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 13,2020 at 02:21:20 UTC from IEEE Xplore.  Restrictions apply. 


