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Abstract

To simultaneously translate a source language into multiple
different target languages is one of the most common sce-
narios of multilingual translation. However, existing methods
cannot make full use of translation model information dur-
ing decoding, such as intra-lingual and inter-lingual future
information, and therefore may suffer from some issues like
the unbalanced outputs. In this paper, we present a new ap-
proach for synchronous interactive multilingual neural ma-
chine translation (SimNMT), which predicts each target lan-
guage output simultaneously and interactively using histori-
cal and future information of all target languages. Specifical-
ly, we first propose a synchronous cross-interactive decoder
in which generation of each target output does not only de-
pend on its generated sequences, but also relies on its future
information, as well as history and future contexts of other
target languages. Then, we present a new interactive multilin-
gual beam search algorithm that enables synchronous inter-
active decoding of all target languages in a single model. We
take two target languages as an example to illustrate and eval-
uate the proposed SimNMT model on IWSLT datasets. The
experimental results demonstrate that our method achieves
significant improvements over several advanced NMT and M-
NMT models.

Introduction
Neural machine translation (NMT) has greatly improved the
translation quality (Sutskever, Vinyals, and Le 2014; Bah-
danau, Cho, and Bengio 2015; Gehring et al. 2017; Vaswani
et al. 2017) and promoted the studies on multilingual trans-
lation. Due to the powerful end-to-end modeling capabili-
ty based on the encoder-decoder framework, it is possible
to handle multiple language pairs in a single model. As the
deployment cost among multiple languages pairs is signifi-
cantly reduced, the single model-based approach becomes a
promising paradigm in multilingual NMT (MNMT).

Training a single model with multiple language pairs can
leverage the complementary information of different lan-
guages (Johnson et al. 2017), such as enabling zero-resource
translations, or improving the quality of low-resource trans-
lations. However, existing methods cannot make full use of
the information in the model during decoding. Some work
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(Johnson et al. 2017; Wang et al. 2018) support multilingual
translation with single model, but the translation for each
sentence in a batch is independent. Multi-target translation
(Dong et al. 2015) supports to translate a source sentence
into several different target languages through a model with
one shared encoder and several different decoders. Although
employing multiple decoders, the model can still handle on-
ly one language pair at each moment during decoding, which
brings two problems: (i) the decoding process cannot use
complementary information among different languages; (ii)
for only depending on historical information without using
future information, it suffers from the issue of unbalanced
target language generations, i.e., the prefixes of sentences
are better predicted than the suffixes (Liu et al. 2016).

Several studies have explored these two issues. To ex-
ploit the multilingual complementary information, Wang et
al. 2019 synchronously translates a sentence into two differ-
ent target languages, and allows the generated sequences to
attend to another language’s ongoing generation, to improve
translation quality. However, since only historical informa-
tion is adopted in the translation, it still faces the unbalanced
output problem. Some studies (Liu et al. 2016; Zhang et al.
2018; Zhou, Zhang, and Zong 2019; Zhou et al. 2019; Zhang
et al. 2020) alleviate this problem by introducing bidirec-
tional decoding which provides both historical and future
information during decoding. However, these works can-
not support bidirectional decoding for multiple languages
in a single decoder. Actually, the multilingual conversation
is quite a common scenario where one sentence needs to
be simultaneously translated into multiple other languages
(e.g., international group chat, conversation and meeting,
etc.). Therefore, it is a meaningful and promising direction
to design a synchronous interactive multilingual NMT mod-
el that enables the historical and future information of differ-
ent target languages to interact with each other to improve
the translation performance.

For example (in Figure 1), the traditional NMT model
translates an English sentence into a Chinese sentence from-
left-to-right (L2R), which only depends on the historical in-
formation that has been generated (only blue box). Howev-
er, for multi-target MNMT, all the forward (L2R) and back-
ward (from-right-to-left, R2L) sequences of different target
languages share the same semantics. Therefore, at each step
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Figure 1: This illustration gives a simple example of trans-
lation decoding which uses 4 types of information (his-
torical and future information of intra-language and inter-
languages) to predict current token.

of decoding, different target languages with different trans-
lation directions can provide more information to predict a
token. Specifically, when generating a target sequence, the
prediction of each token can rely on the 4 types of informa-
tion (4 color boxes), that is, the intra-lingual historical and
future information, and inter-lingual historical and future in-
formation. For the sake of brevity (as shown in Figure 1), we
only illustrate the prediction of token “parents” in Chinese
forward sequence. For the other 3-way generations, 4 kinds
of information can also be used for decoding.

Accordingly, in this work, we propose a novel framework
(SimNMT) which simultaneously generates multiple tar-
get sentences by interactively using intra-lingual and inter-
lingual information. Specifically, we first present a syn-
chronous cross-interactive decoder, in which the generation
of each target language does not only depend on its previ-
ously generated sequences, but also its future context (intra-
lingual information), as well as the historical and future in-
formation of other target languages (inter-lingual informa-
tion). Then, we propose a new interactive multilingual beam
search algorithm that enables synchronous interactive de-
coding of all target languages in a single model.

The major contributions of this paper are as follows:
(1) We propose a synchronous cross-interactive attention,

which interacts historical and future information of intra-
language and inter-languages, to improve multiple target
language translation qualities. To our best knowledge, this
is the first work to explore the effectiveness of a single NMT
model with these 4 types of information interaction.

(2) To cooperate with the proposed decoder, we present a
synchronous interactive multilingual decoding algorithm. It
maintains both forward and backward hypotheses for each
target language during translation, and all hypotheses per-
form information interaction in each step of decoding.

(3) The experiments have demonstrated that the pro-
posed synchronous interactive multilingual NMT (SimN-
MT) shows significant improvements over both the previous
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Figure 2: Illustration of standard beam search algorithm with
beam size 4, where the dark blocks denote the alive hypothe-
ses (the ongoing expansions).

competitive NMT and MNMT models.

Background
In this paper, we build our model based on Transformer
(Vaswani et al. 2017) with encoder-decoder framework. The
encoder first encodes an input sequence of symbols x = (x1,
x2, ..., xn) to a sequence of continues representations z =
(z1, z2, ..., zn), then the decoder generates an output se-
quence y = (y1, y2, ..., ym) token-by-token.

Multi-Head Attention allows the model to attend to in-
formation from different representation subspaces at differ-
ent positions. The calculation is based on queriesQ, keysK,
and values V . For multi-head self-attention in encoder or de-
coder of standard Transformer, all of the Q,K, V are output
hidden-state matrices of the previous layer. For multi-head
inter-attention in decoder,Q is the hidden state matrix of the
previous decoder layer, and K-V pairs are the outputs (z1,
z2, ..., zn) of the encoder.

To calculate multi-head attention, it first needs to obtain h
different representations of (Qi,Ki, Vi). Each attention head
i projects the hidden-state matrix into independent query,
key, and value representations Qi = QWQ

i , Ki = KWK
i ,

Vi = VWV
i , respectively. Then, we perform scaled dot-

product attention for each representation, concatenate them
and send the concatenation into a feed-forward layer.

MhAtt(Q,K, V ) = Concati(headi)W
O (1)

headi = Attention(Qi,Ki, Vi) (2)

where WQ
i , WK

i , WV
i and WO are parameter projection

matrices.
Scaled Dot-Product Attention: We first multiply query

Qi by key Ki to obtain an attention weight matrix, which is
then multiplied by value Vi for each token to obtain the self-
attention representation. The scaled dot-product attention is
calculated by a query Q, a key K, and a value V :

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3)



Method Target Language(s) Information Utilization
Intra-lingual

History
Intra-lingual

Future
Inter-lingual

History
Inter-lingual

Future
Additional

Corpus
Transformer X

Transformer
(+pseudo)

X X

GNMT-Multi X X X

SB-NMT X X X

SyncTrans X � � X

SimNMT X X X X X

Table 1: Translation Information Dependencies.

where dk is the dimension of the key.
Standard Beam Search: We usually adopt beam search

(greedy search if beam size = 1) to pick the best translation y
for the input x via formula ŷ = softmaxyP (y|x). Beam size
N is used to control the search space by expanding only the
top-N hypotheses each round. As shown in Figure 2, the 4
dark blocks represent the 4 best token expansions of the last
state, and these token expansions are sorted top-to-bottom
by probabilities. The translation y is generated token-by-
token, and a complete hypothesis is defined as a hypothesis
which outputs end-of-sentence (EOS) symbol.

Our Approach
As discussed in Section 1, on one hand, historical and future
(intra-lingual) information of a target language can be used
to improve translation quality. On the other hand, when a
sentence is translated into different target languages, the dif-
ferent (inter-lingual) outputs can be complementary to each
other. Therefore, it is reasonable to improve translation per-
formance by integrating all of above information.

In this section, we will introduce the approach of intra-
lingual and inter-lingual attention synchronous interactive
multilingual NMT (SimNMT). Our goal is to design a de-
coder to translate one source language into different target
languages, in which generation of each target output does
not only depend on its historical and future information, but
also relies on history and future contexts of other target lan-
guage(s). The core module is synchronous interactive multi-
lingual attention (SimAtt, see 3.1), which replaces the multi-
head intra-attention in the decoder of the Transformer model
(see 3.2). To cooperate with the proposed decoder in decod-
ing, we present a new synchronous interactive multilingual
decoding algorithm, which can decode all target languages
in a synchronous interactive way (see 3.3).

From viewpoint of information utilization, Table 1 lists
the translation dependencies of several NMT models. Dif-
ferent from the standard Transformer (Vaswani et al. 2017),
when translating a certain target language, the other 5 meth-
ods all utilize additional data. Particularly, GNMT-Multi
(Johnson et al. 2017) and SyncTrans (Wang et al. 2019)
contain different target languages information (SyncTran-
s employs one of forward or backward sequences), while
SB-NMT (Zhou, Zhang, and Zong 2019) introduces future
information (backward sequences) of one target language.
The proposed SimNMT method employs all 4 types of in-
formation to for translation.
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Figure 3: Synchronous interactive multilingual attention
(SimAtt) framework. It simultaneously operates on the for-
ward (history) and backward (future) queriesQ, keysK, and
values V of different target languages.

Compared with the related NMT models, our approach
has the following advantages: (1) The multiple target out-
puts are generated by a single model (one encoder and one
decoder), and all target sequences can be processed in par-
allel. (2) Based on attention synchronous interaction mecha-
nism, the proposed model is an end-to-end joint framework
and can optimize multilingual decoding simultaneously. (3)
Compared with applying independent beam search to each
target output, our decoder is faster and more compact by us-
ing one beam search algorithm for all target generations.

Synchronous Interactive Multilingual Attention
We take two target languages as an example to illustrate
the proposed synchronous interactive multilingual attention
(SimAtt) method. As illustrated in Figure 3, the input con-
sists of queries Q, keys K, and values V which are all con-
catenated (in different order) by language 1 forward (L1-
L2R) states and backward (L1-R2L) states, as well as lan-
guage 2 forward (L2-L2R) states and backward (L2-R2L)
states. Now we only look at the language 1 forward direc-
tion, whose forward query −→Q1 (blue box) simultaneously
operates on 4 types of “key-value” pairs to calculate at-
tention, including key and value of: L1-L2R −→K1

−→
V 1 (blue

box), L1-R2L←−K1
←−
V 1 (red box), L2-L2R−→K2

−→
V 2 (green box)

and L2-R2L←−K2
←−
V 2 (yellow box). It obtains 4 hidden states

−→
H 1

history
intra , −→H 1

future
intra , −→H 1

history
inter and −→H 1

future
inter , which at-

tempts to make use of existing information as effectively as
possible to help predict the current L1-L2R token during de-
coding. The hidden state of L1-L2R can be calculated by:

~H1
history
intra = Attention( ~Q1, ~K1, ~V1)

~H1
future
intra = Attention( ~Q1,

←
K1,

←
V 1)

~H1
history
inter = Attention( ~Q1, ~K2, ~V2)

~H1
future
inter = Attention( ~Q1,

←
K2,

←
V 2)

(4)

For the other 3 queries ←−Q1, −→Q2, ←−Q2 (corresponding
to L1-R2L, L2-L2R and L2-R2L, respectively), each of
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Figure 4: The new Transformer architecture with the pro-
posed synchronous cross-interactive decoder. The input of
decoder is concatenation of all target languages’ forward
(L2R) and backward (R2L) sequence, and these information
flow runs in parallel and interacts in synchronous interactive
multilingual attention (SimAtt) sub-layer.

them also performs attention calculations with 4 differen-
t types of “key-value” pairs, respectively. After that, it will
get 4 types of hidden states: −→Hhistory

intra , −→H future
intra , −→Hhistory

inter

and −→H future
inter . Overall hidden state HCross−Interaction is

formed by the fusion of above 4 hidden states. The fusion
function Fusion(·) combines these 4 types of hidden states
by using linear interpolation, non-linear activation function,
or gate mechanism, etc.

Synchronous Interactive MNMT Model
The synchronous interactive multilingual NMT (SimNMT)
model applies the proposed SimAtt module to replace the
multi-head intra-attention sub-layer in a standard Trans-
former decoder (as shown in Figure 4), which we name it
synchronous cross-interactive decoder. The encoder of our
model is identical to standard Transformer.

For both training and inferencing, through SimAtt sub-
layer, we allow the forward (L2R) and backward (R2L) in-
formation flows of all target languages to interact with each
other, which can obtain more information for translation, to
mutually enhance the performance of different target lan-
guage translations corresponding to the same source lan-
guage sentence. Like the standard Transformer, the SimAtt
sub-layer also uses residual connections around it, and fol-

lowed by layer normalization:

hnd = Norm(hn−1d + SimAtt(hn−1, hn−1, hn−1)) (5)

where n is layer depth, subscript d denotes de-
coder, h means hidden states. The hn−1d is equal to
[−→h 1

n−1
d ;←−h 1

n−1
d ;−→h 2

n−1
d ;←−h 2

n−1
d ], which is concatenation

of forward and backward hidden states of all target lan-
guages and can be processed in parallel. After SimAtt mod-
ule, similar to the standard Transformer, two other sub-
layers are stacked to attend to the source semantics related
to translation:

hne = Norm(hnd + MhAtt(hnd , h
N
e , h

N
e )) (6)

hn = Norm(hne + FFN(hne )) (7)
where MhAtt means the multi-head attention, hne denotes

the top layer hidden state of encoder, and FFN refers feed-
forward networks.

Finally, we adopt linear transform and softmax activation
functions to obtain the probability of the next 4 tokens based
on hN = [−→h N

1 ;←−h N
1 ; −→h N

2 ;←−h N
2 ]:

p(~yj1|α, x, θ) = Softmax(~hN1 W )

p(
←
y j
1|α, x, θ) = Softmax(

←
hN
1 W )

p(~yj2|α, x, θ) = Softmax(~hN2 W )

p(
←
y j
2|α, x, θ) = Softmax(

←
hN
2 W )

(8)

where α = (−→y <j
1 ,←−y <j

1 , −→y <j
2 ,←−y <j

2 ), θ is shared weight
for SimNMT inference, and W is the weight matrix.

Synchronous Interactive Decoding for MNMT
Figure 5 illustrates the synchronous interactive multilingual
(SIM) beam search process for 2 target languages with beam
size 8. For each target language, the proposed SIM beam
search approach maintains 2 types of translation hypotheses
(forward and backward, i.e., L2R and R2L), which predict
and expand token-by-token. When SimNMT predicts nex-
t tokens, SimAtt is performed among all hypotheses to at-
tend 4 types information: historical and future information
of intra-language and inter-languages.

For 2 target languages with beam size 8, at each time step,
each target language translation hypotheses will keep 4-best
items (as long as there is at least one alive hypothesis for this
target language). The dark colored blocks denote that the hy-
pothesis is still expanding, while light colored blocks indi-
cate the hypotheses have produced EOS symbol. When all
sequences produce EOS or exceed the maximum sequence
length, the decoding is terminated. For a target language, if a
backward sequence score exceeds forward one, the sequence
will be reversed before output.

Training
For two target languages, we need to prepare trilingual
datasets {x(z), −→y (z)

1 , ←−y (z)
1 , −→y (z)

2 , ←−y (z)
2 }Zz=1 ∈ D, where

each target language has two types of training data, forward
−→y and backward←−y sequences. Note that a pair of forward
and backward target training sequences shares a same mean-
ing, but they should not be exactly the same (i.e., the R2L se-
quences should not be simply reversed from the L2R ones).
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Figure 5: The synchronous interactive multilingual (SIM)
beam search with beam size 8. Each target language (e.g., L1
or L2) maintains both forward (L2R) and backward (R2L)
translation hypotheses. At each time step (T) of decoding,
SimAtt is performed among all hypotheses, which interact
intra-lingual and inter-lingual attention with each other. The
dark blocks are the alive hypotheses (ongoing expansions),
while the light blocks are the sequences with EOS symbols.

The objective function aims to find the model parameters
that maximize the log-likelihood over the 4 target sequences:

J(θ) =
Z∑

z=1

M∑
j=1

{log p(~yj1|α(z), x(z), θ)

+ log p(
←
y
j

1|α(z), x(z), θ)

+ log p(~yj2|α(z), x(z), θ)

+ log p(
←
y
j

2|α(z), x(z), θ)}

(9)

where α = (−→y <j
1 ,←−y <j

1 ,−→y <j
2 ,←−y <j

2 ). Z is sentences num-
ber, andM denotes the max sentence length. When calculat-
ing the probability of each token, except for the context from
source side x, the proposed SIM method employs historical
and future information of intra- and inter-languages.

However, the parallel data is hard to collect. In this paper,
we construct the trilingual training corpus by data augment-
ing. We first train 4 translation models (2 groups) M -1 and
M -2, M ’-1 and M ’-2 on the bilingual training data (x1, y1)
and (x2, y2). Then, these M -1 and M -2 translate input sen-
tences x2 and x1 into pseudo training data (x2, y41 ) and
(x1, y42 ). After that, we use model M ’-1 and M ’-2 to trans-
late [x1∪x2], reverse, and get pseudo data [←−y ∇1 ∪←−y �1] and
[←−y ∇2 ∪←−y �2], respectively. Therefore, we obtain the mixed

parallel training data D =[(x1, y1, ←−y ∇1 , y42 , ←−y ∇2 )]∪[(x2,
y41 ,←−y �1, y2,←−y �2)] to train our model.

Experiments
Data & Settings
We evaluate our SimNMT method on two translation tasks,
including English to German/French (briefly, En→De/Fr)
and English to Chinese/Japanese (briefly, En→Zh/Ja)
on IWSLT datasets1. The IWSLT.TED.tst2013 and I-
WSLT.TED.tst2015 are adopted as development set and test
set, respectively.

En→De/Fr: The training sets contain 209.5K En→De
and 236.7K En→Fr sentence pairs. We use the Moses
(Koehn et al. 2007) tokenizer scripts2 to tokenize English,
German and French sentences3. Then, BPE method (Sen-
nrich, Haddow, and Birch 2016) is adopted to encode the
source sentences and the combination of all target sentences,
respectively. The vocabulary sizes of both sides are limited
to the most frequent 30.7K tokens.

En→Zh/Ja: The training sets contain 235.1K En→Zh
and 226.8K En→Ja sentence pairs. We also use the scripts
from Moses (Koehn et al. 2007) to tokenize English sen-
tences, and urheen4 to segment and tokenize Chinese and
Japanese. After that, BPE (Sennrich, Haddow, and Birch
2016) is also used to encode the source sentences and the
combination of all target sentences. The vocabulary sizes of
both sides are limited to the most frequent 30.7K tokens.

We implement and evaluate the SimNMT with Tensor-
Flow by modifying the tensor2tensor toolkit5. Specifically,
we use 6 encoder and decoder layers Transformer with hid-
den size dmodel = 512, 8 attention heads, 2,048 feed-forward
inner layer size and Pdropout = 0.1. The optimizer employs
Adam method with parameters β1 = 0.9, β2 = 0.998 and
ε = 10−9. We adopt the same warm-up and decay settings
as Vaswani et al. (2017). For testing, we use beam search
with beam size k = 8 and allocate 2 beams for each type of
translation hypotheses (specifically for 2 target languages in
our experiments) with length penalty α = 0.6. The training
and testing of all translation tasks are performed on single
NVIDIA GTX 2080Ti GPU.

Baselines & Results
We compare the proposed model against the following ad-
vanced NMT and MNMT systems:

Standard Transformer (Vaswani et al. 2017): The clas-
sical NMT model, which employ the attention mechanism
and predict target sentence from-left-to-right with standard
beam search algorithm. Each model is trained with bilingual
parallel corpus and can only translate one language pair.

1https://wit3.fbk.eu/
2https://github.com/moses-smt/mosesdecoder
3Since the original scripts can not split up the period from pre-

vious token if there are more than one sentence in a line, we modify
the scripts to split them.

4http://www.nlpr.ia.ac.cn/cip/software.htm
5https://github.com/tensorflow/tensor2tensor



Method En-De/Fr En-Zh/Ja AVE ∆En-De En-Fr En-Zh En-Ja
Transformer (Vaswani et al. 2017) 26.48 38.61 16.24 15.29 24.16 -
Transformer (+pseudo) (Hoang et al. 2018) 27.14 39.59 17.36 16.21 25.08 +0.92
GNMT-Multi (Johnson et al. 2017) 28.29 40.30 17.86 17.06 25.88 +1.72
SB-NMT (Zhou, Zhang, and Zong 2019) 27.30 39.35 18.28 17.13 25.52 +1.36
SyncTrans (Wang et al. 2019) 26.58 39.95 17.80 17.69 25.51 +1.35
SimNMT 28.63 41.41 18.68 17.18 26.48 +2.32

Table 2: Translation performance on IWSLT datasets.

Transformer (+pseudo): The Transformer (Vaswani
et al. 2017) adds pseudo corpus for training (Hoang et al.
2018). Specifically, for fair comparison, we group the exper-
iments to En→De/Fr and En→Zh/Ja. In the En→De/Fr ex-
periment, we first train the translation models M-(En→De)
and M-(En→Fr) with parallel corpora En(De)-De and
En(Fr)-Fr, respectively. Then, translate En(Fr) and En(De)
with these two models, and obtain the pseudo parallel cor-
pora En(Fr)-De(pseudo) and En(De)-Fr(pseudo). Finally,
we combine the original corpora En(De)-De and En(Fr)-
Fr with the pseudo corpora En(Fr)-De(pseudo) and En(De)-
Fr(pseudo), respectively, and then train the Transformer as
Transformer (+pseudo). The same goes for En→Zh/Ja.

GNMT-Multi (Johnson et al. 2017): The Google’s mul-
tilingual NMT system, which also employs standard beam
search algorithm but enables multilingual translations by
adding direction tags to source language sentences. All train-
ing data of different language pairs are mixed together.

SB-NMT (Zhou, Zhang, and Zong 2019): A synchronous
bidirectional NMT model, which decodes a target sentence
from both left side and right side in a synchronous way. For
each source sentence, it needs an extra target sentence in
reverse order with the same semantics for training.

SyncTrans (Wang et al. 2019): This work simultaneously
translate one source language into two target languages with
one encoder and two different decoders. It requires triple
parallel corpus for training.

The training corpora are prepared according to the
schemes in respective papers. The translation performance
is evaluated by BLEU (Papineni et al. 2002), and all exper-
iments are case-insensitive. For Transformer, Transformer
(+pseudo) and SB-NMT, each model translates one lan-
guage pair; while for GNMT-Multi, SyncTrans and pro-
posed SimNMT, 2 groups of multilingual translation exper-
iments are carried out, En→De/Fr and En→Zh/Ja, respec-
tively.

Table 2 shows the overall translation results of
En→De/Fr/Zh/Ja on the IWSLT datasets. For the average
(AVE) BLEU of 4 target languages, SimNMT obviously
outperforms existing methods. It achieves +2.32 average
BLEU score higher than standard Transformer, and +0.60
BLEU improvement over GNMT-Multi. SimNMT signifi-
cantly outperforms other methods on all En-De, En-Fr and
En-Zh individual translation tasks, and obtains comparable
results with the SyncTrans on En-Ja translation task.

Fusion Para λ1 λ2 λ1 λ2 λ1 λ2

1.0 0.1 0.7 0.1 0.5 0.1
Linear 32.68 34.08 33.34

Non-linear ReLU 34.28 35.02 34.26
tanh 34.01 34.79 34.13

Gate 33.24

Table 3: Experiment results with different fusion parameters.

Analysis
We conduct analyses on several aspects to better understand
our model.

Fusion Scheme: We compared different attention fusion
functions (FF) and parameters. The fusion functions tested
in this paper are as follows:

~H = FF(~Hhistory
intra , ~Hfuture

intra , ~Hhistory
inter , ~Hfuture

inter )

= λ1 · ~Hhistory
intra + λ2 ·AF (~Hfuture

intra )+

λ1 ·AF (~Hhistory
inter ) + λ2 ·AF (~Hfuture

inter )

(10)

where the activation functions (AF) include linear in-
terpolation (Linear), non-linear interpolation (Non-linear)
of rectified linear unit (ReLU) and tanh function, and
gate mechanism (Gate). Many empirical experiments of
En→De/Fr show that different fusion parameters have a
great impact on translation performance (Table 3 shows the
average BLEU scores of De and Fr). When the parameters
of the ReLU function λ1=0.7, λ2=0.1, we get the best result.
The gate mechanism shows worse performance than most
fixed parameter methods. Since the fusion scheme is very
important to the result, the better fusion mechanism is a di-
rection worth studying in the future.

Effect of Sentence Length: We calculated the average
translation quality of different sentence lengths (by group-
ing similar lengths together) to observe the performance of
different methods. Figure 6 shows SimNMT reaches bet-
ter BLEU scores in general (sentence length in the range
of [1,70]) compared with other methods.

Translation Balance: Translation that only relies on his-
torical information (L2R) faces the translation unbalance is-
sue, i.e., the translation quality of the second half of target
sentence reducing. By introducing future information (R2L),
the model is expected to get more accurate translation of the
suffix in a sentence. As shown in Figure 7, we count the
number of translated sentences whose first and last 4 tokens
are exactly the same with the references. Compared with the



Source Ihavetocreateaframework thatyouthenf ll inwithyour imagination.Now,youmayhavenoticedtherearesomepeoplemissingthere:therestof theteam.

Reference
来建立起一个框架然后你运用想像力去充实它 现在你可能注意到球场上少了些什么人少了球队的其他成员

Tobuildaframeworkandthenyouuseyour imaginationtoenrichit Nowyoumaynoticewhat ismissingonthecourt.Othermembersof theteamaremissing.

Transformer
我需要创造一个框架，一个充满想象力的框架。 也许你已经注意到有一些人失踪了，其他的团队。

I needtocreateaframework,aframework full of imagination. Maybeyouhavenoticedthatsomepeoplearemissing,other teams.

SyncTrans
我得创造一个你可以用你的想象力填满的框架。 现在，你们可能已经注意到有些人在这里失踪了：其他团队。

I havetocreateaframethatyoucanf ll withyour imagination. Now,youmayhavenoticedthatsomepeoplearemissinghere:other teams.

SimNMT
我得创造一个构架，让你可以用想象力来填充。 现在，你们可能已经注意到有些人失踪了：团队的其他人。

I havetocreateaframework thatyoucanf ll withimagination. Now,youmayhavenoticedthatsomepeoplearemissing:therestof theteam.

Table 4: The En→Zh translation examples of Transformer, SyncTrans and proposed SimNMT. The Chinese sentences are
translation results by different methods, while the below English sentences are the back translations.
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(b) En→Fr

[1
,1
0
]

[1
1
,2
0
]

[2
1
,3
0
]

[3
1
,4
0
]

[4
1
,5
0
]

[5
1
,6
0
]

[6
1
,7
0
]

[7
1
,7
1
+
)

Length of Source Sentence

5

10

15

20

25

30

B
LE

U
 S

co
re

Transformer
GNMT-Multi
SyncTrans
SimNMT

(c) En→Ja
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Figure 6: Translation qualities (BLEU score) of different
lengths of the source sentences.

methods without future information (Transformer, GNMT-
Multi and SyncTrans), translation accuracies of both sides
of SimNMT are generally improved.

Case Study: Table 4 gives two case study examples to
better understand how the proposed SimNMT model out-
performs than other models. In the first example, SimNMT
gives more appropriate translation. In the second example,
SimNMT provides the only correct translation suffix, indi-
cating that the proposed method improves the translation
performance, such as translation suffixes.

Conclusions
In this paper, we propose a synchronous interactive multi-
lingual NMT (SimNMT) model that translates one source
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(a) Prefix En→De/Fr
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(b) Suffix En→De/Fr

en-zh en-ja
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(c) Prefix En→Zh/Ja
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(d) Suffix En→Zh/Ja

Figure 7: Translation accuracies of the prefixes and suffixes.

language into different target languages simultaneously and
interactively. The synchronous cross-interactive decoder,
which can take full advantage of four types of informa-
tion (historical and future information of intra-language and
inter-languages), predicts output for each target language
with proposed synchronous interactive multilingual infer-
ence algorithm. To our best knowledge, this is the first at-
tempt to integrate above four types of information into a
single NMT model. The experiments demonstrate that the
proposed approach obtains significant improvements over
competitive bilingual NMT models and multilingual NMT
models. In future work, we plan to extend our method on
more than two target languages, and explore better ways to
fuse and utilize language characteristics to further improve
multilingual translation performance.
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