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Abstract: Social propagation denotes the spread phenomena directly correlated to the human world and society, which includes but is
not limited to the diffusion of human epidemics, human-made malicious viruses, fake news, social innovation, viral marketing, etc. Simu-
lation and optimization are two major themes in social propagation, where network-based simulation helps to analyze and understand
the social contagion, and problem-oriented optimization is devoted to contain or improve the infection results. Though there have been
many models and optimization techniques, the matter of concern is that the increasing complexity and scales of propagation processes
continuously refresh the former conclusions. Recently, evolutionary computation (EC) shows its potential in alleviating the concerns by
introducing an evolving and developing perspective. With this insight, this paper intends to develop a comprehensive view of how EC
takes effect in social propagation. Taxonomy is provided for classifying the propagation problems, and the applications of EC in solving
these problems are reviewed. Furthermore, some open issues of social propagation and the potential applications of EC are discussed.
This paper contributes to recognizing the problems in application-oriented EC design and paves the way for the development of evolving
propagation dynamics.
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1 Introduction

Network propagation refers to the flow, spread, and
diffusion of information or material on complex networks.
Network propagation phenomena have been widely seen
in real-world engineering applications, such as traffic flow
on road networks[!], virus spreading on crowd networks(2 3],
information diffusion on social networksl, fluctuations
propagation on power gridsl], etc. In recent years, with
the rapid development of information technology, more
and more network propagation problems defined on very
large-scale networks have been realized, leading to new
challenges to the analysis of network propagation.

Simulating real-world propagation processes is funda-
mental and necessary in network propagation analysis6: 7.
There are various propagation models, such as epidemic
models, linear threshold models, and information cascade
models. However, as the network scale grows and the
propagation behavior becomes more and more complex,
the use of traditional network propagation models be-
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comes more and more complicated. Evolutionary dynam-
ical models have been introduced in propagation models,
such as the evolving epidemic models® 9, malware and
anti-malware evolutionary models!!% 1, evolutionary
graph theory[l?l, genetic-algorithm-based diffusion model,
etc.

Besides simulation, propagation optimization is anoth-
er classical and significant task. In the area of informa-
tion explosion, it is of great significance to develop fast
and efficient algorithms to minimize negative diffusion
and maximize positive diffusion. During these processes,
computing efficiency, solution quality, and algorithm sta-
bility are simultaneously required. There have been ex-
tensive optimization methods developed for solving net-
worked optimization problems, including three major cat-
egories.

1) Convex/semi-convex optimization, which is very
suitable for the problems with regular, elliptical solution
spacel!3 14, These kinds of methods converge fast and
guarantee convergence to the local optimallsl. However,
when facing the complicated solution space with many
peaks and troughs, it is difficult to select befitting simula-
tion methods to map the irregular space into the regular
one.

2) Heuristics, which are a kind of approximate optim-
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ization methods[!6-19. They are usually built on instinct
or insights into problem characteristics and can provide a
feasible solution under acceptable time or space overhead.
Though heuristic methods have acclaimed success for the
high availability and high efficiency, they are confined by
the weak scalability. The reason is that customized
designs for problems greatly decrease the generalization
ability of methods in solving problems under different
categories. Even for similar problems, the change of con-
straint conditions may also reduce the efficacy of the
heuristics.

3) Evolutionary computation (EC), which encapsu-
lates a set of bio-inspired optimization algorithms20; 21,
Unlike traditional heuristics, EC contains problem-inde-
pendent optimization strategies and can be quickly mi-
grated to different problems. Different from convex-based
optimization methods, most stochastic search methods re-
lax requirements to the shape of solution space, and can
be easily extended to large-scale optimization problems.
Besides, it can produce a population of solutions that are
usually independently generated at each iteration, which
contributes to the algorithm's parallelizability.

EC is good at solving non-deterministic polynomial
hard (NP-hard) problems??, such as multi-backpack
problems(23], travelling salesman problems!?3], workflows
scheduling problems(24, resource allocation problemsl3l. As
most propagation control problems can be formulated as
complex optimization problems with arbitrary
complexity[!3], such as the resources allocation, the block-
ing of edges, the status changes of nodes, or the planning
of propagation paths, it is promising to apply EC al-
gorithms to solve complex propagation optimization prob-
lems.

With these insights, this paper aims to present a com-
prehensive survey of numerous EC algorithms and their
representative applications in social propagation dynam-
ics. The contributions are as follows.

1) A

propagation. This paper discusses various research sub-

comprehensive taxonomy of social
jects in social propagation and classifies them into three
categories: simulation, optimization, and detection & ana-
lysis. Simulation studies focus on modeling realistic
propagation phenomena and analyzing their dynamic
characteristics. Optimization studies are based on simula-
tion but concentrated more on minimizing the negative
diffusion or maximizing the positive diffusion. Some other
studies are about the detection & analysis of fake news,
diffusion sources, or propagation paths, which show great
potentials in engineering practice.

2) An overview of EC applications in social
propagation. Classical EC algorithms are firstly re-
viewed. Then, their applications on solving the simula-
tion, optimization, and other new propagation problems
are respectively investigated. The literature survey shows
that EC is mainly applied to solve the pollutant minimiz-
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ation and influence maximization problems. For the oth-
er problems, some exploratory studies and inspirations
are discussed.

3) Highlighting the open issues of social
propagation and the corresponding challenges for
EC algorithms design. The evolving propagation dy-
namics, which combine the evolution thought and tradi-
tional propagation models, have raised much research at-
tention in recent years. This paper also discusses the ma-
jor challenges and potential solutions.

The organization of this paper is as follows. Section 2
provides an overview of EC. Section 3 describes the scope
of this paper and the taxonomy of propagation surveys.
The applications of EC in propagation simulation are in-
troduced in Section 4. Section 5 provides the advanced
EC techniques for solving propagation optimization prob-
lems. Some new applications are investigated in Section 6.
The open issues and future directions in EC-based
propagation research are discussed in Section 7. Finally,
this paper is concluded in Section 8.

2 An overview of EC

Evolutionary computation is a branch of artificial in-
telligence and computational intelligence. It is inspired by
the natural selection mechanism of “survival of the fit-
test” and the process of biological evolution. The natural
evolution process in EC is simulated by iterative pro-
cesses, and the optimal solution is obtained from a popu-
lation of solutionsl25l. Therefore, a standard EC can be
described as a generic, stochastic, population-based, and
iterative algorithm.

Consider a population with NP individuals. At the
time ¢, each individual holds a position X;(t) that can be
changed by time. Each position indicates a solution to
the problem. The solution can be evaluated by a fitness
function f(X;(t)), whose value (named fitness value) rep-
resents the individual adaptability to the environment.
Generally, the higher the fitness value is, the better the
solution is, so the target optimization problems are usu-
ally formulated as maximization problems by adjusting
objective functions. The global best solution is represen-
ted by Gbest(t), which records the historically best solu-
tion of the whole population. The rules of a typical EC
can be formulated as follows.

Initially (when ¢t=0), all the individuals are randomly
assigned values within the scope of [Xmin, Xmax],
(Xmin < Xmax), and Gbest(0) is selected from all the ini-
tial solutions:

{Xi(O) = random(Xmin, Xmax) (1)
Gbest(0) = max(X1(0),--- ,Xnp(0)).

Then (when t >1), the population iterates several
times to update their solutions, holding the Gbest(t) as
the best-know solution until the time ¢:
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Xi(t)=Xi(t—1)+ Vit —1)
{Gbest(t) =max { Gbest(t—1), max(X1(t), -+, Xnp(t)}
(2)

where V;(t) represents the modification to the solution,
which usually consists of a series of rules.

The scope of EC is shown in Fig.1, which includes
three branches: evolutionary algorithms (EAs), swarm in-
telligence algorithms (SIAs), and some problem-based EC
extensions. Each branch is introduced as follows.

2.1 Evolutionary algorithms

Evolutionary algorithms (EAs) are a kind of popula-
tion-based stochastic algorithms, which update a popula-
tion of solutions in an iterative way. Each iteration typic-
ally includes three operators: selection, crossover, and
mutation. All the operators imitate the evolution of bio-
logy and favor the survival of fitter solutions. Thereinto,
the selection operator is used to select out individuals
with good adaptability to the environment. The crossov-
er operator can generate two new individuals from two-
parent individuals by following specific crossover probab-
ilities or rules. The mutation operator aims to modify the
selected individuals by specific rules so that the popula-
tion diversity can be improved.

The popular EAs include genetic algorithm (GA)[=20],
evolution strategy (ES)27, evolutionary programming
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(EP)28), differential evolution (DE)[29, genetic program-
ming (GP)20 artificial immune system (AIS)BO, etc.
Thereinto, GA is the most basic and widely-used al-
gorithm, which simulates the inheritance process of chro-
mosome genetic genesPl. ES and EP simulate the natur-
al evolution processes from different aspects, where ES
emphasizes the individual-level evolution and EP focuses
on the population-level evolution. DE is very similar to
GA in the evolutionary process. Both of them include the
process of mutation, crossover, and selection. The differ-
ences lie in that DE includes differential variation vec-
tors and holds the search space of floating-point encoding,
while GA uses the fitness-based probability selection and
holds the search space of binary encodingB2- GP is de-
signed to build programs automatically and usually takes
the syntax tree as the representation of evolving pro-
grams. AIS is a rule-based machine learning system that
simulates the mechanism of vertebrate immune system.

2.2 Swarm intelligence algorithms

Swarm intelligence algorithms (SIAs) originate from
the research on the swarm behavior of social insects, such
as ants, bees, bacteria, or human organizations. The
swarm consists of a series of individuals with simple evol-
ution rules, but their collective efforts will produce solu-
tions with good quality. It turns out that the interaction
between these agents shows individual agents with un-
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known “intelligence” on a global scalell.

Classical SIAs are introduced as follows. 1) Ant colony
optimization (ACQO)B3] firstly proposed by Dorigo in
1992, is inspired by the foraging behavior of ants. Each
ant may walk in a random way, but the ant colony can
search for the shortest path from home to the food source
quickly with the perception of pheromones34. Currently,
ACO becomes a general term of many ant colony al-
gorithms, which includes but is not limited to the ant
system (AS), ant colony system (ACS)B5], max-min ant
system (MMAS)B6l etc. However, pheromone models
used in most ACO algorithms require customized designs
for different problems, which weaken their portability. 2)
Particle swarm optimization (PSO), proposed by Eber-
hart and KennedyB7l, simulates the foraging behavior of
birds’ flock. Each bird in the swarm can learn from its
optimal historical experience and the best experience of
the swarm in the current generation. PSO is easy to use
and can simultaneously produce a good solution, which is
therefore quickly applied to all kinds of NP-hard prob-
lems[38], such as the traveling salesman problems and the
multiple backpack problems(23], workflow scheduling prob-
lems[24l, resource allocation problemsl®, etc. 3) Artificial
bee colony (ABC) algorithm, proposed by Karabogall,
learns from the behavior of bees in gathering honey. In
ABC, the bee colony includes three kinds of bees: the em-
ployed foragers that hold the information of food sources,
the scouter that search for new food sources, and the on-
lookers that follow the behavior of employed foragers.
The diversity of the bee population contributes to the
formation of collective intelligence. ABC has been widely
used to solve multi-variable optimization problems, the
parameter training problems of neural networks, and oth-
er engineering problems. Besides, there is a variety of SI-
As learning from many other social behaviors, such as ar-
tificial fish swarm algorithm (AFSA) learning from swim-
ming behavior of fishes, glowworm search optimization
(GSO) inspired by the bioluminescence of glowworms,
bacterial foraging algorithm (BFA) that simulates the
consuming behavior of escherichia coli, cuckoo search
(CS) originated from the obligate brood parasitism of
cuckoo, etc.

2.3 EC extensions

Some EC extensions have been developed in recent
years, designed to solve problems with specific character-
istics. A typical example is the multi-objective evolution-
ary algorithm (MOEA). Traditional EC algorithms are
mostly designed for solving problems with a single object-
ive. However, many real-world problems consist of more
than one objective. MOEAs are designed for solving this
kind of problem, which are mostly based on two classical
algorithms: multi-objective evolutionary algorithm based
on decomposition (MOEA/D)H0 and non-dominated sort-
ing genetic algorithm (NSGA-II)[lI. Based on the two
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MOEAs,
developedl*?l. Besides, multi-modal optimization  al-

many variants and  applications are
gorithms (MMOASs) are designed to discover multiple
solutions with a similar qualityl34 43, Surrogate assisted
evolutionary algorithm (SAEA) aims to solve expensive
optimization problemsl*4. Cooperative coevolution (CC)
can be applied on larger-scale optimization problems[22: 45],
Evolutionary bilevel optimization (EBO) is introduced to
solve the problems with two levels of optimization tasks.

EC has been used to solve non-deterministic polyno-
mial hard problems (such as feature selection problems/“6],
mixed-variable problemsl*”l, etc.) and various engineering
problems (such as traffic controll8l, complex network op-
timization?%, etc.). Recently, it has been applied to solve
the propagation problems in complex networks (such as
the propagation process simulation[!2], negative diffusion
controll® positive diffusion promotion, etc.) and shows
good efficacy. However, to the best of our knowledge, few
studies provided a holistic view of the applications in the
field of networked propagation dynamics.

3 Literature scope and taxonomy

The scope of our literature review lies in studies of
EC-based social propagation. Social propagation is
defined as the propagation phenomena happening in so-
cial life, and the major participants are human beings (in-
dividuals, groups, or organizations) and their virtual
agents. Such crossover studies are neither the pure arith-
metic improvements nor the pure problem design, but the
problem-oriented EC design or the EC-driven problem
design. Adopting this view, some studies are excluded
from the review, such as the propagation process or com-
munication mechanism inside EC population (e.g., the
population structure design in EAs, the information ex-
change frequency in CC)[50 the physical communication
problems (e.g., the fault propagation in power
network)®ll, and the propagation mechanisms in neural
networksP2. These excluded research areas are of great
importance and significance in scientific and engineering
practice, but they are somehow beyond the scope of so-
cial propagation and need other dedicated literature re-
views.

Within the scope of social propagation, a detailed tax-
onomy framework of existing studies is shown in Fig.2,
which contains the most popular research subjects in this
field. It consists of three major branches: simulation, op-
timization, detection & analysis. In Fig.2, to ensure the
integrity of problem classification, some sub-branches
with few EC applications are also listed, with their meth-
ods underlined by the dotted lines. The methods under-
lined by solid lines are EC-based methods. A realistic
tendency is that the boundaries among different branches
may be not that clear in the future; namely, comprehens-
ive research referring to two or more research subjects
may be frequently seen in one common study. However,
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Fig. 2 Taxonomy of social propagation studies and the applications of EC

this trend does not go beyond or conflict with the three
basic branch units introduced in this paper.

4 EC for propagation simulation

4.1 Epidemic spread models

Epidemic denotes the rapid development of disease
across a biological population. It can be infectious dis-
eases caused by a pathogen or biological virus that enters
the organisms and triggers wide infection, or some wide-
spread common diseases caused by living & social envir-
onment3 54, Before containing the epidemic spread in
the human world, the first step is to simulate epidemic
propagation dynamics. For most common epidemics, data
analysis and mathematical modelling can both realize this
goal. However, for emerging infectious diseases (EIDs),
only the mathematical models become feasible, for there
are few reference data for analysis. Existing mathematic-
al modelling for epidemics is mostly based on classical

compartmental models or some modified versionsl®. The
most classical compartmental models include: 1) the sus-
ceptible-infectious (SI) model, which is very simple and
usually used to simulate incurable epidemics; 2) the sus-
ceptible-infectious-susceptible (SIS) model, which simu-
lates the recurrent epidemics such as influenza; and
3) the susceptible-infectious-recovered (SIR) model, which
simulates the vaccine-preventable epidemics such as
smallpox. Besides, the susceptible-infectious-recovered-
susceptible (SIRS) model is a combination of the SIS
model and the SIR model, which can be generalized to
the SI, SIS, SIR models. Recently, the susceptible-ex-
posed-infected-vigilant (SEIV) model is prevalent for it
further considers the latent period of the epidemic, which
is a SIRS-variant model.

Evolution computation simulates survival of the fit-
test in natural selection. Nevertheless meanwhile, the
evolution of natural organisms and microorganisms is still
in progress. The biological bacteria and viruses which
cause the epidemic are also typical examples. In 2003,
Antia et al.Bl explored the role of evolution in emerging
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epidemics. They denoted that the genetic changes in the
pathogen could happen in two ways: the concurrent pro-
cesses raised by neutral mutation or coevolution between
pathogen and hosts, and the adaptive evolution as patho-
gen transmitted among hosts with various constitutions.
Similarly, Fraser et al.l36] revealed the apparent conflict
between two levels of selection on the acquired immune
deficiency syndrome (AIDS) virus in 2016, namely the
virus evolution in hosts and the virulence of infection
during transmission events. They developed a conceptual
model to simulate this kind of reconcile adaptive evolu-
tion. Nelson and HolmesP” emphasized that genetic di-
versity is of great importance to understanding evolution-
ary biology, which includes the complex relationships
among antigenic evolution, natural selection, reassort-
ment, zonality, and seasonality. Dominique and Maiden[]
investigated the meningococcal carriage and disease and
used a population and evolutionary model to explain the
meningococcal virulence. Leventhal et al.58! studied the
dynamic of disease evolution on different “population”
structures, where the population was claimed as nodes
and their connections in a network.

These natural evolutions of biological viruses are
worthy of a follow-up study, which may inspire the
design of new bionics algorithms. Typical examples in-
clude the bacterial foraging optimization (BFO)P9 and
adaptive clonal selection algorithm (ICSA)I9. The simu-
lated evolution may also enlighten the research of biolo-
gical evolution.

4.2 Computer virus spread models

A computer virus is a piece of executable code with a
mischievous or malicious purpose, which spreads quickly
and poses a huge threat to Internet security. With the
quick development of computer networks, a wide variety
of viruses have been produced, spread, and updated, in-
cluding but not limited to macro viruses, script viruses,
network worms, Trojan viruses, phishing attacks, mal-
ware, etc. Since these viruses are often hard to eradicate,
the early detection and prevention have become critical
steps. The classical epidemic models can be used to mod-
el virus propagation dynamics®l, such as SI, SIS, SIR
models can be applied. Thereinto, SI and SIS models con-
taining two basic states (susceptible and infected), are
the most prevalent models. Computer viruses are easy to
infect one same device repeatedly as long as the inter-
cept measures go unheeded.

EC has been used to simulate the evolution and vari-
ation of computer viruses. Early in 2009, Noreen et al.[62]
have proposed the concept of “evolvable malware” which
introduced a GA-based evolutionary framework to simu-
late the mutation process of virus genotype. Meng et
al.lY further modularized the malicious code from differ-
ent malware families into different attack features. They
then built a malware meta-model to capture different fea-
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tures and constraints inside malware. Then, they apply
the GA with gene crossover and mutations to mimic the
evolution of the malware. Considering the renewal of mo-
bile malware, Sen et al.l% introduced the co-evolutionary
(CEA) computation techniques to simulate malware evol-
ution and develop anti-malware automatically, namely
using a co-evolutionary arms race mechanism for develop-
ing more robust systems.

EC helps to build some evolutionary game models to
predict the potential variants of computer viruses and
promotes the development of anti-virus programs.
However, most existing models take GA as a basic simu-
lator, and other EC algorithms are rarely seen. In fact,
for human-made viruses or malware, some other evolu-
tion mode in EC may inspire the virus variation other
than the genetic variation, e.g., learning from historical-
best infection behavior or other stronger viruses stored in
reservoirs (as inspired by PSO), leaving pheromone to
mark the susceptible host machines, causing repeated in-
fection (as inspired by ACO), etc. The reasons are that a
successful learning operator embedding in algorithms can
accelerate the convergence speed and find high-quality
solutions, so it has the potentials to accelerate the virus
development and cause significant threats to network se-
curity. Consequently, this is a potential research direc-
tion.

4.3 Information diffusion models

Most epidemic models can be applied to simulate in-
formation propagation. However, they are mostly re-
garded as to be oversimplified to the information itself or
overly optimistic to the known network structure.

Later, there are two classical probabilistic models spe-
cified for information dissemination, respectively the inde-
pendent cascade (IC) model and the linear threshold
(LT) modell63. The IC model generalizes the SIR epidem-
ic model, and the L'T model is a probabilistic extension of
the tipping modell®4. A broader model is named general-
ized threshold (GT), which combines the LT and IC
models. Besides the three models, some soft computing
models are proposed, such as the heat energy-based mod-
el and the forest fire modell66l. A logic programming
(LP) based diffusion model was proposed by Shakarian et
al.l67 which further considers the attributes of nodes.
Later, many extensions and variants were developed, such
as probabilistic similarity logic (PSL)[] and modal
logicl4sl.

Opinions as a special kind of information are usually
diffused in online or offline social groups. There have
been many models developed for describing opinion
spread dynamics, which can be classified into two specif-
ic categories: the discrete models (such as Isingl69,
Voter[™, Sznajd(™], Majority Rulel"), and the continu-
ous models (such as Deffuant-Weisbuch (DW)[™3], Hegsel-
mann-Krause (HK)[™).
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In 2005, Lieberman et al.['2] incorporated the thought
of evolutionary computation with network science and
proposed the evolutionary graph theory (EGT). EGT
simulates the nodes in the network as individuals in the
population and the network topology as the population
structure. The homogeneous population with the Moran
process can be modelled as a special case of fully connec-
ted and un-weighted graphs. In 2010, Lahiri and
CebrianBl proposed a genetic algorithm diffusion model
(GADM) to simulate the diffusion in social networks.

5 EC for propagation optimization

Propagation dynamics is one of the major branches in
complex network science, which includes the propagation
control of negative diffusion (e.g., epidemic spread, com-
puter viruses diffusion, rumor propagation) and promot-
ing the positive diffusion (e.g., innovation diffusion(7; 76],
social learningl™, social norm evolution(™l, brand &
product popularization[™). For more knowledge about so-
cial contagion, please refer to [80, 81].

With the expansion of network scales, the network-
based optimization problems have become more and more
complicated. EC is naturally designed to optimize NP-
hard problems, and many algorithms under EC realm
have been developed to solve the propagation optimiza-
tion problems in complex networks. According to the dif-
ferent applications, they can be summarized as below.

5.1 Pollutant minimization

A pollutant is used to denote hazardous materials or
virtual entities with a negative effect, such as epidemics,
computer viruses, rumors, fake news, fault information,
etc. Minimizing the spread of these pollutants contrib-
utes to ecological health and social order.

5.1.1 Epidemic control

An epidemic control problem can be formulated as a
constrained resource allocation problem. Considering
there are M kinds of resources and N nodes in the net-
work. Resources denote the goods and materials or ser-
vices used in all kinds of prevention methods, which can
be divided into two kinds: the node-oriented resources
represented by a matrix Ryxn = [7r,;] where 7, ; repres-
ents that the resource r is allocated to the i-th node in
the network; and the edge-oriented resources represented
by the matrix Ri.nxn = [7).(; ;)] Where 7/ .y denotes
that the resource r is taken effect on the edge (¢, j). Con-
straints denote the limited budget, manpower, grounds,
or other control conditions, marked as C. Then, the epi-
demic control problem can be formulated as

min  f(R, R, epimodel)
st. g(R,R) < C (3)

where f(-) is the objective function, which is based on the

epidemic simulation models and takes R and/or R’ as its
decision variables. g(-) is the total cost of the allocated
resources.

Based on the compartmental models, all kinds of im-
munization strategies are developed to control epidemic
spread49. Thereinto, population-based intelligent optimiz-
ation algorithms are mostly hybrid algorithms or frame-
works to fit the complex problem characteristics. For ex-
ample, the memetic structure optimization strategy
(MSOS)82 was designed to adjust the epidemic threshold
(t), which takes the memetic algorithm as the global
search strategy and the simulated annealing algorithm
combined with the properties of networks as the local
search strategy. The optimized homotopy perturbation
method (OHPM)®3! was proposed to maximize the im-
mune population, which combines PSO and the homo-
topy perturbation method. The binary PSO with priority
planning and hierarchical learning (PHSO)B! was de-
signed for accelerating the epidemic decaying rate. Pizzuti
and Socievolel8 combined DE and GA to solve the op-
timal curing policy problem.

Recently, community detection technology has been
introduced into network propagation analysis. As the net-
work has been divided into multiple communities, the
problem can be divided into subproblemsl®®, or the
searching space can be further narrowed; this may con-
tribute to the parallel optimization, and the algorithm ef-
ficiency can be further improved. However, it is pretty
challenging to combine network propagation, community
structure detection, and evolutionary algorithms. Some
problems need to be concerned, such as how to balance
the community size and modularity and how to deal with
the subspaces in communities and the global space in the
whole network. As an exploration, Wang et al.[85 attemp-
ted to use the network community structure to narrow
down the node candidates for immunization and then de-
signed a memetic algorithm (MA) to select immunization
nodes for epidemic control. Zhao et al.’5 introduced an
improved Louvain algorithm to divide the network into
communities with relatively balanced sizes and then
design a co-evolutionary algorithm with network-com-
munity-based decomposition (NCD-CEA) to accelerate
the epidemic decay.

5.1.2 Computer virus prevention

The formulation of the virus control problem is simil-
ar to epidemic control. The differences lie in the concrete
resource types. Epidemic control tends more to social dis-
tancing (edge blocking) and vaccine distribution (node
immunization), while computer virus prevention focuses
more on bug fixes (addressing problem-source) and pre-
ventive measures (increasing the infection threshold of
nodes).

Existing EC-based parallel prediction methods can ef-
ficiently identify the mobile applications as benign or ma-
licious, such as the dynamic hybrid ANFIS-PSO ap-
proach (DyHAP) proposed by Afifi®6l. Sen et al.l'0] pro-
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posed genetic programming (GP) based techniques to de-
velop new variants of mobile malware and produce bet-
ter security solutions against the malware automatically.

In addition, some studies formulated malicious at-
tacks as network robustness optimization problems and
used EC to solve it. For example, Wu et al.B7 used the
memetic algorithm (MA) to locate the host nodes and
provided the optimal configuration of the hosts. Zhou and
Liul8l designed a multi-objective evolutionary algorithm
(MOEA-RSFMMa) against malicious attacks on nodes and
links. Moreover, due to the heterogeneous nature of real-
world networks, removing some nodes may be more signi-
ficant than removing others. Simultaneously, the net-
work connectivity should also be maximized to keep good
network efficiency. With this insight, Liu et al.l89 de-
signed a framework of evolutionary algorithm (Evol) to
achieve network robustness optimization by minimizing
the number of removal nodes.

5.1.3 Rumor containment

Rumor refers to misinformation and non-credible con-
tent that are diffused in online social media. As smart-
phones provide straightforward access to social media,
every individual can publish their news, stories, opinions,
and comments on the Internet. The cost of generating
and spreading rumors becomes extremely low, but elimin-
ating their negative impacts is quite expensive. Therefore,
it is a challenging but significant task containing rumor
diffusion.

However, rumor is different from epidemics or com-
puter viruses. Its text content and spreads’ background
cannot be easily ignored but are hard to be quantitat-
ively represented. Most relative studies still focus on
modeling rumor spread processes, analyzing one specific
rumor dynamic, and the heuristics-based rumor control
strategies. Due to the diversity of spread scenes, a rumor
control problem with a unified form is hard to define. So
far, the optimization-based methods are rarely investig-
ated. As exploratory work, Chen et al.[% formulated pol-
lutant propagation prevention as a multiple objective
subset selection problems and proposed an algorithm
named MOEA/D-ADACO to solve the problem. Shah
and Kobtil®!l formulated fake news detection as a mul-
timodal task and designed an evolutionary cultural al-
gorithm (CA) to fulfill the task. Strictly speaking, the
proposed cultural algorithm is actually an algorithm with
evolution thought, but it contributes to rumor detection
and control on real-world datasets.

5.2 Influence maximization

Influence maximization (IM) is a significant problem
in information science, including information broadcast-
ing, viral marketing, competitiveness improvement, know-
ledge/belief /innovation diffusion, etc. It can be seen as an
inversion problem of pollutant minimization, and epidem-
ic models can be adopted, while the objectives are

@ Springer

changed to be the maximization of the influence spread-
ing rate or infected individuals at the steady-statel®2. In
2001, Domingos and Richardson denoted that the cus-
tomer’s network value should be considered in social mar-
keting, and convincing a subset of individuals can trigger
a large spread income. Later in 2003, Kempe et al.[63] for-
mulated the IM problem as a k-seed selection problem
and proved it is NP-hard. Compared to the inversion
problem of pollutant minimization, the IM problem is
more popular in recent years its easy implementation and
simple principles.

A standard IM problem can be formulated as follows.
Consider a network with N nodes, with the node-set de-
scribed by V. Let A = (a1, - ,an) represent the initial
seed set, where a; is a non-negative integer and denotes
the i-th seed node. Each node v in the network can be in-
dependently activated under the marketing strategy x,
with an activated probability h,(x). The nodes being suc-
cessfully activated are selected as the initial seed nodes.
Each seed node a; has the ability to activate the connec-
ted nodes, with the final activated set represented by
d(a;). Then, the expected revenue is formulated as

700 =3 AT T, (1= ).
) (4)

And the IM problem can be formulated as

max  f(x)
st. gx) < C (5)

where g(-) is the constraint function of the marketing
strategy, C' is the constraint condition. The propagation
model is implicitly embedded in the marketing strategy
X-

Influence maximization has been formally formulated
as selecting an influential set of nodes, which is NP-hard
for most influence models. EC techniques have been very
skillful in solving various NP-hard problems (including
subset selection problemsl3], and it is very promising to
solve IM problems with EC. There have been three types
of EC-based strategies for the IM problems with different
settings:

1) The influential seed selection problem, namely the
subset selection problem. The original solution method is
a greedy hill-climbing algorithm proposed by Kempe et
al.[63], which is time-consuming and not efficient enough.
Goyal et al.% further extended the IM problem. They in-
troduced the minimum target set selection problem
(MINTSS) by adding constraints on the size of the seed
set and the minimum possible time problem (MINTIME)
by adding constraints on the time that a predefined cov-
erage is achieved. Both the problems are proved to be
NP-hard, and a simple greedy algorithm and approxima-
tion algorithms are applied to solve the two problems,
respectively. As improvements, some evolutionary algori-
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thms have been developed and applied to solve the IM
problems, such as metric algorithms (MAs)%4, genetic al-
gorithms (GAs) 9%l simulated annealing (SA), etc.
These algorithms have good advantages over Kempe et
al.’s algorithm in both run time and convergence perform-
ancell00],

2) The seed selection and optimization problem, which
first finds seed candidates and then optimizes the search-
ing space. By this form, the underlying structures of net-
works can be explored. For instance, Simsek and Abdol-
lahpourill®l] sorted the nodes according to the network
metrics such as out-degree centrality and closeness cent-
rality and then applied PSO to look for good solutions.
They analyzed the influence level of nodes on their neigh-
bors and then applied ACO to maximizing the network
profit and minimizing nodes’ similarity.

3) Multi-objective IM problems. Some existing IM
problems with two objectives can be transformed into
single objective optimization problems, such as the influ-
ence maximization & cost minimization/l92: 103 and the
profit-maximization & node-similarity-minimization/t01],
Some other studies that solve the multiple objective op-
timization problems require two or more conflicting ob-
jectives. For example, Bucur et al.['04 attempted to find a
trade-off between the number of seeds and the influence
on the network. Robles et al.[l%] applied the NSGA-II
and MOEA/D, a single objective GA, and a greedy
strategy to jointly optimize the revenue and the number
of seeds. Olivares et al.[103] applied particle swarm optim-
ization (PSO) to maximize the influence and minimize
the seed number.

6 EC for propagation detection and
analysis

In recent years, fake news detection became very pop-
ular, which can be regarded as an extension of rumor dif-
fusion analysis. Due to the rampant growth of social me-
dia information, two research directions have been fo-
cused on source localization and diffusion path analyses,
which have contributed significantly to the analysis of
public social opinion.

So far, most EC paradigms applied to complex net-
work propagation refer to simulation and optimization.
However, the realms of social propagation are far from
the two. There are some other realistic problems worthy
of attention.

6.1 Fake news detection

The detection of fake news is different from the afore-
mentioned rumor diffusion control. The former emphas-
izes the news content in terms of diverse subjects and
contexts, while the latter focuses more on the network
structure and individual attributes. Meanwhile, with the
introduction of semantic and contextual information, fake

news detection has become a comprehensive task that
combines techniques and knowledgell%%. From the tech-
nical perspective, the popular methods include temporal
analysis(19], semantic analysis(l7, machine learning classi-
ficationl!08], network propagation analysis[l0%, etc. There
have been many application-oriented fake news detection
systems such as TweedCred, Snopes, Fact check, etc.

Evolution computation methods have not yet been fre-
quently used. Recently, Shah and Kobtil®! applied a cul-
tural algorithm (CA), a branch of evolutionary computa-
tion, to multimodal fake news detection, where situation-
al and normative knowledge is considered. Experimental
results show that their algorithm outperforms the state-
of-the-art methods, which demonstrate that EC has the
potential to be applied in fake news detection.

6.2 Source localization

Locating the sources where diffusion behavior started
from is a very generic and realistic problem(!10. This
problem becomes challenging due to the dynamic evolu-
tion of network structure and real-time data flow. Shelke
and Attar[1!l reviewed existing source detection methods.
They classified the networks into three kinds of observa-
tions: 1) complete observation, which contains sufficient
knowledge to the network topology, but is hardly pos-
sible in social or human-contact networks; 2) snapshot
observation, which contains partial knowledge only about
infected nodes, such as the event-related tweet streaml!12];
and 3) monitor observation, which inserts a sensor into
the network and captures the real-time data flow about
specific topics. As the snapshot and monitor observations
are performed with limited knowledge about the network,
source identification cannot be simply classified as a
search problem but an inference problem. In 2011, Shah
and Zaman[''3] first used the rumor centrality metric to
estimate sources and further analyzed its efficacy in [114].
Then in 2013, Luo et al.l''¥ firstly applied the rumor
centrality metric to locate multiple sources.

Existing EC algorithms are mostly applied to the net-
work with complete observation. Namely, the structure of
the whole network is already known. This situation
mostly happens in industrial networks, such as power net-
works, water distribution networks, wireless communica-
tion networks. For example, Mahinthakumar Sayeed[!'16]
designed a GA-local search (GA-LS) approaches to solve
the inverse problem of groundwater source identification.
Liu et al.ll'7 designed an EA-based approach, adaptive
optimization technique (ADOPT), for contamination
source identification in water-flow networks. Particle
backtracking algorithm (PBA), firstly introduced by Zi-
erolf et al.ll'8] and extended by Shang et al.'!9, is a kind
of method to predict the particle location according to
the local velocity field, which has been applied to contam-
ination source detection problems[!20],

However, for the data flow with an incomplete net-
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work structure, such as single or multiple source detec-
tions in real-time Twitter stream, few works about EC
application have been developed.

6.3 Diffusion path analyses

In traditional face-to-face communication, tracing the
information diffusion paths is manually implemented,
e.g., questionnaire survey in the study of sociology, the
witness sign words in settling a lawsuit. Since the 21st
century, computer-mediated communication provides a
traceable channel to investigate the propagation paths
and patterns. Currently, the techniques for diffusion path
analysis (DPA) include citation-based analyses[1217123] so-
cial network analysis[123 124 diffusion long short-term
memory (diffusion-LSTM) for predicting image diffusion
path(125]  main path analysisl!24, reactive diffusion
process126l  etc.  Applications include innovation
discoveryl123], enterprise management!'2”], word-of-mouth
marketing128] etc.

EC does not perform well in quantitative analysis but
has the potential to solve information diffusion path con-
struction (IDPC)[26] problem. IDPC aims to reproduce
the information diffusion process and selects the near-
practical paths. Most existing algorithms are based on
network metric analysis or semantic analysis to identify
the possible paths while rarely consider the near-optimal

path selection.

7 Open issues and directions

7.1 Data-driven evolutionary propagation
simulation

Though various propagation models, it is still challen-
ging to incorporate real-world datasets into the simulat-
ing propagation process. The reasons lie in three aspects:

1) The non-trivial work includes a lot of heterogen-
eous information. Individual information in the real-world
social network is presented in diverse forms, such as pro-
file images, descriptive text, social metrics, etc. To build
a computable propagation model, the diverse information
needs to be first processed into numeric values. The pro-
cess may need many techniques, such as natural lan-
guage processing, image processing, statistic methods,
etc., increasing the threshold of data-driven propagation
simulation.

2) The complicated parameter representation for indi-
viduals. In network propagation models, a realistic indi-
vidual is characterized by a set of parameters of visual
nodes. The early propagation model assumed that the
nodes share the same parameters. These settings are ap-
plicable to the scene of lacking network structures (such
as the lack of population contact information in epidemic
simulation). However, they cannot provide an accurate
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propagation analysis due to the mass loss of individual in-
formation. Recent studies have widely considered the in-
dividual difference. They tended to randomly assign the
parameter variables with values generated by a random
initialization function. However, it is still a big challenge
to transform the individuals’ multiple heterogeneous in-
formation into available parameters. Not only the para-
meter generation process needs to be carefully designed,
but also the indexes to pick up valuable parameters
should be well-designed and well-validated.

3) The incorporation of data-driven models and evolu-
tion models. The introduction of real-world datasets leads
to that the propagation dynamic naturally becomes a dy-
namic evolution process. However, as the data-driven
models have been complex enough, the combination of
the data-driven model and the evolution model should be
carefully designed to reduce the complexity and increase
the availability. Simultaneously, some important perform-
ance indicators such as computing efficiency, model ro-
bustness, uncertainty, etc., should be considered.

7.2 Coevolution models of multiple conta-
gions

Existing propagation models are mostly based on
idealized and oversimplified environment settings. A typ-
ical example is the setting of single contagion. However,
the real-word spread environment contains more than one
contagion, which may infect the population simultan-
eously. Some studies have turned their eyes to the
propagation of homogeneous and interacting contagions,
such as 1) the multiple interacting epidemics!!2 and the
successively interacting social contagion model(130: 1311 or
2) two heterogeneous but relevant contagions, such as the
epidemics spread and the epidemic-prevention awareness
spread!32, 133, Though there are some attentions and
studies, there are still several open issues:

1) The measurement of relationships among multiple
contagions. Intuitively, the relationships among three or
more contagions can be simulated by multiple pairs of
contagions. Nevertheless, for real-world social events,
there are usually a series of messages with different
angles. These messages may be independent of each oth-
er or conflicting with each other, and some of them co-
operatively contribute to the formulation of public opin-
ions. How to reasonably formulate or measure the co-rela-
tionships among many contagions is a challenging but
significant problem.

2) More intricate coevolution propagation mechan-
isms. Multiple cooperative or competitive contagions will
trigger interesting propagation phenomena, e.g., the col-
lective agreement motivated by a series of cooperative
messages, or the group differentiation motivated by the
conflicting standpoints, or more complex combinations.
Developing quantitative analyses of the cooperation
mode, evolutionary process, and propagation results are
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of great sociological significance.

Besides, some other aspects deserve attention, such as
the coevolution among epidemic resource spreading dy-
namics, and the coevolution dynamics on different net-
work topologies. For more references, see [134].

7.3 Large-scale and distributed propaga-
tion optimization

Evolutionary computation used as a bio-inspired
stochastic method has been widely applied to solve
propagation problems in complex social networks.
However, most existing EC algorithms are applied to the
networks with limited scale, such as the co-authorship
network of scientists working on network theory (NETS-
CIENCE) with 1589 nodes{”, the message network
between the users of an online community of students
from University of California, Irvine (UCSOCIAL) with
1899 nodesl’], the email communications between uni-
versity scholars (EMAIL) with 1133 nodes[!0 etc. For
some online social networks with many nodes, it is in
high demand to design efficient algorithms to deal with
the propagation optimization problems happening in
those networks. The difficulties are on three aspects:

1) The balance of quality and efficiency. Most EC al-
gorithms are population-based iterative algorithms, such
as GA, DE, and PSO. The larger the population scale,
the quicker the convergence speed, but at the same time,
the higher the demands to the computing space and pro-
cessing ability, and so is the number of iteration times.
Balancing the solution quality and computing efficiency is
a focused problem in large-scale EC design[38].

2) The multi-population communication mechanism
distributed in multiple computing units. The traditional
distributed optimization with geographically dispersed
computers tends to process the mirror problems paral-
lelly. This way is applied to the separable problems with
many independent search subspaces, which does not facil-
itate the large-scale optimization problems with many
highly coupled decision variables. Namely, the dividing-
and-conquering ways of the global problem and the com-
munication mechanisms among different subproblems on
different computing units should be considered. Fortu-
nately, complex networks are featured by significant com-
munity structures, and currently, the community detec-
tion techniques have been well-developed. By dividing the
network into multiple independent or overlapping com-
munities can help achieve problem decomposition/33.
However, after decomposition, cooperatively conquering
methods among different computing units need further
exploration.

3) The systematic design for large-scale and distrib-
uted optimization. Solving large-scale optimization prob-
lems not only relies on the algorithm-level distributed
design but also requires system-level construction consid-
ering both software and hardware modules. Faced with

dazzling computing frameworks such as Hadoop, Storm,
Flink, Spark, etc., designing an efficient and environment-
fitted solution scheme is necessary. Besides, GPU-Accel-
erated methods have shown their potential in solving IM
problems in large-scale social networks[!35l. Some advan-
ces attempted to accelerate the evolutionary algorithms
by GPUsl!36, 137 which is worth further attention.

7.4 Real-time dynamic propagation optim-
ization

Compared to the networks with static nodes and fixed
structures, the real-world networks usually have change-
able nodes and dynamically changed links, such as the
diffusion networks constructed from real-time Twitter
streams and the wireless communication networks. In
such a situation, traditional optimization algorithms for
static network optimization may lose their efficacy or
need to be improved to fit the dynamic and extensible
optimization environment. Yonas and Yen['3] proposed
the dynamic evolutionary algorithms (DEA) for solving
the dynamic optimization problems (DOP). However,
there are still some challenges in applying DEA in solv-
ing network-based propagation optimization problems.

1) How to design the fitness functions. So far, though
the dynamic propagation models have been widely de-
veloped, the boundary conditions of dynamic propaga-
tion optimization have not yet been systematically ana-
lyzed and demonstrated. The DOP study of propagation
dynamics is still in a very early stage.

2) How to reuse the historical information of both the
algorithm settings and the network structure. Existing
studies have pointed out that the reuse of previous in-
formation was crucial in accelerating the convergence
speed of the searching process. The previous propagation
processes, network structure, and corresponding solutions
may contribute to the optimization problems in a later
similar environment. It is valuable work to store the his-
torical environment & solutions and build a quick index
of archives. Similarly, the parameter settings or popula-
tion structure of EC algorithms may help increase the al-
gorithm's solution quality and convergence speed in simil-
ar problems.

3) The processing of uncertainty. As a dynamic net-
work environment highly increases the model complexity,
the difficulty of simulation-based propagation optimiza-
tion is greatly increased. The uncertainty in the nonlin-
ear propagation processes will be amplified, decreasing
the accuracy and effectiveness of solutions. Tracking the
movement of the optima is another super uncertain factor
and increases the difficulty of algorithm design.

Besides, EC algorithms have their limitations to solve,
such as the trade-off between efficiency and effectiveness,
and the balance between exploration and exploitation
abilities. It may refer to the settings of many parameters,
such as the population size, the population structure, the
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decomposition of dimensions, etc. For example, large pop-
ulation size is time-consuming or resource-consuming, but
it can produce higher solution quality in the same itera-
tion period. Increasing the exploration ability is usually
accompanied decreasing the exploitation ability. Design-
ing appropriate or adaptive parameters is still a long-
term concern in problem-oriented EC design.

8 Conclusions

Social propagation phenomena are prevalent in mod-
ern society. This paper builds taxonomy for dividing the
propagation problems into three branches: simulation, op-
timization, detection & analysis. Evolutionary computa-
tion as a kind of bio-inspired optimization method has
been used to solve propagation problems. This paper fo-
cuses on the application of EC in diverse social propaga-
tion problems.

Based on a holistic review on the EC in propagation
problems, this paper points out four challenging and
promising research directions, i.e., data-driven evolution-
ary models, coevolution models of multiple contagions,
large-scale and distributed algorithm design, and real-
time propagation optimization. This work may be helpful
to the development of evolving propagation dynamics.
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