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Abstract: Learning discriminative representations with deep neural networks often relies on massive labeled data, which is expensive
and difficult to obtain in many real scenarios. As an alternative, self-supervised learning that leverages input itself as supervision is
strongly preferred for its soaring performance on visual representation learning. This paper introduces a contrastive self-supervised
framework for learning generalizable representations on the synthetic data that can be obtained easily with complete controllability.
Specifically, we propose to optimize a contrastive learning task and a physical property prediction task simultaneously. Given the syn-
thetic scene, the first task aims to maximize agreement between a pair of synthetic images generated by our proposed view sampling
module, while the second task aims to predict three physical property maps, i.e., depth, instance contour maps, and surface normal
maps. In addition, a feature-level domain adaptation technique with adversarial training is applied to reduce the domain difference
between the realistic and the synthetic data. Experiments demonstrate that our proposed method achieves state-of-the-art performance
on several visual recognition datasets.
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1 Introduction

Convolutional neural networks (ConvNets) have made
tremendous progress in the computer vision fieldl-3l.
However, such achievements are mainly backed up by su-
pervised learning of networks on a massive collection of
training data. More recently, various methodsl4 3l try to
learn visual representations from large-scale unlabeled
data without using any human annotation. A natural
solution is self-supervised learning (SSL), which defines
an annotation-free surrogate task and uses input itself as
the supervision signall®: 6. The intuition is that solving
tasks like inferring geometrical configurationl”] and recov-
ering missing parts of images[8! can force the ConvNets to
learn the semantic representations.

Unlike the existing self-supervised learning that learns
representation from realistic data, this paper aims to
learn general-purpose visual representations leveraging
the synthetic data and their various “free” annotations.
Compared with collecting and annotating photos from the
real-world, synthesized data can be easier and cheaper to
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obtain. For example, it is labor-consuming and impractic-
al to take photos of some objects like birds, while it is
feasible to generate a panoramic view of synthetic data.
The attributes (e.g., lighting, physics, position) of the
synthetic objects can be fully controlled and easily ob-
tained, which can greatly enhance model robustness.

In this work, we present a multi-task self-supervised
framework for learning general-purpose visual representa-
tions leveraging the semantic information from synthetic
data. Specifically, given the synthetic scene, our pro-
posed framework maximizes the agreement between dif-
ferent views of the same scene via a contrastive loss and
predicts the free physical cues, including depth, instance
contour maps, and surface normal, simultaneously. Be-
sides, to tackle the domain difference between synthetic
images and realistic images, we also employ a feature-
level domain adaptation technique with adversarial train-
ing. Experiments demonstrate that our proposed method
achieves state-of-the-art results in self-supervised learn-
ing, verifying the effectiveness of the proposed method.

The rest of this paper is organized as follows. Section
2 summarizes the related work on self-supervised learn-
ing methods. Section 3 introduces our proposed frame-
work for representation learning on synthetic data. In
Section 4, we present the experimental results on the
popular benchmark datasets. Finally, Section 5 concludes this

paper.
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2 Related work

This paper concerns unsupervised representation
learning, which learns a representation function mapping
the input data to feature vectors without the require-
ment for semantic labelsl®1l. As a branch of unsuper-
vised learning methods, self-supervised learning refers to
learning methods in which deep models are explicitly
trained using various cues and proxy tasks['?. According
to the objectives, the existing empirical methods can be
categorized into two main types, i.e., predictive
methods!® 8 13,14 and contrastive learning methods/15-18],

2.1 Predictive SSL methods

A considerable number of context-based methods have
been proposed in recent years, which rely on different
context signals, e.g., context similarity, geometric trans-
formation, in either spatial spacel® 19200 or temporal
spacel?l: 22, Fig.1(a) shows a general pipeline of predict-
ive self-supervised learning. For the context similarity
task, the key idea is applying the skip-gram modell23 to
the visual domain. Each arrangement is assigned with a
class label, and the network aims to solve a supervised
problem by predicting the correct arrangement of data
patches. For example, Doersch et al.5] use the relative po-
sition of two patches in a set of eight possible spatial con-
figurations, while Noroozi et al.[2 22 make an extension
using 3 x 3 patches in a Jigsaw puzzle configuration. Be-
sides, Lee et al. 2! use the temporal ordering of patches
by shuffling four consecutive video frames to 12 classes
for prediction. Zhan et al.24 propose to embed pixels so
that the similarity between the embeddings matches the
similarity between their optical flow vectors. In terms of
geometric transformation, Gidaris et al.[”) train ConvNets
to identify rotations applied to the input image. The ba-
sic premise is that predicting rotation teaches neural net-
works to recognize and localize salient object parts in the
image. Feng et al.[? further decouple predicting rota-
tions from discriminating individual instances.

Apart from using a single task, there are several meth-
ods considering multiple supervisory signals for represent-
ation learningl6: 26-28], For example, Wang et al.l208l unify
different types of in-variance by training two tasks in se-
quential order. Zhang et al.29 propose a network with
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two groups for a bidirectional cross-channel prediction
that can aggregate complementary image representations.
Doersch and Zisserman[® consider using multiple self-su-
pervised tasks to obtain a performance boost, while
Zhang et al.27l present the automatic code transforma-
tion for unsupervised representation learning. More re-
cently, as synthetic data shows great potential in various
vision tasksB%, Ren and Leel!'3] use such data to learn self-
supervised representations for general vision tasks.
However, they only utilize the physical property maps
while ignoring the potential semantic information for the
synthetic images.

2.2 Contrastive SSL methods

Contrastive methods have led to great empirical suc-
cess in visual tasks with self-supervised contrastive pre-
training!7 31, 32l Different from the predictive SSL meth-
ods requiring pre-defined tasks, contrastive SSL methods
learn representation by contrasting information between
positive and negative examples, as shown in Fig.1(b).
Deep InfoMax[l7 is the first work using a contrastive
learning task to explicitly model mutual information,
which aims to maximize the mutual information (MI)
between a local patch and its global context. Contrastive
predictive coding (CPC)16l is proposed to maximize the
association between a segment of audio and its context
audio for speech recognition.

Recently, Tschannen et al.33l prove that an upper
bound MI estimator leads to ill-conditioned representa-
tion, pointing that the success of such above methods is
more attributed to encoder architecture and metric learn-
ing. It is also empirically supported in recent methods
leveraging instance discrimination as a pretext taskl34 35,
Contrastive multiview coding (CMC)B6 adopts multiple
different views (e.g., luminance, chrominance, depth, and
optical flow) of an image as positive samples, while mo-
mentum contrast (MoCo)B4 further develop the idea via
momentum updating the negative encoder. Furthermore,
SimCLRP introduces several different forms of data aug-
mentation (e.g., crop and resize, rotate, Gaussian blur) as
different views for contrastive learning, which improves
considerably over previous methods for self-supervised
learning.

In this paper, we follow this research direction and

i S

JPNAUO) |
SSEI-IINIA

Similarity
- ]

(c) Our proposed model

Fig.1 Illustration of different learning models: (a) Predictive self-supervised model; (b) Contrastive self-supervised model; (¢) Our
proposed model. In (a), the pretext tasks need to be specified manually. In (b), a set of paired data from the realistic domain only
requires similarity annotation. The proposed model in (c) introduces cross-domain self-supervised learning by incorporating predictive

and contrastive learning tasks for synthetic data.
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analyze whether such contrastive self-supervised learning
can learn effective representation from the synthetic do-
main. As shown in Fig.1(c), we propose a self-supervised
learning framework to incorporate both contrastive and
predictive tasks for learning general-purpose visual repres-
entations.

3 Methodology

We propose a self-supervised deep framework to learn
generalizable visual representations from the synthetic
data. As illustrated in Fig.2, there are three main com-
ponents: 1) view sampling module that samples the in-
puts with correlated views from the same synthetic scene;
2) multi-task self-supervised learning module that in-
cludes physical property prediction and contrastive learn-
ing for the synthetic data; 3) feature-level domain adapt-
ation technique that minimizes the feature space gap
between the realistic and synthetic domain with ad-
versarial training.

Formally, given a synthetic dataset X° = {X;}N¢ of
N, scenes, we first generate paired input images
V(X:) = {(z};,23;)}j=1 for each scene. Here, V(-) and n
denote the view sampling module and the number of im-
ages sampled from one synthetic scene. Our goal is to
learn an encoder network F : x — f;, which aims to map
the input image x to the general-purpose visual represent-
ation F(z;0g). Note that 0 denotes the shared weights
of the encoder network, which can be further transferred
to the downstream tasks for realistic dataset
VT = {y}t, of N, images. The following subsections
provide a detailed description of the multi-task SSL mod-
ule, which consists of contrastive learning and physical

Input from synthetic domain

Encoder

property prediction tasks.

3.1 Contrastive learning for multi-view
data

3.1.1 Contrastive learning loss

Inspired by recent contrastive learning
methods[16: 35 36] the first proposed task learns visual rep-
resentation by maximizing agreement between examples
with two correlated views using a contrastive learning
loss in the latent space. Given N synthetic scenes X,
the paired input images (z!,z2) = V(Xs) are first gener-
ated by the proposed view sampling module (described in
the following subsection). We encode the input to feature
representation f; = E(z;), where f; € R% is the output
after the global pooling layer. Then, the features are fur-
ther mapped to h; = G(f;) € R%. After sampling 2N
synthetic images, we define the contrastive prediction
task on the pair-sampled examples from the same mini-
batch. Following [35, 37], for each positive sample, we
treat 2(N — 1) samples from other synthetic scenes in the
minibatch as negative samples rather than sampling neg-
ative examples explicitly, which may prevent the net-
work from stacking on the local minimum. Therefore, the
contrastive loss function% 36 on a positive pair of ex-

amples (hp, hq) is defined as

exp (sim (hp, hq) /T)

(1)

t(p,q) = —log -
Z 124 exp (sim (hp, hy) /7T)

k=1
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Fig.2 Our proposed framework for learning self-supervised representation on the synthetic data. Given the synthetic scene, our
network first generates paired inputs via the view sampling module. The encoder with shared weights is optimized with the multi-SSL
module, including physical property prediction and contrastive learning tasks. For the former task, the ConvNet computes the physical
property loss according to its corresponding physical cue, i.e., depth, instance contour map, and surface normal. For the latter task, the
ConvNet aims to maximize agreement between paired inputs with two correlated views via the contrastive loss. Meanwhile, we use the
discriminator to differentiate features from the realistic and synthetic images, aiming to minimize the feature space gap. The learned
green ConvNet can be further used for transfer learning on the downstream tasks for real images.
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denote the
similarity between two vectors extracted from the same

where sim(u,v) = u' v/||ul|||v] cosine
scene, and 1z, € {0,1} is an indicator function. Then,
the final contrastive loss is computed across all positive
pairs defined as

N
Leontra = % SOk — 1,2k) + £(2k, 2k — 1)) (2)
k=1

3.1.2 View sampling module

Previous methodsl6: 3% employ various transforma-
tions on the realistic data for data augmentation (e.g.,
crop, rotation, color distortion) to utilize supervision from
the raw data. Compared with realistic images captured
from one viewpoint, synthetic data have more degrees of
freedom and thus more flexible ways of transformation,
especially for the viewpoint.

In this work, we propose the view sampling module to
generate different views in the synthetic scene following
the same routine in the SceneNet RGBD dataset[38]. First,
given a scene type, the objects are selected according to
the distribution of object categories of such type in the
SUN-RGBD real-world dataset. Then an off-the-shelf
physics engine, Project Chrono!, is employed to simulate
the scene. Second, the simple random trajectory paths are
generated by simulating two physical bodies. The first
body decides the location of the camera (i.e., viewpoint)
in the scene, while the second body acts as a proxy for a
human paying attention to random points. Given the in-
put scene X;, the random trajectories can be generated
by simulating motions of these bodies with Euler integra-
tion and applying 3D directional force vectors randomly.
For each sampling image x%]- corresponding with a posi-
tion and the pose, we sample an additional image x?j by
applying limited rotational freedom V(-) on the pose
while fixing the position. Specifically, we sample the dif-
ferent views by changing yaw and pitch slightly and lock-
ing roll entirely. Finally, the opposite renderer3 is em-
ployed to produce photorealistic rendering using photon
mapping. Similarly, we assign textures randomly to each
of its constituent components and add random lighting on
the scene to improve the variability.

3.2 Physical property prediction

To leverage the free knowledge from the synthetic do-
main, the proposed framework also aims to predict three
corresponding physical cues of synthetic input images fol-
lowing Ren and Leel!3l. Predicting such physical maps re-
quires the ConvNet to understand high-level semantics
about the relative placements and contours of the objects
in a scene, such a task offers a promising supervisory sig-
nal for self-supervised learning. First, for the depth pre-
diction, we explicitly add a convolutional layer to predict

Thttps://projectchrono.org/

the depth maps Me € Ruxnx1. Assume the ground truth
depth maps are M? € Ryxnx1, so the depth prediction
loss can be computed by

1 1
Liepth = oo ZtiQ T om? Ztitj (3)
¥

7

where m=wxh and t=IlogM?— logMd is the
element-wise difference between log depth maps.

Second, for the instance contour prediction, the
ground truth maps are detected using a canny edge de-
tector for instance-level segmentation. Thus, this sub-task
is formulated as a binary semantic edge/non-edge predic-
tion task. We note the predicted instance contour map
and ground truth map as M¢, M° € Ruxnxi. Thus, the
class-balanced sigmoid cross entropy loss/40l is defined as

Leontour = —f8 Z log Pr (]\Zlf = 1) —

ieM¢
1-p) Z log Pr (Mf = O) (4)
ieMe

where MS and M{ denote the number of ground-
truth edges and the number of non-edges sets,
B=|ME|/|ME + M§|. Here, Pr(Ng=1)€[0,1] is
computed using the sigmoid function on the activation
value, which means the probabilities for a predicted pixel
belong to an edge.

Third, for the surface normal, we also use a convolu-
tional layer to predict the surface normal map
M"™ e Ruxnxs. Given the ground truth pf™, the surface
normal prediction loss is computed via dot product as fol-
lows:

Lno'rmal = _% ZMZH ) M'Ln (5)
i

Therefore, the final physical property task is formu-
lated with a weighted multi-task loss, defined as

Lphy = OCdeepth + achontour + anLnormal (6)

where the weights are used to scale these terms with
similar magnitude.

3.3 Domain adaptation with adversarial
loss

We assume that there exist two distributions derived
from the synthetic dataset X% = {X;}Ys, of N, scenes
and the realistic dataset YT = {yz}f\[;1 of N; images, re-
ferred to the source domain and target domain, respect-
ively. Obviously, xS is shifted from Y7 by some domain
shift. To address the problem of domain difference, we
employ the general adversarial unsupervised adaptation

@ Springer
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methods[41745] to reduce the gap between real and syn-
thetic data. For the training images from both the source
and the target domains, we first obtain the feature vec-
tors with a weight-shared encoder network. Then, we
train a domain discriminator, denoted with D, to per-
form an unsupervised domain adaptation from synthetic
to real data based on adversarial learning. We assign im-
ages from the source distribution and target distribution
with label 1 and label 0, respectively. Thus, the paramet-
ers of the discriminator 0p can be optimized by minimiz-
ing the following binary cross-entropy loss:

Lo (0p | fo: fy) == 3 log (D (fa)) =
Sllog(l-D(f,). (D)

3.4 Optimization

Overall, the discriminator network F maps both real
and synthetic data to the feature as visual representation,
while the domain discriminator D tries to differentiate
real and synthetic features. The whole framework is op-
timized by updating the encoder network F and discrim-
inator network D alternatively.

In specific, we first keep D unchanged and update F
as well as the mapping layers by minimizing the follow-
ing loss function:

Le (05 | fx) =— Zlog(l =D (fe)) +
)\Lph,y + (1 - )\)Lcontra (8)

where A is the trade-off between two SSL tasks.

For the next stage, we fix E and optimize D with (7).
By repeatedly doing so, £ and D can learn from each
other to minimize the domain difference between synthet-
ic and real-world images so that the features learned from
synthetic images can generalize to real images. Since all
the parameters can be derived, we are able to present an
effective representation learning using stochastic gradient
descent (SGD) for network optimization.

4 Experiments

In this section, we evaluate the proposed method on
several transfer learning benchmarks, including fine-tun-
ing for PASCAL visual obiect classes challenge (PAS-
CAL VOC) classification and detection, linear and non-
linear classification on ImageNet and Places, and surface
normal estimation on NYUv2 RGBD dataset (NYUD).
We first report the results on several standard transfer
learning benchmarks. Then, we perform ablation studies
to show the effect of the individual components of the
proposed method. Our experiments illustrate that the

@ Springer

pre-training model on the multi-task self-supervised tasks
yields features that outperform the previous self-super-
vised learning methods.

4.1 Implementation details

Architecture. Our framework is based on the
AlexNet architecturel6l for a fair comparison with the
previous methodsl® 20, The input images are first resized
to the size of 256 x 256 and then randomly cropped to
227 x 227. We also duplicate one of the RGB channels
three times, resulting in grayscale inputs for learning
more robust features followingl 13, 261, The hyperparamet-
er A\ representing a tradeoff between two SSL tasks is set
to 0.7 in the following experiments, which will be dis-
cussed in Section 4.3. In addition, for a4, a. and «, in
(6), we set such hyperparameters as 5, 1 and 10, respect-
ively, mainly for scaling the gradients to have similar
magnitude. Following [35], the temperature parameter 7
in (1) is set to 0.1, and the feature dimensions d; and d2
are set to 4096 and 2 048, respectively. The proposed
network is first initialized randomly and trained for 50
epochs with an initial learning rate of 0.01. We use a
weight decay of 0.000 5 and optimize the whole network
with SGD. For the supervised learning task, we initialize
the AlexNet model with the weights from the convolu-
tional layers learned by the self-supervised model.

Dataset. We use SceneNet RGB-DB8 dataset as the
synthetic images and generate the images from different
views with a view sampling module. The ground truth
depth maps and surface normal maps are provided for
each synthetic image by [4, 38], respectively. The in-
stance contour maps can be computed using a canny edge
detector following [13]. In addition, we use images from
Places365-Standard[4”] as the realistic data, which in-
cludes 1.8 million images comprising more than 400
unique scene categories for training. Dataset examples are
shown in Fig. 3.

Baselines. We enumerate several alternative pretext
tasks that use images and their self-supervisions for rep-
resentation learning.

1) Pathak et al.Bl (Inpainting) learn to recover miss-
ing pixels of images with a generative adversarial model.

2) Zhang et al.l4 (Colorization) learn representation
by mapping from a grayscale input to a distribution over
quantized color value outputs with multinomial cross-en-
tropy loss.

3) Doersch et al.’l (Position) train the eight-class clas-
sification ConvNet to predict the location of two patches
sampled from the input images, which feeds two input
patches and fuses the output to assign a probability to
each of the eight spatial configurations.

4) Noroozi and Favarol (Jigsaw puzzles) train the
ConvNet to solve the 3 x 3 Jigsaw puzzles with a pre-
defined permutation set, which is further boosted by in-
corporating occlusions in the tiles in Jigsaw-+-+[48].
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(b) Places365

Fig.3 Example images from (a) synthetic domain and (b) realistic domain. Both datasets contain images covering a variety of indoor

scenarios, while Places365 also includes outdoor scenes.

5) Zhang et al.29 (Split-brain) train the split-brain
autoencoder network with one half performing coloriza-
tion and the other half performing grayscale prediction
with a cross-entropy objective.

6) Gidaris et al.[7]. (RotNet) train the ConvNet to re-
cognize the four possible geometric transformations that
are applied to the image, i.e., the 0, 90, 180 and 270 de-
grees rotations.

Note that all these compared SLL methods are trained
using realistic datasets from scratch, while cross-
domainl3l and ours are pre-trained using the synthetic
dataset and evaluated on the datasets from the realistic
domain, i.e., ImageNet, PASCAL VOC and Places data-
sets.

4.2 Transfer learning evaluation

4.2.1 Classification on ImageNet and Places

We evaluate the generalization of our self-supervised
learned features by training with both linear and nonlin-
ear object classifiers for the ImageNet classification task.
First, we train linear classifiers on top of the features ex-
tracted by different convolutional layers, where the lay-
ers transferred from self-supervised trained models are
fixed during training. Such linear classification can dir-
ectly evaluate the discriminative power of the learned
representation over the object class. We illustrate the

performance on ImageNet and Places in Tables 1 and
2, respectively. As observed, our proposed framework is
comparable to self-supervised methods, which shows im-
provement over models initialized randomly and using
data-dependent initialization[4) The reason why our
method underperforms the RotNet method is that most
SSL methods are trained directly using images from the
ImageNet dataset. In contrast, our method is trained us-
ing synthetic indoor images without seeing any object
from the ImageNet. Note that [13] is the only cross-do-
main baseline, while our method outperforms this meth-
od by a large margin, about 4.5% on conv4. The results
illustrate the effectiveness of the proposed contrastive
learning framework for the synthetic data. For the Places
dataset with more similar high-level semantics, our pro-
posed method outperforms most self-supervised methods,
showing that the learned representation is helpful for ob-
ject recognition in the realistic domain.

Second, we perform nonlinear classification on Im-
ageNet by freezing several layers and training the remain-
ing layers from scratch. This experiment can illustrate
the alignment between the discrimination ability and the
ground truth class. As lower layers mainly capture low-
level information (e.g., contours and edges), these fea-
tures are with relatively low accuracies and generally less
often used. We report the results of different self-super-
vised approaches freezing layers from the first layer to
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Table 1 ImageNet top-1 classification with a linear classifier. We compare our self-supervised feature learning approach with other
approaches by training logistic regression classifiers on top of the feature maps of each layer to perform object recognition tasks. The
ImageNet-labels AlexNet and Gaussian-init AlexNet are initialized with parameters pre-trained on the ImageNet dataset and initialized
randomly, respectively. Note that all compared methods use AlexNet as the backbone, and * represents training self-supervised model
without using ImageNet images.

Method Convl Conv2 Conv3 Conv4 Convb
ImageNet-labels AlexNet[46] 19.3 36.3 44.2 48.3 50.5
Gaussian-init AlexNet!40] 11.6 17.1 16.9 16.3 14.1
Krihenbiihl et al.[49] 17.5 23.0 24.5 23.2 20.6
Pathak et al. (Inpainting)!® 14.1 20.7 21.0 19.8 15.5
Zhang et al. (Colorization)[!4] 12.5 24.5 30.4 31.5 30.3
Doersch et al. (Position) /5] 16.2 23.3 30.2 31.7 29.6
Noroozi and Favaro (Jigsaw puzzles)[20] 18.2 28.8 34.0 33.9 27.1
Noroozi et al. (Jigsaw++)18] 18.2 28.7 34.1 33.2 28.0
Noroozi et al. (Counting)[50] 18.0 30.6 34.3 32.5 25.7
Zhang et al. (Split-brain)[29] 17.7 29.3 35.4 35.2 32.8
Gidaris et al. (RotNet)[7] 18.8 31.7 38.7 38.2 36.5
Ren and Lee (Cross-domain)*[13] 16.5 27.0 30.5 30.1 26.5
Ours” 17.2 30.2 34.2 35.6 31.5

Table 2 Places classification with a linear classifier. We compare our self-supervised feature learning approach with other approaches
by training logistic regression classifiers on top of the feature maps of each layer to perform object recognition tasks. The ImageNet-
labels AlexNet and Gaussian-init AlexNet are initialized with parameters pre-trained on the ImageNet dataset and initialized randomly,
respectively. Note that all compared methods use AlexNet as the backbone.

Method Convl Conv2 Conv3 Conv4 Convb
Places-labels AlexNet/[5!] 22.1 35.1 40.2 43.3 44.6
Gaussian-init AlexNet[46] 15.7 20.3 19.8 19.1 17.5

ImageNet-labels AlexNet[46] 22.7 34.8 38.4 39.4 38.7
Zhang et al. (Colorization)[14] 16.0 25.7 29.6 30.3 29.7
Doersch et al. (Position)[5] 19.7 26.7 31.9 32.7 30.9
Noroozi and Favaro (Jigsaw puzzles)[20] 23.0 31.9 35.0 34.2 29.3
Noroozi et al. (Jigsaw--4 )8 22.0 31.2 34.3 33.9 22.9
Noroozi et al. (Counting)®0l 23.3 33.9 36.3 34.7 29.6
Zhang et al. (Split-brain)[29] 21.3 30.7 34.0 34.1 32.5
Gidaris et al. (RotNet)[7] 18.8 31.7 38.7 38.2 36.5

Ours 21.6 32.7 37.5 36.1 34.5

conv4d or convb. As shown in Table 3, our method
achieves comparable results on conv4 and convb layers
with the baseline methods, illustrating that the proposed
self-supervised task is able to learn a discriminative rep-
resentation.
4.2.2 Classification, object detection and semantic
segmentation on PASCAL VOC

We evaluate the transferability of the learned repres-
entation on the PASCAL VOC datasetP2. Similar to Sec-
tion 4.2.1, we initialize the model with our self-super-
vised learning model and then fine-tune the model for
PASCAL VOC classification, detection, and segmenta-
tion tasks. Classification and detection tasks are meas-

@ Springer

ured by mean average precision (mAP), and segmenta-
tion task is measured by mean intersection over union
(mIoU). The results are reported in Table 4. We fine-tune
the model on PASCAL VOC 2007 and perform multi-la-
bel classification on the test set for the classification task.
Our method can improve upon [13], while underperform-
ing the state-of-the-art SSL method mainly due to that
our self-training does not utilize images from PASCAL
VOC. For the detection task, we fine-tune Fast-RCNNI53]
initialized with our self trained network using multi-scale
training and single-scale testing. We further improve the
mAP by 1.3% compared with [13]. In addition, we also
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Table 3 ImageNet top-1 classification results with non-linear classifiers using different self-supervised feature learning methods. The
ImageNet AlexNet and Random-init AlexNet are pre-trained on the ImageNet dataset and initialized randomly, respectively, while the
other networks are pre-trained with different self-supervisions. Note that * represents that training
self-supervised model without using ImageNet images.

Method Conv4 Convb
ImageNet-labels AlexNet[46] 59.7 59.7
Gaussian-init AlexNet!46] 27.1 12.0
Zhang et al. (Colorization)[14] 40.7 35.2
Doersch et al. (Position) /5] 45.6 30.4
Noroozi and Favaro (Jigsaw Puzzles)[20] 45.3 34.6
Noroozi et al. (Jigsaw++)149] 46.1 35.4
Noroozi et al. (Counting)®0] 43.3 32.9
Gidaris et al. (RotNet)[7] 50.0 43.8
Ours” 46.5 33.9

Table 4 Classification, detection, and segmentation results on the PASCAL VOC dataset. The unsupervised methods are pre-trained
on the ImageNet without using the semantic labels. We report the mean average precision on the classification and detection tasks and
the mean intersection over union on the segmentation task. Note that we fine-tune the whole model for all three tasks and use multi-sca-
le training and single-scale testing for detection. Here, t represents training self-supervised model without using PASCAL VOC images.

Method Classification Detection Segmentation

ImageNet-labels AlexNet[46] 79.9 56.8 48.0
Gaussian-init AlexNet[46] 53.3 43.4 19.8
Krihenbiihl et al.[48] 56.5 45.6 32.6
Pathak et al. (Inpainting) 8 56.4 44.5 29.7
Zhang et al. (Colorization)[14] 65.6 46.9 35.6

Doersch et al. (Position)[] 65.3 51.1 -
Noroozi and Favaro (Jigsaw Puzzles)[20] 67.6 53.2 37.6
Noroozi et al. (Counting)®0l 67.7 51.4 36.6
Zhang et al. (Split-Brain)[29 67.1 46.7 36.0
Gidaris et al. (RotNet)[7] 72.9 54.4 39.1

Ren and Lee (Cross-domain)f [13] 68.0 52.6 -
69.2 53.9 39.0

Ourst

fine-tune our model with fully convolutional network
(FCN)[54 architecture for the segmentation task. It is im-
portant to note that our method achieves state-of-the-art
on segmentation, which illustrates that our learned self-
supervised representation can be generalized across tasks
with different abstract semantic.
4.2.3 Surface normal estimation on NYUD

To study how well our self-supervised framework
learns representation for the synthetic scene, we further
evaluate the surface normal estimation performance on
the NYUv2 RGBD datasetl5®l. Following the protocol in
[13], we report the transfer learning results by first pre-
training on the proposed multi-SSL tasks and then fine-
tuning for surface normal estimation. We use the stand-
ard split of 795 images for training and 654 images for
testing.

We compare with several baselines and self-super-

vised models[!3: 26l Wang et al.26 apply the FCN archi-
tecture followed with a codebook of 40 codewords to en-
code the 3-dimension normals, which is pre-trained on
pairs of images exhibiting richer visual invariance. Fol-
lowing [13], our model is pre-trained on 0.5 million SUN-
CG synthetic images using the FCN architecture with
skip connections. The model trained from scratch and Im-
ageNet pre-trained model also use similar FCN[26], which
are initialized with Xavier initialization and parameters
pre-trained on ImageNet, respectively. All the compared
models are then fine-tuned on the NYU dataset using the
ground-truth surface normal provided in [56]. The results
are shown in Table 5. It can be seen that our proposed
self-supervised model achieves the best performance illus-
trating the effectiveness of learned representation for the
synthetic task. Surprisingly, compared with the ImageN-
et pre-trained model, our model improves the percentage
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of pixels with an error less than 30° from 63.4 to 75.3 sig-
nificantly.

4.3 Ablation study

We conduct an ablation study on PASCAL VOC clas-
sification to see the influence of each component (i.e.,
view sampling module, multi-task SSL, domain adapta-
tion) in the proposed framework.

Multiple SSL tasks. We first evaluate the perform-
ance of only using one single SSL task for representation
learning. As reported in the first two rows of Table 6, the
representation learned with the physical property predic-
tion task is sub-optimal compared with the contrastive
learning task. We also report the results of combining
both tasks with different A in the middle five rows. When
A increases from 0 to 0.7, the classification performance is
boosted dramatically since these SSL tasks are comple-
mentary for representation learning. As further increas-
ing A leads to decreased accuracy, we set A = 0.7 in all
our experiments.

View sampling module. We also evaluate the ef-
fect of the proposed sampling module for the synthetic

data. We employ a simple random sampling strategy as a
baseline, which samples two frames in a random camera
trajectoryl38l. The eighth row in Table 6 shows the result
of replacing our proposed view sampling module, where
the accuracy has significantly declined by about 4.4%.
The reason is that our proposed view sampling module is
more effective in generating inputs with convenient distri-
bution for contrastive learning.

Feature adaptation. Finally, we evaluate the trans-
fer learning performance with and without domain adapt-
ation in the last two rows of Table 6. As it can be ob-
served, the performance of the model without feature ad-
aptation drops by about 1.9% in accuracy, mainly due to
the data biases between the synthetic and real-world im-
age datasets. By applying the adversarial training, our
framework can learn more generalized representation for
the realistic tasks.

5 Conclusions

In this work, we address the problem of self-super-
vised visual representation learning. In specific, we
present a multi-task self-supervised framework for con-

Table 5 NYUv2 RGBD surface normal estimation using different self-supervised feature learning methods. We report the mean RMSE
error (Mean) and median RMSE error (Median) for all visible pixels (in degrees), RMSE means root mean squared error. These two
measurements are the error measurements, and lower is better. We also report the percentage of pixels with errors less than 11.25°, 22.5°
and 30°. For these three measurements, higher is better.

Method Mean Median 11.25° 22.5° 30°
Scratch 31.3 25.3 24.2 45.6 56.8
ImageNet 27.8 21.2 29.0 52.3 63.4
Wang et al.[26] 26.0 18.0 33.9 57.6 67.5
Ren and Leel!3] 23.8 16.2 36.6 62.0 72.9
Ours 22.9 15.5 37.7 63.1 75.3

Table 6 Ablation study results on PASCAL VOC. We evaluate the framework with different choices on individual components. Here,
Lyphy and Leontrq represent using different SSL tasks for network optimization; R.S. and V.S. denote sampling paired inputs from the
synthetic scene using the random sampling strategy and the proposed view sampling module. And DA represents employing feature

adaptation.

A Lphy Leontra R.S. VS DA Accuracy (%)

! v - 65.2

0 v 4 66.4

0 4 v v v 67.3
0.3 v v v v 68.5
0.5 v v v v 68.8
0.7 v v v v 69.2

! v v v Vv 66.3
0.7 v v v v 64.8
0.7 v v v 67.3
0.7 v v v v 69.2
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trastive learning of visual representations leveraging the
semantic information from synthetic data. The key idea is
that by solving such tasks, the models are forced to learn
not only how objects are assembled in appearance but
also what information is shared among different domains.
We also employ a feature-level domain adaptation tech-
nique with adversarial training, resulting in general-pur-
pose visual representations that can be transferred to
real-world tasks. The experiments demonstrate that our
proposed method achieves state-of-the-art results in self-
supervised learning.
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