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Abstract: Reproducing the spatial cognition of animals using computational models that make agents navigate autonomously has at-
tracted much attention. Many biologically inspired models for spatial cognition focus mainly on the simulation of the hippocampus and
only consider the effect of external environmental information (i.e., exogenous information) on the hippocampal coding. However, neuro-
physiological studies have shown that the striatum, which is closely related to the hippocampus, also plays an important role in spatial
cognition and that information inside animals (i.e., endogenous information) also affects the encoding of the hippocampus. Inspired by
the progress made in neurophysiological studies, we propose a new spatial cognitive model that consists of analogies between the hippo-
campus and striatum. This model takes into consideration how both exogenous and endogenous information affects coding by the envir-
onment. We carried out a series of navigation experiments that simulated a water maze and compared our model with other models. Our
model is self-adaptable and robust and has better performance in navigation path length. We also discuss the possible reasons for the res-
ults and how our findings may help us understand real mechanisms in the spatial cognition of animals.
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1 Introduction

Cognitive science and neurophysiology can help us to
understand the origins of cognition and intelligence. In-
spired by the progress made in earlier studies, reprodu-
cing cognitive models of agents to make them behave like
intelligent animals has become a promising approach in
the research area of artificial intelligencel’ 5],

Research shows that the hippocampus in mammals is
the core area of spatial cognition. The hippocampus and
its adjacent regions contain a variety of neurons such as
place cellslf, grid cells[] and head-direction cellsl. Place
cells will fire when a rat arrives at a specific place, and
the range corresponding to the firing activities is called
the place field (PF). Hippocampal place cells establish
the mapping between the brain area of the animal and
the physical world, and this is considered the neuro-
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physiological basis for the cognitive mapl19.

Simulating the mechanisms of how animals like rats
form their spatial cognition on agents has attracted much
attention. Many studies have focused on the computa-
tional models of hippocampal place cells, which can be di-
vided into three types by the way they deal with the exo-
genous and endogenous information. For mammals, exo-
genous information is the visual, olfactory and auditory
information they see, smell and hear when they move
freely in the environment. Endogenous information is the
self-motor information of their proprioception and vesti-
bular sensationsl!!"13]. Some researchers think place cells
depend only on exogenous information, and that the most
representative model is the boundary vector cell model
(BVC)[4-16], The environment is described by several
boundary vector cells, and the model describes the firing
activity of place cells as a continuous function of the rel-
ative position of extended barriers (e.g., walls, large ob-
jects and impassable drop) in the animal’s surroundings.
However, other researchers think place cells completely
depend on endogenous information. In these cases, most
of the models use artificial neural networks to associate
endogenous information with the activities of place cells.
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Rolls et al.l'7l established a competitive learning network
to simulate the information-processing process of place
cells according to lateral inhibition in the hippocampus.
Yu et al.l8l used a back propagation (BP) neural net-
work, and Zhou and Wull¥ used a radial basis function
(RBF) neural network to simulate place cells. In the net-
work, the firing rate of grid cells worked as the input,
while the firing rate of all place cells was the expected
output. The network selected the maximum firing rate of
place cell as the current estimation of location.

Although hippocampal place cells are very important
for spatial cognition, their activities are not enough to
help an animal to find its target. Animals need to com-
bine the activities of other brain regions, e.g., those of the
striatum, to complete the task of spatial navigation. The
striatum, a brain region closely connected to the hippo-
campus, is mainly responsible for rewarding learning and
action selection, which is also believed to be involved
with spatial cognition. The striatum receives the loca-
tion information from the hippocampus and reward in-
formation from dopamine cells in the ventral tegmental
area. It subsequently integrates various neuronal signals
to participate in action regulation(2!-23], The computation-
al models based on the striatum mainly relate it to rein-
forcement learning or action selection(?* 251, but few stud-
ies discuss how it works together with the hippocampus
in spatial cognition.

Much evidence shows that mammals use a variety of
information to encode the environment26l. For example,
blind mice can find their way home, and the place cells
still fire even without the activities of grid cells in the
early development of rats. A few scholars have been in-
spired to integrate various kinds of information in the
computation model. Doboli et al.2”] proposed a model of
hippocampal place cells, in which endogenous and exogen-
ous information are fused in a linear weighted way. Ag-
garwall28l proposed a cognitive model integrating both
motor input (via grid cells and vestibular inputs) and
sensory input (e.g., vision, auditory and olfactory) based
on continuous attractor networks, and explained the fir-
ing pattern of place cells. Madl et al.29 hypothesized the
mechanism of the integration of multiple information in
hippocampal place cells from the perspective of mathem-
atics. Their work mainly focused on the hippocampus and
did not take other brain areas like the striatum into con-
sideration. In addition, most of the research only dis-
cussed the cognitive mechanism or neurophysiological
background of such phenomena, but few applied the mod-
els to agent navigation. Arleo and Gerstner3% took into
account both exogenous and endogenous information and
combined reward learning to solve robot navigation.
However, the exogenous information and the endogenous
information did not work simultaneously, which means
the robot used only one kind of information at one time.
Finally, in the paper mentioned above, the exogenous in-
formation only involved visual information, which is not

common for humans and animals. In fact, they always
use multiple kinds of sensory information like vision and
smell together when exploring the environment. Rodent
experiments showed that rats encode environments with a
combination of exogenous and endogenous information
and take advantage of both cues to solve tasks3l: 32, The
results also showed that if the rats used exogenous in-
formation alone, they reached the learning standard one
day later than those that used both types. Therefore, it
is reasonable to combine endogenous and exogenous in-
formation in a model.

In order to overcome the imperfections mentioned
above, we propose a model that integrates the effects of
endogenous and exogenous information to give a more
biologically plausible and more efficient simulation of spa-
tial recognition. This model mainly consists of the hippo-
campus and the striatum. The main contributions of the
paper can be summarized as follows. First, the effects of
both endogenous and exogenous information on the activ-
ities of place cells are considered in the model. Second,
the model consists of not only the hippocampus but also
the striatum, which helps analyze how different brain re-
gions work together in spatial cognition. Lastly, although
the striatum module is fully connected with the hippo-
campus module in our model, only the information rep-
resenting the active space cells can be transmitted to the
striatum module. This is different from previous
modelsB3; 34 and more in accord with the physiological
findings[3l.

The rest of this paper is arranged as follows. In
Section 2, we introduce the model framework, its math-
ematical details and how the model works. In Section 3,
we simulate the water maze environmentB36l to test the
spatial cognition ability of the model and compare our
model with other models in terms of navigation perform-
ance. In Section 4, the discussion, we analyze the experi-
mental results and the possible reasons for our findings.
Finally, we conclude our work in Section 5.

2 Model

2.1 Model architecture

We propose a bionic model that simulates the func-
tion of the hippocampus and striatum inspired by re-
search on brain regions associated with spatial cognition
in animals. The architecture is shown in Fig.1. As shown
in Fig.1, the agent interacts with the environment con-
stantly, perceives the environmental information and out-
puts actions to the environment. The model consists of
the information perception module (IPM), the ventral
tegmental area (VTA), hippocampus (HPC) and stri-
atum (STR). IPM is responsible for perceiving all the in-
formation from the inner body or the outer environment,
which refers to endogenous and exogenous information,
respectively. For convenience, we limit the exogenous in-
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Fig. 1 Architecture of the model

formation in our model to visual and olfactory informa-
tion. IPM transmits the information to the next module,
namely, the HPC module. We chose place cells as the key
elements to build the HPC module since place cells in the
hippocampus are the neurophysiological basis of the cog-
nitive map and play a major part in spatial cognition.
Meanwhile, VT A, which contains many dopamine cells, is
added to form the reward circuit with the striatum. Both
HPC and VTA are connected to the STR module, which
simulates the striatum and is responsible for reward
learning and action selection. The neurons in STR are di-
vided into two groups depending on their function: one
group is responsible for action selection and consists of
multiple neurons, each of which represents an action,
while the other group is responsible for reward learning
and includes only one neuron for simplicity.

When the agent explores the environment, it per-
ceives exogenous information (i.e., visual, olfactory in-
formation) and endogenous information (i.e., vestibular
sensation, proprioception). Both types of information are
used to form multidimensional perception. The informa-
tion is transmitted to the place cells in the HPC module.
The firing activity of the HPC corresponds to the real
location and forms the cognitive map. The information is
subsequently transmitted to the STR module. STR re-
ceives location information from HPC and reward inform-
ation from VTA at the same time. It thus evaluates the
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state of the agent and selects the best action.
2.2 Information perception module

The perceptual information in the model includes exo-
genous and endogenous information. As mentioned earli-
er, exogenous information refers to visual and olfactory
stimuli. Suppose the agent explores within a square whose
side length is L, the visual information perceived by the
agent at the location (z,y) and time t. vf(z,y), (k=
1,2,3,4) represents the distance from the agent to the
four sides (Fig.2).

vi(x, )

v (X, ») vi(x, »)
vi(x, )
L —_—

Fig. 2 Representation of visual information

However, the agent in our model is an analog of the
rats and, accordingly, is supposed to have a visual angle
of less than 180°. It cannot measure all distances to the
sides. In such a situation, we use the visual information
perceived last time to represent it as shown in (1):

vl (z,y) = vl (z,y), (j=1,2,34) (1)

where t, is the last time when it can perceive the
distance.

Meanwhile, the noise is taken into consideration. Sup-
pose the amplitude of the noise is noise_v, the visual in-
formation with noise oF (z,y) is calculated according
to (2):

(WE(z,y) + (L — vF(z, ) x noise_v). 2)

of (z,y) = 7

The value of noise_v is set within (0, 0.05) based on
the work of Kulvicius et al.(7)

Olfactory information is supposed to scatter accord-
ing to a Gaussian distribution as shown in (3). Suppose
there are N, kinds of odor sources in the environment.
The intensity of a certain odor at the location (z,y), de-
noted of (z,v), is calculated in (3):

ky\12 _ Sk 2
oi“(:v,y) = exp <— <[(m ;Osgz)] + [ty 2Ugy)] )) 7

k=1,2,---,N, (3)
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where s¥, sij are the coordinates of the center of the k-th
odor, and o, is the standard deviation of the Gaussian
distribution, which indicates how fast the odor scatters.
The closer the agent is to the center of odors, the higher
the intensity. We also take noise into consideration. The
olfactory signals with noise, denoted as 5f(m,y), are
represented in (4):

ot (z,y) =

of (z,y) + (1 — of (z,y)) X noise_o (4)

k
Omax

where noise_o is the amplitude of noise, and 0%, is the
maximum intensity of the k-th odor. The range of
noise_o is also within (0, 0.05)537. Both the visual
information and the olfactory information at time t are
integrated into one vector to represent the whole
exogenous information shown in (5):

EXt(xvy) = (61&1(377 y)v ﬁ?(m’ y)vﬁt:g(xvy)aﬁ?(xv y)7 5?(58,2/))-
(5)

In addition to exogenous information, endogenous in-
formation is taken into consideration in our model. The
endogenous information is about how the agent perceives
its location through HPC, especially the space cells, as
described by Arleo and Gerstner in earlier studiesl30l.
Therefore, endogenous information is calculated by the
distance between the real location the agent occupies and
the perceived location that activates a certain place cell
as shown in (6) and (7):

EN,(z,y) = exp %ﬁj:(ﬂf (6)

EN;(z,y)=ENi(z,y)+(1 — EN¢(z,y)) x noise_ EN

(7)

where EN;(z,y) denotes the endogenous information
perceived at the location (z,y) and ENi(z,y) denotes
EN,(z,y) with noise, d(-) is the distance function, I(¢) is
the coordinates of the real location where the agent
stands at time ¢, lpc(¢) is the location that the activating
place cell corresponds to at time t, oy is the standard
deviation of EN,(z,y) and noise_ EN is the amplitude of
the noise. The range of oy and noise_ EN is (0, 1) and
(0, 0.05), respectivelyl27].

The endogenous information is a standard normal dis-
tribution of the distance function according to (6) and
(7). This indicates that it measures how accurately the
agent perceives its location within the place cells, i.e., the
more accurately the robot perceives its location, the big-
ger the value becomes.

2.3 Hippocampus module

The hippocampus module, HPC, receives the output

Place cells (1,--,N)

Output layer

Input layer

Exogenous Endogenous
information information

Fig. 3 Neural network architecture of HPC

from the information perception module and processes it.
As stated earlier, we regard the place cells as the key ele-
ments in HPC since they are the neurophysiological basis
of the cognitive map. Here, we use a two-layer feed-for-
ward neural network to simulate HPC as shown in Fig. 3.

The first layer is responsible for transmitting informa-
tion from the IPM. Many studies have shown that both
the exogenous and endogenous information play an im-
portant role in spatial cognition38-40, However, the exact
proportion of the two kinds of information in cognition
remains unclear. Here, two constants ge; and gen are in-
troduced to represent the proportions. g, represents the
proportion of the exogenous information, while g, rep-
resents the proportion of the endogenous information.
Therefore gex + gen = 1, gex, gen > 0.

The second layer consists of N place cells and is re-
sponsible for generating the cognitive map for the envir-
onment. Each place cell in the layer receives the exogen-
ous information and endogenous information from the
former layer and becomes activated. The activation rate
for each neuron is calculated according to (8).

T'i = exp < — (% X Gex X (EXt(x7y) - Wz,el‘(t))+
1 - * 1902
E X gen X (ENt(m,y) - Wi,en(t))> /2Upc> (8)

where r¢ is the activation rate of the i-th neuron at time
t, Wiez(t) is the connection weight between the i-th
neuron and the exogenous information input, and W; e (t)
is the connection weight between the i-th neuron and the
endogenous information input. m,n are the dimensions of
the vectors EXt(x,y) and EN; (z,y), respectively. In this
paper, m = 5, n = 1. 0, is the standard deviation of the
rate, 0 < 0, < 1.

The connection weights between the layers are modi-
fied in the manner of “Winner-Take-All”. Only those
place cells with the maximum firing rate are selected to
update the related weights as shown in (9):

win(t) = arg max 7. (9)
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The weights of the selected connections are modified
according to (10) and (11):

Wwin(t),ez(t + 1) = Wwin(t),ez(t)"'
X (EXt(x>y) - Wwin(t),ex(t)) (10)

Wwin(t),en (t + 1) = Wwin(t),en(t)+
n X (ENt(x7y) - Wwin(t),en(t)) (11)

where win(t) is the selected cell at time ¢, and p € (0,1)
is the learning rate.

The HPC module works like a competitive neural net-
work. In such a mechanism, we can find the place cells
that match the external and internal information best.
The firing activities of these place cells can form a cognit-
ive map, and the primary task in spatial cognition is com-
pleted.

2.4 Striatum module

In related studiesl! 42, the function of the striatum is
about reward learning and action selection. Therefore, in
this paper, the STR module consists of two groups of
neurons. One group is responsible for handling rewards,
while the other is responsible for action selection as
shown in Fig.4.

The reward-learning group includes only one neuron.
It receives the reward signals from VTA and quantifies it
according to (12), where R; is the reward value at time ¢.

—1, if there is a obstacle
Ry = 10, if there is food (12)
0, otherwise.

The action-selection group consists of eight cells, each
of which represents one action, such as going East (E),

Action output

R
__________ __ .,
|
|
I STR

|
Output layer Reward cell |

|
|
Input layer | = | HPC VTA :
! . |
| -f _____ | - }_ —
Perceived Perceived
information information

Fig.4 Neural network connecting the hippocampus and
striatum
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South (S), West (W), North (N), Northeast (NE), South-
east (SE), Northwest (NW) and Southwest (SW). All the
action-selection cells are fully connected with the place
cells in HPC to obtain the cognition information as
shown in Fig. 4.

In this paper, we use a Q-learning-like method as the
working mechanism of STR. The @Q table is introduced as
an important data structure, which is a set of Q(s¢,az).
The action selection mechanism is based on the @ table
and is described as follows.

If Q(s¢,ar) =0, then the agent will randomly select an
action with the probability of P, or keep the current dir-
ection with the probability of 1-P.

If Q(s¢,ar) # 0, then the agent will choose an action
by e—greedy strategy, i.e., it will choose the action with
the biggest @) value with the probability of 1 — &, or move
randomly with the probability of €, 0 < ¢ < 1.

For simplicity, we design a filter F;(r:) to select the
place cells that are the most active as shown in (13).

Fi(re) = { L it ri >0 (13)

0, otherwise

where 6 is the threshold, 0 < 0 < 1.
After an action has been selected, the related @ value
and the connection weight between the active place cells

and the action-selected neuron are updated according to
(14) and (15):

ZZ_ Wi, Fi(1¢)

Q(st,ar) = (14)
Zi Fi(re)
Wia, (t+1) = Wi e, (t) + a(Reg1+
vmng(ml, a) — Wi, (¢))Fi(re) (15)

where W; o, (¢) is the connection weight between the i-th
active place cell and the selected action a; at time t, and
~y is the discount factor, v € (0, 1).

Here, the @ values are stored in the network in a dis-
persed way in the form of the connection weights. Mean-
while, the updating that takes place every time corres-
ponds to a few active place cells. This indicates that mul-
tiple locations are involved in one updating, and helps re-
duce the state space and speed of the algorithm. In addi-
tion, the introduction of the filter decreases the number
of the place cells involved in the updating, which further
improves the efficiency.

2.5 Working algorithm and flow chart

Fig. 5 shows the flow chart for the working algorithm.

The working algorithm is stated as follows.

1) Parameter initialization: Initialize the main para-
meters and data structures.

2) Environment exploration: The agent moves freely
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Fig. 5 Flow chart of the working algorithm

in the environment to perceive both the exogenous and
endogenous information according to (1)—(7).

3) Cognitive map formation: Calculate the firing rate
of place cells in HPC and update the synaptic weight
between IPM and HPC according to (8)—(11).

4) Reward learning: Receive the signal from VTA and
calculate the reward value according to (12).

5) Action selection: Choose the most suitable action.

6) Updating: Modify the @ value and connection
weights according to (13)—(15).

7) Judge: If the agent arrives at the goal or it takes
too long, the algorithm ends. Otherwise, go back to Step
2) and continue exploration.

3 Experiment

The water maze experiment was designed and presen-
ted by Morris in 1981[36l. The experiment forces animals
to swim and to learn how to find a survival platform. It is
mainly used to test the learning and memory ability of
experimental animals in spatial cognition and is the first
choice for behavioral research, especially learning and
memory research. Therefore, we simulated the water
maze experiment to test the validity of our model in spa-
tial cognition navigation.

The experimental environment is a 100x100 square
space as shown in Fig.6. The star in the figure repres-
ents the starting position of the agent, the yellow rect-
angle, which has a size of 20x20, represents the survival

Fig. 6 Experiment environment

platform, and the red line is the path of the simulated
rat. In the experiment, the agent starts from the star,
moves freely and searches for the survival platform. The
experiment ends when the agent finds the platform or
time runs out. The agent is designed to be able to meas-
ure the distances from itself to the walls (although it can-
not receive all the distance data at one time). It can also
smell the odor of the food on the platform, which
provides the exogenous information. The agent is also
able to calculate its real position, which provides the en-
dogenous information.

In this section, we carried out a set of experiments to
test the performance of our model. First, we explain the
settings for all the parameters in the model. Next, we de-
scribe the primary experiment carried out to test basic
spatial cognition ability and adaptability. This was
achieved by randomly changing the positions of the start-
ing point or the survival platform. Obstacles are added to
the environment to make it more complicated, which
tests the robustness of the model. Finally, we compare
our model with other similar models, including the
SARSA()) learning modell) and another brain-inspired
modelB%, to test efficiency and performance in spatial
cognition.

3.1 Parameters settings

There are many parameters in our model, such as the
learning rate p, the discount factor v, various kinds of
standard deviations and other parameters. We omit a de-
tailed discussion here to make the paper concise for the
reader, and we only list the specific settings of all para-
meters in Table 1. The parameters shown in Table 1 were
determined by experimentation multiple times until the

Table 1 Settings of all parameters in the model

Parameter Value Parameter Value Parameter Value

noise_v 0.03 noise_o 0.03  noise_ EN 0.03
Oo 0.02 OEN 0.02 Opc 0.07
100 N 400 M 0.05
o] 0.2 ol 0.9 P 0.5

€ 0.3 0 0.5 Jex, Gen 0.6,0.4

@ Springer
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best results were obtained.

3.2 Primary experiments: Spatial cogni-
tion in a simple environment

In the primary experiments, we simulated the basic
water maze environment. We randomly changed the posi-
tion of the starting point and survival platform to verify
the spatial cognition ability and adaptability. The results
are shown in Figs.7 and 8. We recorded the paths of the
agent in the experiments using different positions of the
starting point and the survival platform.

The results shown in the figures illustrate several
characteristics of our model. First, the model successfully
simulated the behavior of animals like rats in the Morris
water maze. The agent could find the survival platform
after exploring the environment, which proves it has spa-
tial cognition ability like real animals. Second, the model
is self-learning and unsupervised. No instructions or su-
pervision were given to the agent throughout the whole
exploration. The agent explored the environment
autonomously. Its knowledge of the environment comes
only from continuously interacting with the surroundings,
which is in accordance with the way humans and anim-
als learn skills. Third, the model is flexible and self-adap-
ted. The agent still successfully found the right goal after

Experiment 1, step=478 Experiment 5, step=162

‘/\ )
*/\M 1,/ L, I:I Y KN\\D

Experiment 10, step=28

Experiment 20, step=19 Experiment 25, step=19

.

(a) Starting point 4

Experiment 1, step=68 Experiment 5, step=40 Experiment 10, step=10

T
L,;;?@

Experiment 15, step=10

Experiment 20, step=8 Experiment 25, step=8

| O O
< ‘ ¢

(b) Starting point B

Fig. 7 Paths in the experiments with different start points
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we changed the positions of the start and the survival
platform, which proves that it is not task-oriented and
can adapt to new situations easily. Last but not least, the
model shows gradual learning. The performance at the
beginning of the experiment was usually not very good,
but it improved with the process of learning until the
agent finally reached the platform (Figs.7 and 8). This is
consistent with law of exercise presented by Thorndike et
al.[43, 44]

We also recorded the paths in the experiments (Fig.8).
As stated earlier, four experiments with different posi-
tions of the start and the survival platform were carried
out. Each experiment included 25 trials. The results
shown in Fig.9 indicate the gradualness of learning. Spa-
tial cognition gradually forms during the procedure. This
observation also proves the memory ability of our model
because memory is the basis of the gradualness of intelli-
gence.

3.3 Advanced experiments: Spatial cogni-
tion in a more complicated environ-
ment

We added two obstacles to the environment to in-
crease its complexity and to verify the robustness of our
model. The two obstacles are represented by black rect-

Experiment 1, step=111 Experiment 5, step=18 Experiment 10, step=21

) x x
Experiment 15, step=13

= = =

- *g/\ - o

*

Experiment 20, step=13 Experiment 25, step=9

(a) Survival platform 4

Experiment 1, step=40 Experiment 5, step=263 Experiment 10, step=37

(b) Survival platform B

Fig.8 Paths in the experiments with different survival
platforms



J. Huang et al. / A Spatial Cognitive Model that Integrates the Effects of Endogenous and Exogenous Information --- 639

angles in Fig.10. When the agent encounters the
obstacles, it is punished and returned to its previous posi-
tion, and the action is chosen once again.

In addition to the conclusions in the primary experi-
ments, the agent could still find its way from the start to
the goal despite the environment being more complicated
and the positions of the start being changed if the agent
encountered an obstacle (Fig.10). This proves the robust-
ness of our model. The model is stable and robust when
the agent faces various kinds of changes to the environ-
ment.

The final path in the experiments showed that the

—6— Starting point 4

400 —+— Starting point B E
2 Survival platform 4
S‘Z)’ 300 —+— Survival platform B | |
5
'§ 200 ¢
=
Z

100

0

0 2 4 6 8 10 12 14 16 18 20 22 24
Trials

Fig. 9 Number of steps in the 25 experiments
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(a) Starting point 4

=

Experiment 1, step=95 Experiment 5, step=9 Experiment 10, step=327

[]
»

Experiment 30, step=7

Experiment 20, step=13 Experiment 50, step=7

‘8|t [,

(b) Starting point B

Fig. 10 Paths of the agent in the advanced experiments

agent learned not only how to arrive at the platform but
also how to avoid the obstacles when exploring. This in-
dicates that the agent had formed a complete cognitive
simulation of the environment.

3.4 Contrast experiments

In this section, we compared our model with other
models to test the efficiency and performance in spatial
cognition.

1) Comparison with reinforcement learning al-
gorithm

The introduction of reinforcement learning into the
animal navigation model can reflect behavior from a ma-
chine learning perspectivel?® 46l. The essence of reinforce-
ment learning is that agents constantly interact with and
receive feedback from the environment and learn from it.
Here we compared our model with the SARSA()) al-
gorithm in the context of the water maze experiment.

The state-action-reward-state-action (SARSA) algori-
thm is one of the most effective methods to solve the re-
inforcement learning problem[%. The eligibility trace,
which measures how eligible each state-action pair is for
updating, has been introduced into SARSA to avoid the
inherent disadvantages of slow value transfer and conver-
gence. The SARSA algorithm with eligibility trace is
known as SARSA(\)R0L.

The settings of the contrast environment are the same
as in the primary experiment. After multiple trials, the
parameters of SARSA()) are set as follows: a = 0.02,
n =0.9, A =1, where « is the learning rate, 7 is the dis-
count factor and A\ is the decay factor. In addition to
these parameters, the state space of the algorithm in-
cludes 20x20 states, and the action space includes eight
actions. This is similar to our model. The reward func-
tion in SARSA() is also the same as in our model.

The results of the SARSA(A) algorithm and our mod-
el in 200 trials are shown in Figs.11 and 12. Both models
were able to make the agent complete the task and find
the survival platform. However, our model is faster than
the SARSA(X) algorithm and can find a shorter path to
the target. The number of steps to find the platform us-
ing the different methods is shown in Table 2.

Experiment 1, step=970 Experiment 5, step=367  Experiment 10, step=382  Experiment 20, step=244

Experiment 30, step=179  Experiment 50, step=91  Experiment 100, step=77  Experiment 200, step=39

N

Fig. 11 Results of SARSA()) algorithm
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2) Comparison with brain-inspired model

Arleo and Gerstner3% proposed a computational mod-
el of hippocampal activity, the Arleo and Gerstner's (AG)
model for spatial cognition and navigation tasks with exo-
genous and endogenous stimuli. In the AG model, the
two kinds of information are integrated to establish and
maintain the hippocampal place fields. The external stim-
uli are visual data, and the internal stimuli are the posi-
tions of the robot at the current moment in time. The
model consists of three layers of neural network: visual
cell layer, place cell layer and action cell layer. The visu-
al cell layer receives and integrates sensory information.
This layer then clusters the information into multiple act-
ive points to express the current environment. The place
cell layer receives information from the visual cell layer
and encodes the environment as a basis for goal-oriented
spatial behavior. Reward-based learning is applied to map
the place cell activity into action cell activity. Finally,
the model outputs actions to guide the behavior of the
animal.

The settings of the environment and the parameters of
our model (e.g., reward value, learning rate, decay rate
and exploration rate) are kept identical with those pub-
lished for the AG modelBY for direct comparison of the
models (Fig.13). In Figs.13(a) and 13(b), the white rect-
angles represent the obstacles, the dark grey square rep-

Experiment 1, step=160 Experiment 5, step=500 Experiment 10, step=54 Experiment 20, step=22

[7 o
2o SRR
Ki/;a \//? J f/

Experiment 30, step=21 Experiment 50, step=19  Experiment 100, step=27  Experiment 200, step=21

] [
/ g F,J—J ~ ///l:|

'd g /

Fig. 12 Results of our model

Table 2 Number of steps with different methods

1 5 10 20 30 50 100 200

SARSA(N) 970 367 382 244 179 91 77 39
Our method 160 500 54 22 21 19 27 21

|
=

(b) Results of our model

_

(a) Results of AG model*”

Fig. 13  Results of different models after 50 trials
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resents the start position and the black line marks the
path.

The path of our model is straighter than the path ob-
served for the AG model (Fig.13). This indicates that the
path length of our model is shorter and proves that the
performance of our model is better than the performance
of the AG model.

4 Discussions

In this section, we try to analyze the possible reasons
for the advantages of our model. The analysis is mainly
from two perspectives: the effect of the endogenous in-
formation and the number of active place cells.

4.1 Effect of the endogenous information

As mentioned in the introduction, rats that use com-
bined information reach the learning standard a day earli-
er than those that only use the exogenous information.
Therefore, the endogenous information is regarded to
have significant effects on spatial cognition, which in-
spired us to develop our model.

Will the phenomena observed in the physiological ex-
periments be reproduced in our model? We carried out
the following experiments to answer this question. The
settings of the experiments were the same as for the
primary experiment. The experiments included two
groups: one group took the combined information as the
input (gex = 0.6, gen, = 0.4) while the other only received
the exogenous information (i.e., gex = 1, gen = 0). Each
group was executed 50 times. The number of steps in
every trial was recorded (Fig.14). In order to avoid the
effect of accident factors, we changed the start position to
the same position as in the primary experiment.

It can be seen from Fig.14 that the step number of
the blue line is lower on average than that of the orange
line, and the blue line is flatter than the orange line,
which indicates that the performance of the model with
both types of information is better irrespective of the
path length or the stability. The results are completely in
accordance with the conclusions of physiological experi-
ments, and the effect of the endogenous information on
spatial cognition is proven once again by this experiment.

In our opinion, the exogenous information plays a
prime role in spatial cognition, while the endogenous in-
formation is a necessary complement to it. This improves
the accuracy of the space perception and thus also im-
proves the space cognition.

4.2 Number of active place cells

As mentioned above, the firing activities of place cells
build up the mapping from the real world to the brain
and are considered as the physiological basis for the cog-
nitive map. Building up the cognitive map is the key con-
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tent in spatial cognition. Other issues in spatial cognition
are no longer difficult once the cognitive map is being
built up. Since the place cells have significant impact on
spatial cognition, it is reasonable to measure the ability
for spatial cognition by observing the activities of the
place cells or to explain the performance in spatial cogni-
tion by the activities of the cells.

We recorded the number of active place cells to ex-
plain the performance of our model. Here, the word act-
ive means that the firing rate of the place cell is above
the given threshold in accordance with (13).

The result is shown in Fig.15. We can see from the

450 T T T T T T T T T
400 + --g,.=0.6,g,=04
350 —+—2,=1,8,=0

300
250
200
150
100
50
0

Number of steps
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350
300
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200
150
100

50

——Lo = 0.6, 8en = 0.4 1
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Number of steps
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(b) Start from position B

Fig. 14 Number of steps in the experiments with or without
endogenous information
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Fig. 15 Number of active place cells with different thresholds

diagram that as the threshold increases, the number of
active place cells decreases. Irrespective of how it
changes, the number of active place cells for the model
with combined information is always more than that of
the model with only exogenous information. This indic-
ates that the overall firing rate of place cells for the com-
bined information is always higher than for the exogen-
ous only information. A higher firing rate can activate
more place cells, and more place cells can provide more
details about the location because of their location spe-
cificity. Thus, a more accurate cognitive map can be built
up, and the performance in spatial cognition is improved.

Why could the integration of both exogenous and en-
dogenous information shorten the path length and
achieve better results in the experiments? The reason
may be twofold. Generally speaking, the fusion of both
kinds of information increases the firing rate of place cells
so that more place cells are activated. From a neuro-
physiological and cognitive perspective, such an increase
indicates that more environmental information is ob-
tained so as to form a better spatial cognition for anim-
als. In fact, the design in our model that multiple place
cells are activated when the agent is in a certain position
is totally in accordance with O'Keefe's findings/35, which
illuminates the biological plausibility of our model. On
the other hand, from a computational perspective, more
activated place cells will lead to more items in Q-table
updated in the learning procedure shown in Fig. 16, which
records the number of updated @ values in 200 trials
with or without combined information. Compared with
single-step updating in traditional reinforcement learning,
the way that a group of @ values update in each trial not
only speeds up learning, but also extends the exploration
range, which helps find the optimal route.

5 Conclusions

This paper presents a spatial cognitive navigation
model that integrates the effects of endogenous and exo-
genous information on the hippocampus and striatum.
The model helps analyze how different information and
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Fig. 16 Number of updated Q values in 200 trials
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brain regions work together in spatial cognition. The new
model differs in significant ways from previous models.
The connection between HPC and STR is improved so
that only the information representing the active space
cells can be transmitted to the striatum module. This
situation is more in agreement with the physiological
findings. Meanwhile, both exogenous and endogenous in-
formation is considered in the model, which makes the
model biologically more plausible and more efficient. An
improved Q-learning-like method is presented to simu-
late the function of the striatum in the STR module. The
Q@ values are stored in a dispersed way in the neural net-
work in the form of the connection weights. Each update
corresponds to a few active place cells, which indicates
that multiple locations are involved, and this helps re-
duce the state space and speed of the algorithm.

The classic psychological experiment for spatial cogni-
tion, the Morris water maze, was reproduced to test the
validity of our model. We carried out a series of experi-
ments based on a water maze that included primary and
advanced experiments and compared our model with a re-
inforcement learning algorithm and another brain-in-
spired model. Our model demonstrates improvements in
self-adaptability, robustness and efficiency. Moreover, we
tried to analyze the possible reasons for the advantages of
our model from the effect of the endogenous information
and the number of active place cells. We argue that the
endogenous information is a necessary complement to
exogenous information, which can improve the accuracy
of the space perception and thus also improve the space
cognition. In addition, our model increases the firing rate
of place cells, which helps activate more place cells, builds
up a more accurate cognitive map and improves the spa-
tial cognition performance.

We recognize that the mathematical model of endo-
genous information described in this paper is relatively
simple, and that it reduces the influence of other cells in
the hippocampus. The way in which exogenous and endo-
genous information combines also needs to be studied fur-
ther. For example, how is the contribution ratio decided
dynamically and autonomously for the two types of in-
formation? All of these topics are targets for further re-
search.
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