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Abstract—Both two-stream ConvNet and 3D ConvNet are
widely used in action recognition. However, both methods are
not efficient for deployment: calculating optical flow is very
slow, while 3D convolution is computationally expensive. Our key
insight is that the motion information from optical flow maps is
complementary to the motion information from 3D ConvNet.
Instead of simply combining these two methods, we propose
two novel techniques to enhance the performance with less com-
putational cost: fixed-motion-accumulation and balanced-motion-
policy. With these two techniques, we propose a novel framework
called Efficient Motion Complementary Network(EMC-Net) that
enjoys both high efficiency and high performance. We conduct
extensive experiments on Kinetics, UCF101, and Jester datasets.
We achieve notably higher performance while consuming 4.7×
less computation than I3D, 11.6× less computation than ECO,
17.8× less computation than R(2+1)D. On Kinetics dataset, we
achieve 2.6% better performance than the recent proposed TSM
with 1.4× fewer FLOPs and 10ms faster on K80 GPU.

I. INTRODUCTION

Action recognition is one of the most popular research fields
in computer vision [1]–[10]. Video accounts for 70% of global
internet traffic and rising. For example, YouTube has 105

hours of videos uploaded every day to be processed for adver-
tisement recommendation. These industry applications require
both accurate and efficient video-based action recognition.

The key difference between action recognition and image
recognition is temporal sequence modeling. A lot of researches
focus on how to model motion information for video-based
action recognition. There are two main methods: two-stream
ConvNet [1] and 3D ConvNet [2]. Notably, combining two-
stream strategy and 3D convolution strategy achieves obvi-
ously better performance than any single strategy [3], [4],
called 3D-two-stream ConvNet. This phenomenon shows that
these two methods are complementary to each other.

However, both of these two methods are computationally
expensive: (a) it takes 60 ms [11] to calculate optical flow
per frame in K40 GPU, which is not suitable for real-
time application; (b) 3D convolution with a kernel size of
k × k × k need k3 multiply-adds, which is much larger than
2D convolution with k × k kernel. Therefore, although 3D-
two-stream ConvNet achieves high accuracy, it is not efficient
for deployment.

To construct an efficient action recognition model, we
analyze the time cost in action recognition and divide it
into the data preparing time (Data T ime) and the network
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Fig. 1. Compare accuracy and speed with the recent proposed efficient model
(TSM) on Kinetics dataset. The circle size denotes the FLOPs (FLoating-
number OPerations).

computation time (Network T ime). After analyzing these
two processes, we propose a new framework for efficient
action recognition.

The data preparing time (Data T ime) is determined by the
number of using frames (F ), the time for reading one frame
(TR), the time for decoding one frame (TD), and the time
for calculating specific modalities such as optical flow (TM ).
Typically, the time for calculating optical flow is much longer
than TR and TD, so Data T ime can be represented as F×TM
approximately. Hence, to accelerate the data preparing process,
we need to: (1) sample fewer frames; (2) speed up the optical
flow calculation. In this paper, we only sample 5-8 frames
from an action and use motion vector as an alternative optical
flow. The motion vector (MV) is directly extracted from the P-
frames (predictive frames) in videos, which roughly resemble
optical flows. Motion vector exhibits coarse structure, so
it is challenging to use motion vector modality to achieve
high performance. We propose a fixed-motion-accumulation
(FMA) technique to improve the clarity of motion vectors with
negligible extra computation. We accumulate motion vector
back to the reference I-frame. The longer term is accumulated,
the clearer pattern we get. Considering that unstable clarity is
not conducive to network prediction, we fixed the accumulate
term as a constant number. With FMA, we increase the clarity
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of motion vector and achieve obviously higher performance
by motion vectors.

The network time (Network T ime) is determined by
network structure and input spatial resolution. Our framework
contains RGB pathway and MV pathway, whose scores are
fused later. Both RGB pathway and MV pathway adopt TSM
[12] network as backbone. If we simply use the same network
on both pathways, the total computational cost will double. To
speed up our network, we analyze the characteristic of motion
vectors. Our key insight is that motion vectors contain macro
block ranging from 8 × 8 pixels to 16 × 16 pixels and only
describe block-level motion information. We discover that the
performance of MV pathway is not sensitive to spatial resolu-
tion. Based on this analysis, we propose a balanced-motion-
policy (BMP) to balance the motion information between RGB
pathway and MV pathway. We use a larger resolution on RGB
pathway and a smaller resolution on MV pathway to achieve
a trade-off between accuracy and efficiency. With BMP, our
MV pathway only takes ∼12% extra computational cost, but
boosts the recognition accuracy at 3.76% on Kinetics dataset.

After analyzing Data T ime and Network T ime, we
construct a novel framework called Efficient Motion Com-
plementary Network (EMC-Net). To verify the efficiency
of EMC-Net, we conducted extensive experiments on Ki-
netics [13], UCF101 [14], Jester [15] datasets. With FMA
and BMP technique, our MV pathway notably improve the
performance of RGB pathway with small extra computation
cost. We achieve higher performance while consuming 4.7×
less computation than I3D [13], 11.6× less computation than
ECO [16], 17.8× less computation than R(2+1)D [4]. On the
Kinetics [13] dataset, we achieve 2.6% better performance than
the recent proposed efficient model TSM [12] with 1.4× fewer
FLOPs and 10ms faster on K80 GPU. The computational time
v.s. accuracy diagram is shown in Fig.1.

II. RELATED WORK

In this section, we provide a brief introduction about video
action recognition and the method for accelerating it. The
insights of this paper relies on these works closely.

A. Action recognition

In the past few years, deep learning has remarkably ac-
celerated the progresses in computer vision tasks, which
inspires the extension of CNNs to video fields. There are two
major CNN-based video classification frameworks: two-stream
ConvNets [17] and 3D ConvNets [2].

Two-stream ConvNets [1] contains spatial net and tempo-
ral net, which take RGB images and optical flow as input
respectively. Although this method achieves remarkable per-
formance, it is not efficient because calculating optical flow
is slow [1], [11], [18], [19]. Computing optical flow for one
frame costs around 360ms in CPU [18], [19], and 60ms in
GPU [11], [17].

To model spatial and temporal information jointly, re-
searchers propose a 3D ConvNet based on VGG models, called
C3D [2]. By replacing the 2D convolution kernel of Resnet

[20] and Resnext [21], researchers can get Resnet-3D and
Resnext-3D respectively [3]. Although 3D ConvNets typically
outperforms 2D ConvNets, the computation of 3D ConvNets
is very large [22].

B. Acceleration of action recognition

Considerable research efforts are devoted to the acceleration
of action recognition models. These researches can be classi-
fied into two categories: Faster spatial-temporal convolution
network, and Faster optical flow calculation.

For faster spatial-temporal convolution network, some re-
searchers decompose 3D convolution into 2D convolution and
1D convolution [4], [23]. Recently, [12] proposes temporal
shift module (TSM), which enables 2D CNN to capture
spatial-temporal features. Notably, the temporal shift module is
hardware-friendly and computational free, making TSM more
efficient than other backbones. In this paper, we adopt TSM
as our backbone.

For faster optical flow calculation, some researchers cal-
culate optical flow by CNN [24], [25]. Another optical flow
alternative is motion vector (MV), which is already calculated
and encoded in videos (H.264, HEVC, etc.). Most modern
codecs split video frames into I-frames, P-frames and B-
frames. I-frames are regular images. P-frames encode the
difference between two frames as motion vectors, which is
a map with 2 channel, representing the movements of pixels
from the source frame to the target frame,just like optical
flow. As motion vectors are already calculated and encoded in
videos, so extracting it is nearly computational free. Previous
MV-based networks [26], [27] have two drawbacks: high
computation and low accuracy, which makes them inefficient.
We propose several technologies to improve the performance
of MV network with even fewer computation cost, which
makes our MV network provides effective complementary
motion information with only ∼12% extra computation.

III. METHOD

Most previous works on model acceleration only focus on
the network time. We argue that data preparing time is also
should be taken into account:

Total time = Data time+Network time (1)

There are two popular models for action recognition: two-
stream ConvNet and 3D ConvNet, shown in Fig.2 (b) and
Fig.2 (c) respectively. Combining these two models achieves
higher performance, shown in Fig.2 (d). However, these two
models exactly contradict the two time cost parts: the two-
stream model is slow in data preparing; the 3D convolution
model makes the network computationally expensive. In this
paper, we propose fixed-motion-accumulation (FMA) for fast
data preparing, and balanced-motion-policy (BMP) for fast
network.
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Fig. 2. Video-based action recognition can be summarized from two aspects: data and network. In this figure, every column denotes a data modality, and every
row denotes a network. The arrows show the research development process. Researchers start from (a) and achieve high accuracy at (d). Then some researchers
use fast optical flow to achieve (e)(f), while other researchers use fast spatial-temporal networks to achieve (h)(l). We propose fixed-motion-accumulation
(FMA) for fast data preparing and balanced-motion-policy (BMP) for fast network. With these two techniques, EMC-Net is the first work that efficiently
utilizes the complementary information between motion vector and spatial-temporal network, illustrated in (s).

A. FMA for fast data preparing

The data preparing time (Data T ime) is determined by
the number of frames (F ), the time for reading one frame
(TR), the time for decoding one frame (TD), and the time for
calculating specific modalities such as optical flow (TM ).

Data T ime = F × (TR + TD + TM ) (2)

For RGB frames, TR is usually less than 1ms; TD is
determined by video decode process, usually less than 2ms;
TM is 0. For optical flow frames, TM takes around 360ms for
one frame in CPU [18], [19]. Even with GPU acceleration [1],
[11], it still takes 60ms.

To accelerate the data preparing stage, some researchers
[24], [28] use CNN to calculate optical flow (CNN-OF).
However, CNN-OF needs to insert an extra CNN model,
which brings additional computation. Some other researchers
[26] use motion vector as an alternative to optical flow (MV-
OF). Motion vectors are extracted directly from the P-frames
(predictive frames) in videos, which describe macro blocks
movement from one frame to the next. Similar to optical flow,
motion vector is a two-dimensional vector. As shown in Fig.3,

motion vectors roughly resemble optical flows. However,
motion vectors exhibit coarse structure, so it is challenging
to use motion vectors to achieve high performance.

We propose fixed-motion-accumulation (FMA) technique to
improve the performance of MV network with negligible extra
computation. Following [27], we accumulate motion vectors
back to several previous frames. Let M t ∈ RH×W×2 denote
the original motion vector in frame t , which represents
the motion information in horizontal dimension and vertical
dimension. M t(i) denotes the value of original motion vector
at location i ∈ R2. Let Atτ ∈ RH×W×2 denote the accu-
mulated motion vector, where τ is the accumulation step. The
accumulating process traces the pixel location back to previous
frames. Let Lτ denote the traced location at the τ accumulate
step. The accumulated motion vector Atτ can be recursively
computed as below:

when τ = 0:

L0 = i,

At0 =M t(i)
(3)

when τ > 0:
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Fig. 3. Comparison between different motion representation methods. Optical
flow is fine but computational expensive. Motion vector is coarse and
leads to poor recognition accuracy. Accumulated motion vector is fine than
original motion vector, but different frame has different clarity. Fixed-Motion-
Accumulation (FMA) is fine, stable and computational efficient.

Lτ = Lτ−1 −M t−τ+1(Lτ−1),

Atτ = Atτ−1 +M t−τ (Lτ )
(4)

The longer term is accumulated, the clearer motion vec-
tors we get. Considering that volatile clarity frames is not
conducive to network prediction, we fixed the accumulate
term τ as a constant number. In our experiments, we set
τ = 6 because the average term of P-frames in mp4 videos
is 6. As shown in Fig.3, accumulated motion vectors exhibit
clearer, smoother and stable patterns than the original ones.
Compared to the computation of CNNs, the computation of
motion vector accumulation in Equation 3 and Equation 4
is ignorable. Experiments in Section IV-C demonstrate the
effectiveness of FMA on action recognition tasks.

B. BMP for fast network

Our network contains an RGB pathway and an MV (motion
vector) pathway, which are fused later. Both RGB pathway
and MV pathway use TSM network [12] as backbone. If we
simply use the same network architecture on both pathways,
the total computational cost is double.

To speed up our network, we propose a balanced-motion-
policy to balance the efficiency between RGB pathway and
MV pathway. Because motion vector only describes block-
level motion information (ranging from 8×8 pixels to 16×16
pixels), it exhibits coarse structure and contains noisy and
inaccuracy movements. Based on these facts, we conjecture
that the MV pathway is not sensitive to spatial resolution.
Let Srgb be the spatial resolution of RGB stream, and Smv
be the spatial resolution of MV stream. Shrinking Srgb leads
to notable decrease on action recognition accuracy, while
shrinking Smv does not notably affect the action recognition
accuracy. This conjecture has been proved by experiments in
Section IV-C. Therefore, we set a larger resolution for RGB

pathway and a smaller resolution for MV pathway. In this way,
we obtain effective complementary motion information of two
pathways with much less computational cost.

Recently, some researchers also discuss about balancing the
efficiency between two pathways [29]. Different from [29], our
balanced policy is designed for the motion vector pathway with
coarse structure patterns, and we avoid large sampling rate so
our policy is more efficient.

C. Efficient Motion Complementary Network

The above analyses can be summarized into three folds.
(a) Two-stream ConvNets and 3D ConvNets are complemen-
tary. Combining two models achieves high performance.
(b) To accelerate data preparation, we propose fixed-motion-
accumulation (FMA) as an effective alternative optical flow.
(c) To accelerate network computation, we propose balanced-
motion-policy (BMP).

From these analyses, we construct a novel framework called
Efficient Motion Complementary Network (EMC-Net). Fig.2
(s) illustrates our concept. By revisiting the development his-
tory of action recognition, the rationality of EMC-Net can be
confirmed. Researchers start from Fig.2 (a), and achieve high
accuracy at Fig.2 (d) by combining two-stream model and 3D
CNN model. Both two models are computational expensive;
therefore, some researchers propose faster data preparing as
Fig.2 (e)(f), while other researchers propose faster spatial-
temporal network as Fig.2 (h)(l). With our proposed FMA
and BMP techniques, EMC-Net is the first work that efficiently
utilizes the complementary information between motion vector
and spatial-temporal network, illustrated in Fig.2 (s).

IV. EXPERIMENTS

In this section, we demonstrate that EMC-Net is not only
theoretically efficient but also has low latency and high
throughput. We also conduct extensive ablation studies to eval-
uate fixed-motion-accumulation (FMA) and balanced-motion-
policy (BMP). Instead of using multi-clip [4] or multi-crop
[27], [30], [31] strategy, we only use single clip and single
crop for efficient deployment.

A. Datasets and Experiments Protocol

Datasets. Kinetics-400 [13] has ∼240k training videos and
20k validation videos in 400 human action categories. UCF101
[14] is another popular action recognition dataset, whose size
is relatively small. The UCF101 dataset has 13,320 action
samples in 101 classes. Jester [15] is a video dataset for hand
gesture recognition, which contains 148,092 gesture samples
in 27 classes. Each gesture sample is performed in front of a
camera.
Training. Since many of the action recognition datasets are
not large enough and cause over-fitting [30], we follow the
common practice [13], [32] and first pre-train our EMC-Net
on Kinetics dataset. Our proposed EMC-Net contains RGB
pathway and MV(Motion Vector) pathway. We train both RGB
pathway and MV pathway for 45 epochs, starting with an
initial learning rate 0.01 and reducing it by a factor of 10 at
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TABLE I
EMC-NET ACHIEVES HIGHER PERFORMANCE AND ENJOYS HIGH

EFFICIENCY ON THREE DATASETS.

Dataset Frames Model FLOPs top 1

Kinetics
8 TSM 33G 69.35

5 TSM 21G 68.25

5 EMC-Net 23G 72.01

UCF101
8 TSM 33G 93.61

5 TSM 21G 92.58

5 EMC-Net 23G 93.71

Jester
8 TSM 33G 94.40

5 TSM 21G 93.97

5 EMC-Net 23G 94.42

every 15 epochs. We use a momentum of 0.9 and weight decay
of 5e-4. We adopt dropout [33] after the global average pooling
layer with a dropout ratio of 0.5. We follow the practice in
[30] to fix all the Batch Normalization [34] layers except for
the first one. After training our model on Kinetics dataset, we
fine-tuned the model to other datasets like UCF101 and Jester
for 50 epochs. The initial learning rate is 0.001, and we reduce
it by a factor of 10 at every 20 epochs. Since we take data
loading time into account, only 5-8 frames are sampled from
a video for both training and testing. We apply similar data
augmentation strategy as [30]: first resizing the shorter side of
input frames to Lshorter, then employing random crop. The
width and height of cropped region are randomly selected from
0.75× Lshorter to 1.0× Lshorter.
Testing. Many state-of-the-art method use samples multiple
clips during the testing stage [22], [30], [35]. For example,
TSN [30] and ARTNet [35] sample 25 frames from the image
and apply 10 crops per frames leading; therefore, they need
to compute the network for 250 times per video. Since our
goal is to build an efficient video understanding framework,
we only apply center crop using the same number of frames
as training (e.g. 5-8 frames) to get the prediction directly.

B. The efficiency of EMC-Net

We adopt TSM [12] as backbone. In Table.I, we compare
TSM with EMC-Net on three datasets: Kinetics [13], UCF101
[14] and Jester [15]. Our EMC-Net5frame achieves notably
higher performance than TSM5frame, which confirms that
our MV pathway provides effective complementary motion
information. Concretely, our EMC-Net5frame achieves 3.76%
better performance than the TSM5frame baseline (our imple-
mentation 1) on Kinetics dataset. As shown in Table.II, even
if our implementation for TSM (69.4%) is lower than the
original paper (70.6%), EMC-Net still notably outperforms
the accuracy reported in TSM original paper with fewer
computational cost.

1Because of the expiration of some YouTube links, about 10% Kinetics
training videos are missing. It does not affect the fairness of our experiment
because we use the same training process and data argumentation with
the TSM [12], and these training details does not change between ablation
experiments.

TABLE II
COMPARE FLOPS WITH OTHER EFFICIENT MODELS ON KINETICS

DATASET. INSTEAD OF USING MULTI-CLIP OR MULTI-CROP FUSION
STRATEGY, WE ONLY USE SINGLE CLIP AND SINGLE CROP FOR EFFICIENT

DEPLOYMENT.

Model Frames FLOPs top1
TSN [30] (ECCV’16) 8 33G 66.8
I3D [13] (CVPR’17) 64 108G 71.1
R(2+1)D [4] (CVPR’18) 16 10×41G 68.0
ECOEn [16] (ECCV’18) 16+20+24+32 267G 70.0
S3D [23] (ECCV’18) 64 66G 69.4
TSM [12] (ICCV’19) 16 65G 72.5
TSM [12] (ICCV’19) 8 33G 70.6
TSM [12] our impl. 8 33G 69.4
EMC-Net (Ours) 8 37G 73.4
EMC-Net (Ours) 5 23G 72.0

Cost vs. Accuracy. Our EMC-Net achieves higher per-
formance even with fewer frames. As shown in Table.I,
our EMC-Net5frame (in bold) achieves better performance
than TSM8frame with fewer computational cost. Concretely,
our EMC-Net5frame achieves 2.6% better performance than
TSM8frame(our impl.) with 1.4× fewer FLOPs on Kinetics.
We also compare with other efficient action recognition models
in Table.II on both accuracy and FLOPs. Our EMC-Net5frame
achieves notably higher performance while consuming 4.7×
less computation than I3D, 11.6× less computation than
ECOEn, and 17.8× less computation than R(2+1)D. Here we
only compare with previous efficient models without calculat-
ing optical flow, because the time for calculating optical flow
is usually much longer than the action recognition.
Latency and Throughput Speedup. EMC-Net is not only
theoretically efficient but also has low latency and high
throughput. We measure the speed on a single NVIDIA K80
GPU. Note that in actual deployment, we need to consider
both data preparing time and network time. To measure the
latency, we use a batch size of 1; to measure the throughput,
we use a batch size of 10. Compared with the recent proposed
efficient model TSM [12], our method achieves lower latency
and higher throughput at higher accuracy (Table.III). Besides,
the time is measured by serially computing RGB pathway and
MV pathway. We expect an even higher speed up if our RGB
pathway and MV pathway are computed simultaneously.

TABLE III
SPEED OF TSM AND EMC-NET. WE SHOW THE COST OF DATA TIME

(DT), NETWORK TIME (NT) AND THE TOTAL TIME.

Batch size Model DT(ms) NT(ms) Total(ms)

1 TSM8frame 5.6 71.0 76.6

EMC-Net5frame 11.5 53.7 65.2

10 TSM8frame 54.1 562.6 616.1

EMC-Net5frame 115.5 401.8 517.3

C. Ablation study

Fixed-Motion-Accumulation (FMA). As discussed in Sec-
tion III-A, motion vector exhibits a coarse structure, so it is
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challenging to train motion vector pathway with high perfor-
mance. [27] propose motion-accumulation (MA) to improve
the performance. However, their clarity of motion vector
frames changes during both training and testing. Our proposed
fixed-motion-accumulation (FMA) provides consistent clarity,
which is conducive to network prediction. In Table.IV, we
compare three cases: train in MA and test in MA; train in MA
and test in FMA; train in FMA and test in FMA. We found
testing in FMA achieves 1.9% improvement. If both training
and testing are using FMA, we achieve 2.5% improvement.

TABLE IV
MOTION-ACCUMULATION. (MA) vs. FIXED-MOTION-ACCUMULATION.

(FMA). THE ACCURACY IS MOTION VECTOR PATHWAY ON KINETICS
DATASET.

Train Test top 1 top 5 ∆ top1

MA MA 36.91 63.79 0

MA FMA 38.81 63.84 +1.90

FMA FMA 39.42 63.97 +2.51

TABLE V
THE SENSITIVITY OF INPUT RESOLUTION IN RGB PATHWAY AND MV

PATHWAY ON HMDB51 DATASET.

Modality Resolution top 1 top 5 ∆ top 1

RGB
224×224 61.63 82.09 0
112×112 53.15 76.78 -8.48

64×64 43.23 67.19 -18.40

MV
224×224 46.51 71.63 0
112×112 45.62 72.94 -0.89

64×64 40.78 68.35 -5.73

TABLE VI
COMPARE WITH COVIAR [27]. OUR MODEL IS RESNET18 (5 FRAMES

INPUT) WITH FMA AND BMP TECHNIQUES, WHILE COVIAR USES
RESNET18 (25 FRAMES INPUT) WITH MA.

MV pathway top 1 top 5 FLOPs

Naive-MV [27] 58.3 - 50G

CoViAR-MV [27] 63.9 - 50G

FMA & BMP (ours) 65.97 87.52 2.5G

Balanced-Motion-Policy (BMP). We conduct experiments
about different spatial resolutions on RGB pathway and MV
pathway, denoted as Srgb and Smv respectively. As shown
in Table.V, the performance of RGB pathway is sensitive
to its spatial resolution; therefore, using small resolution in
RGB pathway to save computational cost is inappropriate. The
performance of MV pathway only drops 0.89% when Smv
shrink from 224 to 112, and drop 5.73% when Smv shrink
from 224 to 64. This experiment proves the conjecture that
MV pathway is not sensitive to spatial resolution because
of its coarse structure. In balanced-motion-policy, we use
Srgb = 224 and Smv = 112 as a trade-off between speed
and accuracy.

FMA & BMP. We combine the above FMA and BMP to
build a highly efficient MV pathway for our proposed EMC-
Net. As is shown in Table.VI, compared with the previous
state-of-the-art efficient MV model (CoViAR [27]), our MV
pathway achieves 2.1% higher performance with 25× fewer
FLOPs.

V. CONCLUSION

In this work, we propose a novel framework, coined as
EMC-Net, for efficient action recognition in videos. We pro-
pose two novel techniques to enhance the performance with
less computational cost: fixed-motion-accumulation (FMA)
and balanced-motion-policy (BMP). With our proposed FMA
and BMP techniques, EMC-Net efficiently utilizes the com-
plementary information between motion vector and spatial-
temporal network. Our framework is not only theoretically
efficient, but also has low latency and high throughput. EMC-
Net is a generalizable framework and can be introduced into
other action recognition networks.

Acknowledgement This work was supported by the State
Grid Corporation Project ”Development and Application of
Electric Power Patrol Robot Based on Artificial Intelligence
Technology”.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in Advances in neural information
processing systems, 2014, pp. 568–576.

[2] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri,
“Learning spatiotemporal features with 3d convolutional networks,” in
2015 IEEE International Conference on Computer Vision, ICCV 2015,
Santiago, Chile, December 7-13, 2015, 2015, pp. 4489–4497. [Online].
Available: https://doi.org/10.1109/ICCV.2015.510

[3] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3d cnns retrace
the history of 2d cnns and imagenet?” in 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA, June 18-22, 2018, 2018, pp. 6546–6555.

[4] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A
closer look at spatiotemporal convolutions for action recognition,” in
Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, 2018, pp. 6450–6459.

[5] B. Zhou, A. Andonian, A. Oliva, and A. Torralba, “Temporal relational
reasoning in videos,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 803–818.

[6] C. Si, Y. Jing, W. Wang, L. Wang, and T. Tan, “Skeleton-based action
recognition with spatial reasoning and temporal stack learning,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 103–118.

[7] D. Moltisanti, S. Fidler, and D. Damen, “Action recognition from single
timestamp supervision in untrimmed videos,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
9915–9924.

[8] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-
pooled deep-convolutional descriptors,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 4305–
4314.

[9] Y. Zhao, Y. Xiong, and D. Lin, “Trajectory convolution for action
recognition,” in Advances in Neural Information Processing Systems,
2018, pp. 2204–2215.

[10] C.-Y. Wu, C. Feichtenhofer, H. Fan, K. He, P. Krahenbuhl, and R. Gir-
shick, “Long-term feature banks for detailed video understanding,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 284–293.

1548



[11] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy
optical flow estimation based on a theory for warping,” in Computer
Vision - ECCV 2004, 8th European Conference on Computer Vision,
Prague, Czech Republic, May 11-14, 2004. Proceedings, Part IV,
2004, pp. 25–36. [Online]. Available: https://doi.org/10.1007/978-3-
540-24673-2 3

[12] J. Lin, C. Gan, and S. Han, “Temporal shift module for efficient video
understanding,” CoRR, vol. abs/1811.08383, 2018. [Online]. Available:
http://arxiv.org/abs/1811.08383

[13] J. Carreira and A. Zisserman, “Quo vadis, action recognition? A
new model and the kinetics dataset,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, July 21-26, 2017, 2017, pp. 4724–4733. [Online]. Available:
https://doi.org/10.1109/CVPR.2017.502

[14] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of
101 human actions classes from videos in the wild,” CoRR, vol.
abs/1212.0402, 2012. [Online]. Available: http://arxiv.org/abs/1212.0402

[15] “Twentybn jester dataset: a hand gesture dataset.”
https://20bn.com/datasets/jester.

[16] M. Zolfaghari, K. Singh, and T. Brox, “ECO: efficient convolutional
network for online video understanding,” CoRR, vol. abs/1804.09066,
2018. [Online]. Available: http://arxiv.org/abs/1804.09066

[17] K. Simonyan and A. Zisserman, “Two-stream convolutional
networks for action recognition in videos,” in Advances in
Neural Information Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014, December
8-13 2014, Montreal, Quebec, Canada, 2014, pp. 568–
576. [Online]. Available: http://papers.nips.cc/paper/5353-two-stream-
convolutional-networks-for-action-recognition-in-videos

[18] V. Kantorov and I. Laptev, “Efficient feature extraction, encoding, and
classification for action recognition,” in 2014 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH,
USA, June 23-28, 2014, 2014, pp. 2593–2600. [Online]. Available:
https://doi.org/10.1109/CVPR.2014.332
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